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Introduction to Non-Stationary Time Series

Consider a univariate time series fytg1t=�1: We say that fytg is (strictly) stationary if the joint
distribution of the vectors (yt1 ; : : : ; ytk) and (yt1+s ; : : : ; ytk+s) are the same for any choice of the sub-
scripts (t1; t2; : : : ; tk; s). Thus, in particular, the marginal distributions are identical, so Eyt = � and
V yt = �2 are independent of t, and furthermore covariances Cov (yt; yt+s) depend only on s, but not
on t. We will say fytg is weakly stationary, or covariance stationary if only, these mean and covariance
conditions hold. In the Gaussian case, i.e., when fytg is a Gaussian random process weak and strict
stationarity are equivalent, but in general this is clearly not true.

In many economic contexts the stationarity assumptions are rather implausible. There are two
common models for nonstationarity in economic time series:

(i) deterministic time trends, and cycles,
(ii) unit root processes.

We will begin by contrasting these two cases, from the point of view of forecasting. Before doing so
let's introduce a simple way to represent a large class of stationary processes

yt = � +  (L)ut

where futg is an iid sequence and  (L) is a polynomial in the lag operator L satisfying the conditions:
(i)
P1

j=0 j j j <1,
(ii) The roots of  (z) = 0 lie outside the unit circle.
Condition (ii) is essentially an identi�ability condition in the Gaussian case, while in non-linear/non-

Gaussian cases the situation is rather more complicated. For a detailed discussion of the role of
condition (ii) see e.g. Granger Newbold (1986).
Now consider the simplest linear trend model,

yt = � + �t +  (L)ut

where  (�) satis�es the foregoing conditions. Sometimes such models are formulated in logs so in these
cases such models may be thought of exhibiting exponential growth.�

�You can think of this as just a natural approximation to compound interest. If you invest y0 at r compounded n
times per period, then

y1 = y0(1 + r=n)n

so letting n!1, and taking the limit corresponding to continuous compounding, we have y1 = y0e
r and thus yt = y0e

rt

or log yt = log y0 + rt
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Now consider forecasting y at time t + s given the information at time t, we may write

ŷt+sjt = � + �(t+ s) +  sut +  s+1ut�1 + : : :

As s ! 1 we may observe that since the  j are absolutely summable we must have that  s ! 0 as
s!1 and thus as s!1

E(ŷt+sjt � �� �(t+ s))! 0 (T:1)

and
V (yt+s � ŷt+sjt)! �2( 2s +  2s+1 + : : :): (T:2)

The situation in the unit root model

(1� L)yt = � +  (L)ut

is quite di�erent. Here since �yt = (1�L)yt is stationary we can use standard formula for forecasting,

�ŷt+sjt = E(yt+s � yt+s�1jyt; yt�1; : : :)
= � +  sut +  s+1ut�1 + : : :

which looks rather similar to what we had in the trend case, but now

ŷt+sjt = �yt+s +�yt+s�1 + : : :+�yt+1 + yt

= �s+ yt + (
sX

i=1

 i)ut + (
s+1X

i=2

 i)ut�1 + : : : (U:1)

and thus

E(yt+s � ŷt+sjs)
2 = �2[1 + (1 +  1)

2 + (1 +  1 +  2)
2 + : : :(1 +  1 + : : :+  s)

2] (U:2)

! 1:
To summarize the foregoing discussion we can illustrate the comparison of forecasting behavior of the
two models as follows

Note that the point forecast in the trend model reverts to the trend line and the con�dence band
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to a constant width. The latter can be seen from (T.2) and the fact that absolute summability of the
 j 's (Condition (ii) on p.1) and Cauchy Schwarz yield,

(
X

 2j )
2 �
X

j jj
X

j jj <1:

In contrast the unit root model yields a forecast parallel to the trend line (U.1) in which the e�ect
of yt never disappears. And (U.2) shows that the corresponding con�dence band grows even wider as
the forecast horizon grows.

Motivating Testing for unit roots
There are several motivations for the vast amount of attention lavished on the problem of testing

for unit roots in the recent literature of econometrics. One of the more compelling is the work of
Newbold and Granger (1974) on \spurious regression." This paper revived an observation made in
Yule (1926) and focused attention on the unit root model throughout econometrics. They consider
the following situation. The investigator has a simple bivariate model

(�) yt = �0 + �1xt + et

but in fact,

yt = yt�1 + ut

xt = xt�1 + vt:

and futg; fvtg are iid. Now, one would hope that the usual theory of regression would apply and that
a test of H0 : �1 = 0 would reveal (eventually, of course) that the model (*) was bogus. Surprisingly,
this isn't the case and the usual theory doesn't apply here and if used naively can be badly misleading.

Out 100 replications the hypothesis H0 : �1 = 0 is rejected 77 times, at the � = :05 level. If we
extend the model to include more I(1) x's, the situation is even more disturbing as you can see from
the Table below.

Spurious Regressions of I(1) Variables
Number of Regressors Percentage of F Rejections Mean DW-value Mean R2

1 76 .32 .26
2 78 .46 .34
3 93 .55 .46
4 95 .74 .55
5 96 .88 .59

Source: Granger and Newbold (1974)

There are several points which are important to make about this table. First, since the dependent
variable in these models is generated as a random walk, we have, in e�ect, omitted yt�1 which should
have appeared with coe�cient one, and at the same time we have included extraneous variables
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(x1t; : : : ; xpt) which are independent of yt. We have seen that I(1) variables behave in some respects
like trended variables and thus it is not surprising that one or more of the extraneous x's behaves
su�ciently similarly to the omitted yt�1 that we mistake their estimated coe�cients as signi�cant.

One indication of the speci�cation problem is the highly signi�cant Durbin Watson statistic in
most realizations. Indeed, Paul Newbold's frequent comment regarding this phenomenon was, \expect
nonsense when DW � R2."

Testing for unit roots
Much of the early history of econometrics was preoccupied with testing for iid errors in time-series.

Much of recent time series-econometrics has been preoccupied by the problem of testing for unit roots.
One can place this in the context of Box-Jenkins theory by considering their class of ARIMA(p; d; q)
processes where we write as,

�(L)(1� L)dyt = �(L)ut

with iid ut. We say such a model is \integrated of order d" since exactly d roots of the AR component
lie on the unit circle and we presume that after applying (1� L)d to yt the model is stationary.

Why is unit root testing di�erent?
Consider the simplest random walk model

yt = �yt�1 + ut

where under the null we suppose
H0 : � = 1

with ut iid N (0; �2): We might imagine based on naive regression analogies that we could estimate
the model and use the usual t-test. Why not? Consider the OLS estimator of j�j < 1;

�̂T =

P
yt�1ytP
y2t�1

we have from general principles,

p
n(�̂T � �); N (0; �2(X 0X=n)�1)

what is (X 0X=n)�1 here?
X 0X =

X
y2t�1

so
n�1X 0X = n�1

X
y2t�1 ; �2(1� �2)

Since E(yt � �)2 = E(ut+ �ut�1 + �2ut�2 + : : :)2 = �2(1 + �2 + �4 + : : :) = �2=(1� �2):
But already we see that we are in trouble since for � = 1 we get the conclusion

p
n(�̂T � �); N (0; 1� �2)
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i.e., we see that �̂T seems to converge to 1 in the � = 1 case faster than the \usual" rate 1=
p
n. Note

also the cute way that the �2 cancels.
What to do? To take a closer look at this phenomena consider,

�̂T � 1 =

P
yt�1utP
y2t�1

Recall that yt = y0 +
Pt

s=1 us and for convenience assume that y0 = 0, then

y2t = (yt�1 + ut)
2 = y2t�1 + 2yt�1ut + u2t

so,

yt�1ut =
1

2
(y2t � y2t�1 � u2t )

Summing over t = 1; 2; : : :T we have,

X
yt�1ut =

1

2
(y2

T
� y0)� 1

2

TX

t=1

u2t :

Now recall that, using y0 = 0;
yT � N (0; �2T )

so
y2
T

(�2T )
� �21:

and
��2T�1

X
u2t ! 1

so
1

�2T

X
yt�1ut ;

1

2
(X � 1)

where X � �21: Next consider
P
y2t�1 but yt�1 � N (0; �2(t� 1)), so Ey2t�1 = �2(t� 1), so

E
X

y2t�1 = �2
TX

t=1

(t� 1) = �2(T � 1)T=2

thus
P
y2t�1 = O(T 2): This means that in order to get a stable limiting form for �̂T �1 we must rescale

by T rather than
p
T . We can write

T (�̂T � �) � T�1P yt�1ut
T�2
P
y2t�1

� rescaled �21

Further, one can look carefully at the usual t-statistic for this case

t� =
�̂T � 1

(�̂2
T
=
P
y2t�1)

1=2
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Two things are reasonably clear about this test statistic: (i) it is not asymptotically Normal and (ii) It
does converge in Law. This is the leading example of what is usually referred to as the Dickey Fuller
distribution.

Some generalization to the case where our original model has a.) an intercept b.) a time trend,
are needed and result in alterations of the critical values as indicated in the distributed tables. Note
that even for the relatively simple case of the pure random walk the critical values are considerably
larger than the ones we are used to from the t-table.

What to do if we have more complicated error process? For example, suppose ut � ARMA(1; 1)
so

(1� �1L)ut = (1� �1L)"t
with " � iid: Then

"t =
1X

j=0

�j1(ut�j � �1ut�j�1)

so

�yt = (�� 1)yt�1 + ut

= (�� 1)yt�1 + �1ut�1 + "t � �1"t�1
= (�� 1)yt�1 + �1ut�1 + "t � �1

1X

j=1

�j�11 (ut�j � �1ut�j�1)

= (�� 1)yt�1 + (�1 � �1)
X

ut�i�
i�1
1 + "t

= (�� 1)yt�1 +
qX

i=1

�i�yt�i + "t

This is called the augmented Dickey-Fuller(ADF) version of the test and rather remarkably the t-test
statistic in this regression has the same asymptotic distribution as in the simple case.

Granger Causation
Lets begin by recalling some de�nitions from 471.

Def The random variables X; Y are stochastically independent, X ?? Y; if F
Y jX(yjx) = FY (y).

Def. The random variables X; Y are mean independent, X ? Y; if E(Y jX) = EY:

The former de�nition is obviously much stronger than the latter, i.e.,

X ?? Y ) X ? Y;

and can with some e�ort be shown to imply

X ?? Y ) h(X) ? y(Y )

for any nice functions h; g: Note mean independent is also often termed uncorrelatedness.
We can obviously regardX as a vector of r:v's in the foregoing de�nitions and it may be convenient

to consider groups of conditioning variables which include the entire historical past. For example, let


t = fXt�1; Xt�2; : : : ; Yt�1; Yt�2; : : :g
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Clive Granger suggested the following de�nition of causal ordering among time series.

Def. We will say that Yt does not Granger cause Xt i�

E(Xtj
t) = E(XtjXt�1; Xt�2; : : :)

In other words, Yt does not help to predict Xt. For some purposes, although this is rarely done,
one might want to strengthen this mean independence notion of Granger causality to require

F
Xtj
t = F

XtjXt�1;Xt�2;:::

We might return to this idea when we encounter quantile regression.
An interesting application of Granger causation is the note by Thurman and Fisher (1988), who

show that { at least in the U.S. { eggs Granger cause chickens, but chickens do not Granger cause
eggs, thus, resolving a long standing open problem in domestic agriculture. See Harvey for a more
serious elaboration of the issues here.
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