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Lecture 3 Introduction to Dynamic Models in Econometrics

In Problem Set 2 we will investigate a number of simple dynamic models for US gasoline demand
since 1947. A typical model takes the form,

(1) yt = �0 + �1yt�1 + �2yy�2 + x0t� + x0t�1�2 + ut

where yt is per-capita U.S. gasoline consumption and xt is a vector of exogenous variables, e.g.,
xt = (1; pt; zt) where pt is price per gallon and zt is income per capita.

An indispensable notational device for exploring models of this type is the lag operator, L, which
has the property that

yt�1 = Lyt

yt�2 = Lyt�1 = L2yt

� � � etc

So we may write model (1) as

(1� �1L� �2L
2)yt = �0 + (�1 + �2L)

0xt + ut

or even more compactly as,

(2) A(L)yt = �0B(L)xt + ut

where A(�) and B(�) are viewed as polynomials in the lag operator L.
It is tempting to \solve" (2) by writing

(3) yt = A(L)�1�0 + A(L)�1B(L)0xt + A(L)�1ut:

This is often called a \linear transfer function model" due to its roots in the electrical engineering
literature. We would like to interpret (3), explaining the rather mysterious A(L)�1 notation and
relating (3) to the crucial notion of equilibrium forms of the model (2).

Digression on stability in linear di�erence equations

We begin with a very simplistic introduction to deterministic linear di�erence equations which
illustrates some basic aspects of \equilibrium behavior" for models like (1).

Example 1: Consider the simplest possible case

Xt = aXt�1

Clearly, by repeated substitution we have,

Xt = aXt�1 = a2Xt�2 = � � �= atX0
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where X0 denotes an initial condition. For jaj < 1, note that Xt ! 0, for jaj > 1; Xt diverges and for
jaj = 1 we get either Xt � X0 or Xt = �X0:

Example 2: Next, consider the second order di�erence equation,

Xt = a1Xt�1 + a2Xt�2;

Suppose, and this is really wishful thinking at this point based on Example 1, that solutions take the
form,

Xt = A1�
t
1
+A2�

t
2

where A1 and A2 denote parameters which are determined by initial conditions and the �'s dependent
in some way on the a's. Substituting this proposed solution into our equation yields,

A1�
t
1
+A2�

t
2
= a1(A1�

t�1
1

+A2�
t�1
2

) + a2(A1�
t�2
1

+ A2�
t�2
2

)

or
0 = A1�

t
1
(1� a1�

�1

1
� a2�

�2

1
) +A2�

t
2
(1� a1�

�1

2
� a2�

�2

2
)

This looks quite promising. Suppose we �nd the roots of the quadratic equation

1� a1z � a2z
2 = 0

and call these roots ��1
1

and ��1
2
, then we have solved the original problem. Why?

Note that the examples generalize immediately to higher order di�erence equations. What is
needed for stability in this case? Suppose for a moment that the roots are real (recall that this
needn't be the case), then again we have the requirement that both �1 and �2 must be less than one
in absolute value, in order for the solution not to blow up as t!1:

What about complex roots? When � is complex we have something like

� = �1 + �2i

where i2 = �1, so this is a \number" which we can plot in the complex plane
Note that we can represent � in polar coordinates as

� = r(cos(') + i sin('))

where r = (�2
1
+ �2

2
)1=2, cos(') = �1=r, and sin(') = �2=r. and we see that as long as � is inside the

unit circle �t stays inside the unit circle since rt < r: However, when r > 1 so � is outside the unit
circle we have �t explosive. Thus, by analogy with the scalar case it is necessary that the roots of the
equation

1� a1z � a2z
2 = 0

have roots outside the unit circle. Don't forget that these roots are ��1i which accounts for the 
ip of
inside/outside, this is potentially confusing so beware!

We shall see that the existence of roots to an equation like this play a fundamental role in deter-
mining the stability of linear time series models of the form (2.). Roots outside the unit circle are
good in the sense that they imply stability of the model, while roots inside imply explosive behavior.
Roots on the unit circle are more di�cult and will require a separate discussion at a later moment.
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Impluse Response Functions

The preceeding discussion has suggested a way of evaluating the stability of linear time-series
models. We now turn to the question of interpreting the expression

D(L) = A(L)�1B(L)

Consider,
B(L) = A(L)D(L)

or
�0 + �1L+ � � �+ �sL

s = (1� �1L� � � � � �rL
r)(�0 + �1L+ � � �)

so, clearly for j � s; equating coe�cients we have,

�0 = �0

�1 = ��0�1 + �1

�2 = ��0�2 � �1�1 + �2
...

�j = ��0�j � � � � � �j�1�1 + �j

a system which can be solved recursively, given the �; �'s for the �'s. That is, given that we have
estimated a model in the form (1) we can then compute the coe�cients corresponding to the form (3).

More generally, see e.g., Harvey, we can write, denoting j ^ s = minfj; sg

�j =

( Pj^s
i=1 �i�j�i + �j j � sPj^s
i=1 �i�j�i j > s

The function, de�ned on the integers, of cumulative sums of the �'s,

�(j) =
jX

i=1

�i

is usually called the impulse response function. It may be interpreted as providing a complete picture
of the time path of the response of y to a once-and-for-all unit shock in x:

So, in the simplest case, imagine a thought experiment in which there is a single exogenous variable
x, which has taken the value x0 for a long time so y is randomly 
uctuating around an equilibrium
value of y0. Now, x changes to x1 and stays there, what happens to y?

In the �rst period we get the \impact" e�ect �0, and in subsequent periods this e�ect is gradually
modi�ed until (presuming some stability in the process) we get a new value of y which corresponds to
the \equilibrium" value of y corresponding to x = x1: From (3), write

E�yt = A(L)�1B(L)�xt

= D(L)�xt

! D(1)�x since �x � �xt

=
1X
i=1

�i�x:
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Interpretation: If there is a new equilibrium, then the change is just the accumulation of the short run
impulse responses.

Heuristic: If there is a new equilibrium we can �nd it by setting yt = ye and xt = xe and solving.

Caveat: Note that if the roots of the A(z) = 0 polynomial lie outside the unit circle we are ok, but
otherwise we have problems with the existence of equilibrium.

Multipliers: The coe�cients of the cumulative impulse response are often referred to, in deference to
the associated macro literature, as impact, interim and long-run multipliers.

Inference: An interesting issue which has attracted considerable recent research is how to do inference
on the �'s. We will not address this here, except to invoke the principle: Every good estimate deserves

a standard error. This question will arise a little later in connection with the bootstrap.

Lag Distributions: It is often useful to have some way to characterize or compare lag distributions or
shapes of the impulse response function. Two simple ideas in this direction are

Mean Lag: Think of �i's as a pdf and compute

�i = �i=
X

�i

that is as a proportion of the total e�ect which is attributable to lag i, then

� =
X

i�i =

P
i�iP
�i

Note that if the variables are in logs then this proportion is nicely interpreted in percentage
terms. A useful trick in this regard is,

D0(L) = �1 + 2�2L+ 3�3L
2 + � � �

so

� =
D0(1)

D(1)
=

A(1)B0(1)� A0(1)B(1)

A2(1)
=

B0(1)

B(1)
�
A0(1)

A(1)

Median Lag:
� = minfij

X
�i � :5g

Coveat: Note that if �i's can be negative, and they frequently are in practice, then the
analogy with pdf 's is rather silly.

Error Correction Form:
Consider the simple dynamic model

yt = �1yt�1 + �0 + �0xt + �1xt�1 + ut
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In equilibrium with xt � xe we have

ye =
�0

1� �1
+
�0 + �1
1� �1

xe +
1

1� �1
ut

It is sometimes useful to embed this equilibrium version of the model in the dynamic formulation
itself. To do this, subtract yt�1 from both sides of model and then add and subtract xt�1 to get

�yt = (�1 � 1)yt�1 + �0 + �0�xt + (�0 + �1)xt�1 + ut

or

�yt = �0�xt + (�1 � 1)[yt�1 �
�0

1� �1
�
�0 + �1
1� �1

xt�1] + ut

This is called the error-correction form of the model since changes in y are decomposed into two
natural pieces. (i) changes induced directly by changes in x, and (ii) changes induced indirectly because
the previous period's y is out of equilibrium. The approach used here can be easily generalized to
more complicated models and plays an important role in the discussion of cointegrated econometric
models.
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