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In this lecture I want to briey describe some techniques for evaluating dynamic econometric models

like the models for gasoline demand you have been estimating. Until now, we have implicitly assumed

that these models satis�ed the classical assumptions of the Gaussian linear model. In particular, we

have assumed that the error sequences futg were iid and approximately Gaussian, thus justifying the

application of elementary least squares methods of estimation.

Testing for Autocorrelation

We might begin by recalling some basic facts about autocorrelation. In classical regression with

�xed regressors,

yi = x0i� + ui

we know that if the vector, u = (ui) � N (0; �2I) then

�̂ = (X 0X)�1X 0y � N (�; �2(X 0X)�1)

but when the errors are autocorrelated, for example, u � N (0;
); then

�̂ � N (�; (X 0X)�1X 0
X(X 0X)�1)

and therefore the conventional estimates of standard errors from ordinary least squares regression may

badly misrepresent the true precision of �̂: Of course, in this case it is preferable to use

�� = (X 0
�1X)�1X 0
�1y � N (0; (X 0
�1X)�1)

which, in e�ect, restores the model to the original iid structure and thereby achieves optimality.

DiNardo and Johnston give an example, a standard one, showing that the precision of �� can be

considerably greater than that of �̂, even for modest amounts of autocorrelation.
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When dynamic models are speci�ed with lagged endogenous explanatory variables, autocorrelation

raises more serious problems. Even in the simplest examples, there are bias as well as e�ciency costs

to ignoring the autocorrelation. To see this consider the model

yt = �0yt�1 + �1xt + ut

where

ut = �ut�1 + "t:

with f"tg assumed to be iid N (0; �2). Consistent estimation of � requires orthogonality of ut and the

\explanatory variables" (yt�1; xt), but note that

Eyt�1ut = E(�0yt�2 + �1xt�1 + ut�1)(�ut�1+ "t)

= ��2 + �0�E(yt�2ut�1)

But, by stationarity, Eyt�1ut = Eyt�2ut�1 so

Eyt�1ut = ��2u=(1� �0�)

Not surprisingly, given the serious consequences of this bias e�ect, there is a large literature on

testing for autocorrelation in this context. The most straight forward approach is that of Breusch

and Godfrey which derives from work of Durbin. While the details are usually reserved for 477, the

Breusch and Godfrey test is easily described.

Let ût = yt � x0t�̂; t = 1; � � � ; n denote the residuals from a least squares regression in which the

vector xt may include lagged endogenous variables. Suppose that we wish to test the hypothesis

Ho : �1 = �2 = � � � = �s = 0

in the potential autocorrelation model

ut = �1ut�1 + � � �+ �sut�s:

Consider the auxiliary regression equation

ût = �1ût�1 + � � �+ �sût�s + x0t + vt

and the associated test statistic

Tn = nR2

based on the conventional R2 of the auxiliary regression. Under H0; Tn � �2s , providing a rather

general testing strategy for this important class of models. Note that it is crucial that the variables
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xt appear in the auxiliary regression, even though in some super�cially similar circumstances this is

found to be unnecessary.

Digression on R2 asymptotics

The connection between R2 and F is an important aspect of trying to interpret nR2 as a reasonable

test statistic. For a general linear hypothesis, say R� = r, in the regression setting, let S! and S


denote the restricted and unrestricted sums of squared residuals, and

F =
(S! � S
)=q

S
=(n� p)

and we can de�ne an R2 of ! relative to 
 as,

R2 = 1�
S

S!

thus
n � p

q

R2

1�R2
=

(S! � S
)=q

S
=(n� p)

Under the null hypothesis we have suggested that nR2 can be used as a asymptotically valid test

statistic which has �2q behavior under the null, where q = rank (R): What is the connection of this

to the foregoing algebra which relates the �nite sample value of R2 to the appropriate F statistic for

testing H0? Note �rst that under H0 S
=(n� p)! �2 and S!=(n� p)! �2 so for n large,

nR2 =
S! � S

S!=n

�
S! � S

S
=n

and therefore nR2 is approximately equal to the numerator �2q of the F statistic. Now to make the

connection between �2q and F we need only note that �2q=q � Fq;1: Alternatively, we may observe

that under H0; R
2 ! 0 so

n� p

q

R2

1�R2
!

n

q
R2

2

The next obvious question is: what do we do if the Breusch-Godfrey test rejects H0? There are

two general approaches which I will describe briey.

Nonlinear Models

Dynamic models of the type we have been discussing can always be written in the form

yt = D(L)xt + ut

where D(L) = B(L)=A(L) is called a rational lag polynomial. As an example, take the simple model

(�) yt = �yt�1 + �xt + ut
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with ut = �ut+ "t and f"tg iid N (0; �2): Subtracting �yt�1 = ��yt�2+��xt�1+�ut from (*) we have

yt = (�+ �)yt�1 � ��yt�2 + �xt � ��xt�1 + "t:

Since this version of the model has a nice (iid) error structure, it can be consistently estimated

by ordinary least squares. Note, however, that we now have 4 parameters not 3, as in the original

formulation of the model. Since these 4 parameters are simple functions of the original 3 parameters,

we can impose the implied constraints and estimate the model by nonlinear least squares.

A related approach, which we may also illustrate with this simple model, is to write the original

model in the form

yt =
1X

j=0

�jxt�j + vt:

This form may appear impractical since we have an in�nite number of �j 's, but as we have seen in the

second lecture these �'s may be expressed in terms of a �nite number of �'s and �'s. Harvey (1989)

discusses several versions of this in some simple models and the resulting nonlinear least squares

estimation strategy.

Instrumental Variable Estimation

An alternative strategy for estimating models of this type relies on instrumental variables. Re-

call that our fundamental problem, the bias resulting from autocorrelation in dynamic models, was

attributed to the lack of orthogonality between errors and lagged endogenous variables. An obvious

strategy for dealing with this problem is to identify suitable instrumental variables (IV's) which have

the properties:

� orthogonality with u, i.e., EZ0u = 0

� Mutual association with X , i.e., EX̂ 0X positive de�nite, where X̂ = Z(Z0Z)�1Z0X is the pro-

jection of X onto the column space of Z.

The immediate question is where would such variables, Z, come from? In the case of dynamic models

of the type we have been discussing it is quite straightforward to answer this question. They may

be chosen to be lagged exogenous variables. But this question changes a worry that there might be

too few IV's into a new worry that there might be too many. This question does not have a good

analytical answer and remains a question of active research concern. Nevertheless, empirical research

has suggested some rules of thumb which can be used in applications. Generally, we would suggest

that the number of IV's be kept to some modest number above the number of existing explanatory
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variables, say, p � q � 2p where p is the parametric dimension of the original model and q is the

number of IV's. We will return to this question later in the course.

ARCH in Brief

Frequently, we observe (particularly in �nancial data) time-varying heteroscedasticity. In the early

80's Engel coined the term autoregressive conditional heteroscedasticity ARCH to refer to model in

which

V (utj past ) = ht = �0 + �1u
2

t�1 + � � �+ �pu
2

t�p

In subsequent work this has been generalized in several directions notably to GARCH (1,1),

V (utj past ) = ht = �0 + �1u
2

t�1 + 1ht�1

These are simple examples of a broad class of nonlinear time series models.

In the ARCH model we have unconditional expectations,

1.) Eut = Eht"t = 0

2.) V ut = �0=A(1) where A(L) = (1 + �1L+ � � �+ �pL
p)

As long as the lag polynomial A(L) is stable, i.e., if the roots of A(z) = 0 lie outside the unit circle,

then we get a gradual oscillation of ht around the unconditional variance. In integrated ARCH, i.e.,

roots on the unit circle, we get long swings away from the initial ht.

Testing for ARCH

Naive LM tests can be implemented just like LM-AR tests. Regress û2t on fû
2

t�1;���; û
2
t�q and xtg

compute nR2 compare to �2q or nR2=q compare to Fq;n�p. Note that in this form the test may be

regarded as a joint test for ARCH and heteroscedasticity of the form usually tested by the Breusch-

Pagan, and related tests. One could obviously consider re�ning the hypothesis under consideration in

light of the results obtained for this expanded version of the test.

The LM Principle

Let `(~�) denote log likelihood evaluated at mle under H0 : � 2 �0 � �1 we are interested in

testing H0 vs H1 : � 2 �1: One way to do this is to ask how does ` change as we move the restricted

estimator ~� 2 �0 toward the unrestricted �̂ 2 �1: To explore this we need to say something about

nonlinear optimization, but this would take us too far away from the main topic. Su�cient to say

that the LM-test is based on the magnitude of the gradient of ` at �̂ 2 �0 in the direction of �̂1 2 �1:

Again, there are questions to be answered about what to do when ARCH e�ects are found to be

present in the model. Joint estimation of ARCH and regression shift e�ects is the preferred solution

when it is computationally feasible. Various iterative solutions are obviously available as alternatives.
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