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1. Model Selection

Classical hypothesis testing plays a central role in econometrics, but in many applied prob-
lems we face a preliminary stage of the analysis in which we need to make decisions about model
speci�cation. These decisions are not very well formalized in terms of classical hypothesis test-
ing, and gradually specialized procedures have been developed for this under the rubric \model
selection." In this lecture I will try of these procedures and relate them to more classical notions
of hypothesis testing.

The framework for model selection can be described as follows. We have a collection of
parametric models

ffi(x; �)g
where � 2 �j for j = 1; : : : ; J: Some linear structure is usually imposed on the parameter
space, so typically �j = mj \ �J , where mj is a linear subspace of <pJ of dimension pj and
p1 < p2 < : : : < pJ . To formally justify some of our subsequent connections to hypothesis
testing it would be also necessary to add the requirement that the models are nested, i.e., that
�1 � �2 � : : : � �J .

Akaike (1970) was the �rst to o�er a uni�ed approach to the problem of model selection.
His point of view was to choose a model from the set ffig which performed well when evaluated
on the basis of forecasting performance. His criterion, which has come to be called the Akaike
information criterion is,

AIC(j) = lj(�̂)� pj

where lj(�̂) the log likelihood corresponding to the jth model maximized over � 2 �j . Akaike's
model selection rule was simply to maximize AIC over the j models, that is to choose the model
j� which maximizes AIC(j). This approach seeks to balance improvement in the �t of the
model, as measured by the value of the likelihood, with a penalty term, pj . Thus one often sees
this and related procedures referred to as penalized likelihood methods. The trade-o� is simply:
does the improvement which comes inevitably from expanding the dimensionality of the model
compensate for the increased penalty?

Subsequent work by Schwarz (1978) showed that while the AIC approach may be quite satis-
factory for selecting a forecasting model it had the unfortunate property that it was inconsistent,
in particular, as n!1, it tended to choose too large a model with positive probability. Schwarz
(1978) formalized the model selection problem from a Bayesian standpoint and showed that as
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n!1; the modi�ed criterion/footnote Unless otherwise speci�ed, all my logs are natural, i.e.,
base e:

SIC(j) = lj(�̂)� 1

2
pj logn

had the property that, presuming that there was a true model, j�, then ĵ = argmax S(j),
satis�ed

p(ĵ = j�)! 1:

Note that since 1
2 logn > 1 for n > 8, the SIC penalty is larger than the AIC penalty, so SIC

tends to pick a smaller model. In e�ect, by letting the penalty tend to in�nity slowly with n,
we eliminate the tendency of AIC to choose too large a model.

How does this connect with classical hypothesis testing? It can be shown, in my 476 for
example, that under quite general conditions for nested models, that

2(lj(�̂j)� li(�̂i)); �2pj�pi

for pj > pi = p�: That is, when model i is true, and model pj > pi, twice the log likelihood ratio
statistic is approximately �2 with degrees of freedom equal to the di�erence in the parametric
dimension of the two models. So classical hypothesis testing would suggest that we should reject
an hypothesized smaller model i, in favor of a larger model j i�

Tn = 2(lj(�̂j)� li(�̂i))

exceeds an appropriately chosen critical value from the �2pj�pi
table. In contrast Schwarz would

choose j over i, i�
2(lj � li)

pj � pi
> logn

The fraction on the left hand side of this inequality may be interpreted as the numerator of
an F statistic. Under H0 : j� = i; it is simply a �2 divided by its degrees of freedom which is
an F with pj � pi numerator degrees of freedom and 1 denominator degrees of freedom. Thus,
logn can be interpreted as an implicit critical value for the model selection decision based on
SIC.

Does this make sense? Why would it be reasonable to let the critical value tend to in�nity?
We are used to thinking about �xed signi�cance levels like 5% or 1%, and therefore about �xed
critical values, but a little re
ection suggests that as n ! 1 we might like to have �; the
probability of Type I error, bend to zero. This way we could arrange that both Type I and
Type II error probabilities tend to zero simultaneously. This is the practical consequence of the
Schwarz connection between sample sizes and �-levels based on the SIC choice.

Note that AIC uses a �xed critical value of 2, in contrast to SIC, and this is an immediate
explanation of why with positive probability it picks too large a model. Unless the critical value
tends to in�nity with n, there will always be a positive probability of a Type I error.

1.1. SIC in the linear regression model. Recall that for the Gaussian linear regression
model

l(�; �) = �n
2
log(2�)� n

2
log �2 � S

2�2

where S = (y �X�)0(y �X�)
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Figure 1. E�ective Signi�cance Level of SIC Criterion: The �gure illustrates
the implied signi�cance level of using the Schwarz Criterion for Model Selection
in linear regression. In the �gure p refers to the number of parameters under
consideration, so for example with one parameter considered for deletion, the
e�ective level � of the Schwarz \test" is about .05 at n = 100 and about .01 at
n = 1000 .

Evaluating at �̂; and �̂2 = S=n we get

l(�̂; �̂) = �n
2
log(2�)� n

2
� n

2
log �̂2

Thus, maximizing SIC

li � 1

2
pi log(n)
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is equivalent to minimizing

n

2
log �̂2j +

1

2
pi logn

or minimizing,

log �̂2j + (pj=n) logn:

In statistical packages one needs to be careful to check exactly what is being computed before
reporting such numbers as SIC.

sample size

cr
iti

ca
l v

al
ue

5 10 50 100 500 5000

1.
5

2.
0

2.
5

3.
0

AIC

t-test

SIC

Figure 2. Comparison of e�ective critical value for model selection using SIC,
AIC, and conventional t-test: The �gure illustrates the implied critical values for
SIC and AIC model selection in linear regression for the case of adding a single
variable to the regression.
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How does this connect to the F test in regression? We \know" that there is generally a close
connection between F and LR tests, but how does this work in regression? Note,

li � lj =
n

2
(log �̂2j � log �̂2j )

=
n

2
log(�̂2j =�̂

2
i )

=
n

2
log

 
1� �̂2i � �̂2j

�̂2i

!

and using the usual Taylor-series approximation for log(1� a) for a small we have

2(li � lj) �
n(�̂2j � �̂2i )

�̂2i
:

Dividing the right hand side by pj � pi yields the usual F statistic.
As a �nal remark, we might observe that in the case that pj � pi = 1 so we are only

considering adding one variable to the regression, we can relate the SIC and AIC rules to
conventional hypothesis testing in the following simple way. Recall that in the case of a single
linear restriction in the regression the F statistic is simply the square of the the corresponding
t statistic. Thus, in the case of the conventional regression t-test, SIC implicitly proposes the
critical value,

p
log(n) while the AIC uses

p
2. Note that the latter is quite lenient, but this

is perhaps reasonable if the �nal intent is forecasting. Note also that the classical two-sided
critical value for the t-test, illustrated by the dotted line, converges to the familiar number 1.96,
and crosses the SIC curve at about sample size n = 50. In contrast the AIC selection criterion
is �xed at

p
2 and thus is much more lenient than either of the other procedures in accepting

new covariates.

2. Fishing for Signi�cance

The second part of this lecture concerns the di�culties associated with preliminary testing
and model selection from the point of view of eventual inference about the selected model. This
is an old topic which has received considerable informal attention but it is rather rare to �nd
serious formal consideration of it. My discussion will be based largely on Freedman (1983).

Freedman, early in his career, was a leading light in probability theory and wrote several
fundamental books on Markov Chains. Later, he began to take an interest in matters more
applied and statistical in nature. One of his earlier ventures in this direction was a project to
evaluate the swarm of \energy models" which emerged from the 1973 oil shock. These were
models which purported to \explain" energy demand and how we might control it.

Freedman's model of energy models is highly stylized, and mildly ironic. He presumes a
model of the form

(�) yi = xi�0 + ui

which ui iid N (0; �2): The matrix X = (xi) is n by p and satis�es X 0X = Ip. And p ! 1 as
n ! 1 so that p=n ! � for some 0 < � < 1: That is, as the sample size grows the modeler
introduces new explanatory variables in such a way that the ratio p=n tends to a constant.
Further, he assumes that �0 = 0:

Theorem 1: For model (*), R2
n ! � and Fn ! 1:
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Proof: The usual Fn statistic for the model, since �0 = 0, is really distributed as F so
EFn = (n� p)=(n� p� 2) which tends to 1. However, recall that

Fn =
n � p� 1

p
� R2

n

1�R2
n

so

R2
n = F=

�
n � p� 1

p
+ F

�
and thus since F ! 1 we have that R2

n ! �.
This result is rather trivial and is just a warm up for a more interesting question which

really reveals David Freedman's model for energy economists. Consider the following sequential
estimation strategy: all p variables are tried initially, those attaining �-level of signi�cance in a
standard t-test are retained, say, qn;�, of them, then the model is reestimated with only these
variables. Let R2

n;� and Fn;� denote the R2 and F statistics for this second stage regression.

Theorem 2: For model (*) R2
n;� ! g(��) and Fn;� !

�
g(��
�

�
=
�
1�g(�)�
1���

�
where

g(�) =

Z
jgj>�

z2�(z)dz

and � is chosen so �(� = 1� �=2:

Example: Suppose n = 100; p = 50, so � = 1=2. Set � = :25 so � = 1:15; and g(�) = :72
then

E(Z2j jzj > �) � 2:9

R2
n;�

�= g(�) � :72

Fn;�
�=
�
g(�

�

�
(1� g(�)�)

(1� ��)
� 4:0

Eqn;� = ��n = :25 � :50 � 100 � 12:5

F12;88;:05 = 1:88

P (F12;88 > 4:0) � :0001 2

Proof of Theorem 2 is really good exercise for 476. For purposes of 472 the example is su�cient
to warn you that the consequences of preliminary testing are serious and you need to adjust
your expectations and signi�cance levels in light of such activity. I'll say a little more about this
when we talk about the bootstrap.

References

Freedman, D. (1983) A note on screening regression equation, American Statistician, 37, 152-56.

Schwarz, G. (1978) Estimating the dimension of a model, Annals of Statistics, 6, 461-64.


