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Lecture 9

Introduction to Simultaneous Equation
Econometric Models

Review of Linear \Seemingly Unrelated Regressions"

The simplest example of simultaneous equation models in econometrics is the model which Zellner
labeled SUR and statisticians usually call just multivariate regression.

yi = Xi�i + ui i = 1; : : : ; m

where
yi � n-vector of observed responses
Xi � n � pi matrix of exogenous variables
ui � n-vector of \errors"

A typical example would be a system ofm demand equations in which Xi would be composed of prices
and incomes and perhaps other commodity speci�c exogenous inuences on demands. By exogenous
in this preliminary setting we will simply mean that

EX 0

iuj = 0 i; j = 1; : : : ; m:

which is the natural extension of the orthogonality condition underlying ordinary linear regression
with a single response variable.

It is convenient to write the whole system of equations as

y = X� + u

which may be interpreted as
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in which the equations have simply been stacked one on top of another. We will suppose that the full
mn-vector, u, is normal with mean 0, and covariance matrix

Euu0 = 

 In = (!ij In)
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and we may then, immediately, write the optimal (unbiased) estimator of the parameter vector � as,

�̂ = (X 0(

 I)�1X)�1X 0(

 I)�1y

where we note that (

I)�1 = 
�1
I: Typically, 
 is unknown, but we may estimate it by 
 = (!̂ij);
with

!̂ij = û0iûj=n

where ûi; i = 1; : : : ; m are the n-vectors of residuals from any initial (consistent) estimate of the model,
typically from an OLS �t to the individual equations.

An important observation is that there is no e�ciency gain from the reweighting by (

 I)�1 if
X = (I 
X0). That is, if Xi = X0 for all i as would be the case in some demand system contexts, we
gain nothing from doing the system estimate over what is accomplished in the equation-by-equation
OLS case. To see this write
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We are solving the equations in the weighted case

X 0(

 I)�1û = 0

but if X = (I 
X0), this is equivalent to
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but this is satis�ed by assuring that

X 0

0ûi = 0 i = 1; : : : ; m

which are just the normal equations for the separate OLS regressions.
A useful introduction to maximum likelihood estimation of systems of equations may be provided

by the SUR model. For this purpose it is convenient to stack the observations in \the opposite way"
that is, to write

yj = Xj� + uj j = 1; : : : ; n

where
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where xji is a pi row vector. Now stacking the model we have,

y = X� + u

and now u � N (0; I 
 
): Note that, with this formulation
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The convenient aspect of this formulation is that we can view uj ; j = 1; : : : ; n as independent real-
izations of an m-variate normal vector and thus the likelihood for the model may be written as,
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where implicitly we recognize that the uj 's are functions of the � vector. As usual it is more convenient
to work with log likelihood,

`(�;
) = K �
n

2
log j
j �

1

2

X
u0j


�1uj

We have already seen how to estimate � in this model. We now consider two variants on estimation
of 
:
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Case 2. If 
 is completely unknown, we simply di�erentiate with respect to 
: Recall that
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Verify that these formulae work in the \A scalar" case. Now,
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which is the same formula suggested earlier in the lecture.
Now, concentrating the log likelihood as in the single equation case we may simplify the last term,
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so for purposes of computing likelihood ratios or SIC numbers we have

`(�̂; 
̂) = K� �
n

2
log j
̂j

where K� is a constant in dependent of the data.

Introduction to Vector Autoregressive Models

An important class of models in time-series which draw upon the ideas of SUR models are the so
called VAR models. Consider an m-vector yt observed at time t and a model

yt = � +A1yt�1 + A2yt�2 + : : :+ Apyt�p + ut

Again exploiting the lag operator notation we may write this as

A(L)yt = � + ut

where
A(L) = I � A1L�A2L

2 � : : :� ApL
p:

Again, stability is crucial determined by the characteristic equation�,

jA(z)j = 0:

If the roots of this equation lie outside the unit circle, then all is well, if some roots lie on the unit
circle, then it is useful to reformulate the model in the error correction form

�yt = �+ B1�yt�1 + B2�yt�2 + Bp�1�yt�p+1 � �yt�1 + ut

where we have
� = A(1) = I �A1 � : : :�Ap

and has rank less than m. We then factor � into pieces that have rank m � r and this leads to the
theory of cointegrated time series, a topic which is dealt with in some depth in 473. Rather than delve
into this any further I will briey mention one related topic.

Impulse Response Functions, Again

Since we have a somewhat di�erent setting than our single equation demand model, it is worth
revisiting the question \what is an IRF for a VAR?" In the VAR context we have no exogenous
variables which might be regarded as candidates for a permanent policy shock of the type we have
already discussed.

However, we can still ask what would be the path of the system if it were in equilibrium and was
then \shocked" by a permanent increase in one of the error realizations. So we are really asking what
happens to the whole system of equations, how does it evolve after encountering a once and for all
increase in one element of the error vector ut. Formally, we have the same problem except that now
we have matrices everywhere we used to have scalars.

�Note that this characteristic equation now yields roots of an eigenvalue problem, not simply an ordinary polynomial

but the principle is the same as before.
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If the model is stable in the sense we have already described, we can \invert" the VAR represen-
tation and put the model in the MA form,

yt = m+A(L)�1ut

where A(L)�1ut is interpretable in much the same way that we interpreted

D(L)xt = A(L)�1B(L)xt

in the earlier, simpler, models. To illustrate, it may be helpful to consider the example,

A(L) = I �AL

In this case the invertible MA representation would have

(I � AL)�1 = I +A+ A2 + : : :

Note that as in the simple case we can verify this directly. Obviously we require that the right hand
side converge, for this to make any sense. The MA or impulse response formulation of the model has
some inherent ambiguity in the typical case of correlated errors. The underlying thought experiment
is rather implausible in this case and there has been considerable discussion about various schemes
to orthogonalize the errors, but these \solutions" introduce new problems having to do with the
nonuniqueness of the orthogonalization.
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