
Notes on Martingalization

[These notes were written for my 1999 NSF proposal and describe some proposed work
on asymptotic inference on the quantile regression process.]
Koenker and Machado [6] describes some early steps in a long march toward a complete

theory of inference for the quantile regression process. The initial steps are important
because a.) they have clari�ed the crucial role of the Bessel process and its natural role
extending classical Kolmogorov-Smirnov results to situations in dimension greater than one,
and b.) they yield a theory for the Wald and rankscore tests that successfully accommodate
the linear location-scale model under the null.
What is to be done? The theory available in Koenker and Machado enables us to test a

wide variety of simple null hypotheses of the formH0 = f�(�) = 0 : � 2 T g where T denotes
closed interval contained in (0, 1). But as in the closely related literature on goodness
of �t, we are often interested in composite hypotheses that involve further estimation of
parameters. For example, in the iid error linear model we have �(�) = � + F�1

u (�)e1, so
all the slope coordinates are constant, independent of � . This is obviously an important
hypothesis, but it falls outside the domain of [6] since it involves the �xed slope nuisance
parameters.
The classical situation, described by Durbin [4], involves the Kolmogorov-Smirnov test.

Suppose we wish to test that the random sample fy1; : : : ; yng on Y comes from the df F0:
From an asymptotic standpoint it proves convenient to consider the process

vn(�) =
p
n(F0(F

�1
n (�))� �); � 2 [0; 1];

where F�1(�) = inffy : F (y) � �g: For notational convenience we will denote Gn(�) =
F0(F

�1
n (�)) in what follows.

The process vn(�) converges weakly to a Brownian bridge process, and the Kolmogorov-
Smirnov statistics �n = sup jvn(t)j and ��n = sup vn(t)

� can be used to conduct inference. If,
however, we wish to test that F0 is an element of some parametric family F�, with unknown
parameter � the situation is somewhat more complicated. We can, of course, estimate �,
and set G(�; �̂n) = F (y; �̂n) so G(�; �0) = � , and consider the process

un(�) =
p
n(Gn(�)� G(�; �̂n)):

But when we do this we �nd, under classical maximum likelihood conditions on the family
F�, that vn(�) converges weakly to a Gaussian process with mean zero and covariance
function,

Evn(�1)vn(�2) = �1 ^ �2 � �1�2 � g0(�1)
0J�1g0(�2)

where

g0(�) � g(�; �0) =
@F (y; �)

@�

�����
y = F�1(�; �)
� = �0;

and J = Er� log f(y; �0)r� log f(y; �0)
0; the Fisher information for �. The last term of the

covariance function reects the contribution of �̂n. Had we been able to use �0 instead of
�̂n, we would have had only the leading Brownian bridge terms.
The presence of this �nal term considerably complicates the development of a valid test

procedure. Durbin discusses a sample splitting strategy also suggested by Rao, but criticizes
it for its sensitivity to the convention employed for the splitting. Similar criticism could, of
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course, be leveled at various bootstrapping schemes that might be used to construct critical
values. Special cases, notably for F0 Gaussian, have been considered by various authors,
but a general approach eluded my attention until I received Bai [1], which seemed to contain
a key result required to move beyond the theory developed in Koenker and Machado into
the realm of composite nulls.
To my chagrin this device had appeared considerably earlier in Khmaladze [5], but seems

to have been largely ignored in the statistics literature until recently, when it has been
prominently featured in several papers [10, 7, 8] by Stute and his colleagues. The idea is
quite simple and attractive. I will �rst try to briey explain it in the context of Durbin's
problem alluded to above, since this is the immediate context treated by Khmaladze. I will
then attempt to explain why the idea is so appealing in the context of quantile regression
inference. I should stress at this point that the applications of Bai to problems of paramet-
ric inference in time-series models are also extremely promising, but are focused on quite
di�erent objectives than those described below.
Expanding G(�; �̂) around � = �0 we have,

G(�; �̂) = � + (�̂ � �0)
0g(�; ��);

for some �� = ��0+(1��)�̂ and � 2 (0; 1). Assuming that we have a Bahadur representation
of the form,

p
n(�̂ � �0) =

Z
1

0

h(s; �0)dvn(s) + op(1);

we may reexpress un(�) as,

un(�) = vn(�)� g(�; �0)
0

Z
1

0

h(s; �0)dvn(s) + rn(�);

and show that it converges weakly to the Gaussian process

u(�) = v(�)� g(�; �0)
0

Z
1

0

h(s; �0)dv(s)

where v as above denotes a Brownian bridge. The appearance of the last term clearly
implies that the limiting behavior of un(�) depends upon the family F�, and perhaps even
on the particular value �0, thus rendering tests based on functionals of un(�) evidently
distribution unfree. This is the Durbin problem. Under conventional regularity conditions
the representation is not invertible, indicating that in general one cannot transform u(t)
into v(t).
Khmaladze proposes an alternative representation for u(�) that does permit transforma-

tion of the parametric empirical process, un(�), under the null hypothesis, into standard
Brownian motion. The underlying idea is closely tied to the classical Doob-Meyer decompo-
sition of Gn(�): It is easy to see that Gn(�) is Markov: n�Gn(�) = n[�Gn(�+��)�Gn(�)]
is binomial with sample size n(1�Gn(�)), p = ��=(1� �), and initial condition Gn(0) = 0.
Thus, the conditional expectation of �Gn(�) with respect to the natural �ltration fFGn

� :
0 � � � 1g is,

E[�Gn(�)jFGn

� ] =
1�Gn(�)

1� �
��:

This suggests the representation,

Gn(t) =
Z t

0

1�Gn(s)

1� s
ds+mn(t)
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where the process fmn(t);FGn

t g is a martingale. It follows that the empirical process
vn(t) =

p
n(Gn(t)� t) may be represented as,

wn(t) = vn(t) +

Z t

0

vn(s)

1� s
ds:

This is the classical Doob-Meyer representation of the empirical process, and there is a
corresponding representation of the limiting Brownian bridge process in terms of standard
Brownian motion. Khmaladze essentially extends this idea to a much broader class of
transformations applicable to the parametric empirical process un(t).
Let g(t) = (t; g1(t); : : : ; gl(t))

0 be a vector of real valued functions on [0; 1], and suppose
that the vector of derivative functions _g(t) are linearly independent, so that the matrix

C(t) =

Z
1

t
_g(s) _g(s)0ds

is non-singular for each t 2 (0; 1). The Doob-Meyer representation may be regarded as a
special case of the following much more general device,

w(t) = v(t)�
Z t

0

_g(s)0C�1(s)
Z

1

s
_g(r)dv(r)ds:

To specialize to the Doob-Meyer case, choose, g(s) = s, so C(s) = 1� s, and note that,
Z

1

s
_g(r)dv(r) = v(1)� v(s) = �v(s):

The power of the general version of this device is apparent if we return to the parametric
empirical process representation,

un(t) = vn(t)� g(t; �0)
0

Z
1

0

h(s; �0)dvn(s) + rn(t):

Applying the martingale transformation to vn(t) yields

wn(t) = vn(t)�
Z t

0

_g(s)0C�1(s)
Z

1

s
_g(r)dvn(r)ds

with wn(t) ) w(t): Now consider applying the same same transformation to un(t), with
g(t) = (t; g0(t)) � (t; g(t; �0), so we obtain,

~un(t) = un(t)�
Z t

0

_g(s)0C�1(s)

Z
1

s
g(r)dun(r)ds:

Khamaladze proves that ~un(t)) w(t), so in e�ect the martingale transformation has purged

the parametric empirical process un(t) of the contribution of �̂n in its �rst order asymptotic
representation, and tests based on ~un(t) can be constructed that are now asymptotically
distribution free.
A heuristic sketch of the argument goes as follows. The linear operator,

Pg[h](t) =

Z t

0

_g(s)0C�1(s)

Z
1

s
_g(r)dh(r)ds

has the property Pg [g] = g, and consequently the transformation un ! un � Pg [un] annihi-
lates the g0 term in the linear representation of un leaving

~un � un � Pg[un] = vn � Pg [vn] +Rn:
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Since the remainder process Rn converges in L2[0; 1] to zero, we have that ~un ) w, i.e., the
transformed process ~un converges weakly to standard Brownian motion.
The transformation from un to ~un provides an elegant general solution to the Durbin

problem at least from the standpoint of conventional �rst-order asymptotic theory. I am
not aware of any published Monte-Carlo work on the original one-sample goodness of �t
problem. However, a note by Nikabadze and Stute [8] reports some Monte-Carlo results for
a closely related problem in which Gn(�) is replaced by the Kaplan-Meier estimator, and
these results are quite encouraging.
I will briey describe one leading example to illustrate how the foregoing theory may be

applied in the context of quantile regression inference. Suppose that we would like to test
the null hypothesis that we have the linear location-scale shift model

yi = x0i�1 + (x0i�2)ui

with fuig iid from some (perhaps) unknown df F , versus the alternative hypothesis that
we have some more general form of linear conditional quantile functions. Traditionally,
econometrics, and statistics more generally, has focused almost exclusively on how covariates
a�ect the location and scale of the conditional distribution of yjx. Thus, the linear location
scale shift model subsumes a broad spectrum of conventional models. Nevertheless, it is, I
believe, crucial to explore the possibility that covariates act in more complex ways to alter
other features of the conditional distribution, not simply its location ands scale, but its
shape as well. This is the objective of the inference strategy I propose to explore.
Under the null we have,

Qyi(� jx) = x0�(�)

where �(�) = �1 + �2F
�1(�), so the hypothesis implies that each of the p functions

�(�) = (�1(�); : : : ; �p(�))
0 can be expressed as an a�ne function of F�1(�). Were we

con�dent about the validity of the null, it is clear that adaptively e�cient estimators of
(�1; �2) could be designed. Tests based on the quantile regression process, �̂(�), o�er a
systematic way to determine whether such con�dence is justi�ed. Such tests do not, how-
ever, fall into the class of simple nulls investigated in Koenker and Machado since they
involve the unknown nuisance parameters �1 and �2. It may also be worth remarking that
by appropriate interpretation of the vectors fxig we may extend the present theory into the
realm of non-parametric quantile regression using series expansions, B-splines and related
methods. Locally polynomial quantile regression using kernel weighting as in Chaudhuri [3]
and Welsh [11], could also be explored in this fashion.
Suppose for the moment that F�1(�) were known and xi � 1; i = 1; : : : ; n: This puts us

back into a situation very close to the Durbin problem. We have

�̂(�) = argminb2R

nX
i=1

��(yi � b)

as simply the empirical quantile function based on the sample fy1; : : : ; yng. We know that

vn(�) =
p
n(�̂(�)� �(�))=s(�)) v(�)

where s(�) = 1=f(F�1(�)) is assumed to be strictly positive, and under the null �(�) =
�1+�2F�1(�) for real numbers (�1; �2). As above, v(�) denotes the Brownian bridge process.

Let ~�n denote an estimator of the parameter, �0 = (�1; �2)0 satisfying
p
n(~�n � �0) = Op(1):
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Set �(�) = (1; F�1(�)) and write, ~�(�) = ~�0�(�), so

un(�) =
p
n(�̂(�)� ~�(�))=s(�)

=
p
n(�̂(�)� �(�))=s(�)�pn(~�(�)� �(�))=s(�)

= vn(�)�
p
n(~�n � �0)

0�(�)=s(�):

We �nd ourselves back in precisely the Durbin problem with g0(�) = �(�)=s(�): Applying
the Khmaladze martingalization, we obtain

~un = un � Pg[un]

where g(�) = (�; �(�))0=s(�)): In this case,

_g(�) = (1; _f=f; 1 + F�1(�) � _f=f)0

where the score function _f=f is evaluated at F�1(�). In the Gaussian case, F = �, this
yields,

_g(�) = (1;���1(�); 1� ��1(�)2)0:

It should come as no surprise that the result is so strongly reminiscent of the prior discussion
of tests based on the empirical distribution function. The weak convergence theory of the
empirical distribution function and the corresponding theory for the empirical quantile
function are intimately tied together. A convenient reference is is Beirlant and Deheuvels
[2] and an extended treatment is available in Shorack and Wellner [9].
The extension to a general p dimensional covariate vector, xi, is straightforward. We now

have a p � 2 matrix of nuisance parameters comprising �0, but the g(�) function remains
the same. In this case we have a p-variate empirical process and the standardization is a
little more complicated,

un(�) =
p
nD�1=2

n Hn(�̂(�)� ~�(�))

where Dn = n�1X 0X;Hn = n�1X 0
�1X; 
 = diag (x0i). But the same procedure applied
to each coordinate yields

~un = un � Pn[un]) wp

where wp denotes a p-variate standard Brownian motion. Obviously, we can transform
~un again to obtain a p-variate Brownian bridge and consider test statistics of the form
sup jj~u(�)� � ~u(1)jj2=�(1� �) that have the same squared Bessel process behavior as those
investigated previously in Koenker and Machado.
In the more interesting, and realistic, case that F�1(u) is no longer assumed to be known,

we seem to have several options. A particularly simple option would be to choose one coordi-
nate from �̂(�) and let it play the role of F�1(�) and proceed as before with a (p�1)-variate
process. The obvious candidate for the chosen coordinate is the intercept. Alternatively,
we may consider various reduced rank schemes which would have the advantage that they
would avoid privileging any one coordinate of the vector process �̂(�).

There is a wide array of other hypotheses on �̂(�) that fall into the domain of applicability
of the martingalization device. And parallel to the theory we have sketched based on the
primal quantile regression process, �̂(�), there is a dual theory based on the regression
rankscore process that also merits investigation. There are many issues that have been
glossed over in this brief description. There are obviously important remaining problems of
nuisance parameter estimation involving s(�) and 
. Although these problems do not play
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a signi�cant role in the asymptotic theory, they may be of considerable importance for the
performance of the tests in moderate sized samples.
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