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Lecture 2

Transformations and the Speci�cation of Econometric Models

A fundamental aspect of interpreting any parametric statistical model is choice of functional
form. Let's begin a consideration of this topic with the following simple example. Suppose

log yi = � + � log xi + ui

but unaware of this convenient formulation we instead estimate

yi = a+ bxi + vi:

What relationship does (â; b̂) bear to (�; �) in the original model and can we hope to say anything
reasonable having made this initial speci�cation error?

In Figure 1, we can examine a speci�c version of this situation in which (�; �) = (1; :5) and
the variance of ui is quite small. Clearly we don't do a very good job of estimating the curve
represented by the observed points by the line indicating the least squares �t, but it is useful
to look at this more carefully.� On a more optimistic note it might appear that the slope of the
linear �t might provide a decent approximation to the tangent of the curve at a point roughly
corresponding to �x: Figure 2 illustrates this phenomenon on the elasticity scale. Were we to
estimate the log-linear model we would have an easily interpreted constant elasticity estimate.
However, since we have estimated the model in the linear form, the implied elasticity of y with
respect to x varies as we move along the �tted line. More explicitly, the elasticity is de�ned as

� =
dy

dx

x

y

and according to the linear speci�cation the derivative, dy=dx = b is constant, so the natural
estimate of the elasticity of y with respect to x, at any point x, is given by

�̂(x) = b̂ �
x

ŷ(x)

where ŷ(x) = â + b̂x: If we were going to o�er only one such elasticity estimate for expository
purposes, we would typically choose x = �x, but sometimes it is useful to choose several such
points of evaluation for purposes of comparison. Recall ŷ(�x) = �y as long as the estimated model
has an intercept. This is done for each of the observed values of x in Figure 2. The horizontal
line at � = :5 is the \true" elasticity according to which the data was generated, while the dots
represent �̂(x) at the various deserved x's. Obviously these estimates are rather poor in the
extremes, but reasonably good in the center of the x's. The two vertical lines represent the
arithmetic and geometric means of x and we note that one yields a small overestimate while the
other yields a small underestimate of �. This is the �rst of many lessons which can be roughly
formulated by the

Maxim: It is dangerous to draw inferences too far away from the center of your data.

�One way to do this is to ask: suppose the xi's are generated randomly from some distribution, F , and that

E(yjx) = g(x), then (â; b̂) solves minEx(g(x)�a� bx)2, i.e., â+ b̂x is the best linear approximation (a; b) to g(x)
in quadratic mean.
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Figure 1. A linear �t to a log-linear model: The �gure illustrates 50 observa-
tions from a log-linear model and a superimposed least-squares linear �t of the
observations. Note that the �t provides a rough estimate of the tangent of the
curve near the \center" of the x's, but cannot be considered very reliable unless
the range of the x's is quite restricted.

A corollary, which is often o�ered as advice to young novelists is \Write what you know,"
another pithy corollary is \Extrapolate at your peril." A nice introduction to a more general
formulation of these issues is White (1980).

Having seen this example it is natural to ask whether there is a systematic strategy for
deciding on appropriate functional forms. This is obviously a big topic and I will try only to
briey survey the basic idea in the simplest bivariate regression setting.

The classical approach to dealing with this `�transformation problem" involves the family of
power transformations

h(x; �) =

�
x��1
� � 6= 0

log x � = 0

Exercise: Verify using L'Hôpital's rule that

lim
�!0

x� � 1

�
= log x
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Figure 2. A linear �t to a log-linear model: This �gure illustrates the bias
introduced in estimating the elasticity parameter of the log-linear model by using
the estimated linear model. The points in the �gure represent elasticities implied
by the �tted linear model at each of the observed x's. The horizontal line at
� = :5 represents the true, constant elasticity for the model, and the two vertical
lines indicate the mean (solid) and geometric mean (dotted) of the x's. Thus, at
the mean of the x's the linear model slightly overestimates the elasticity, and at
the geometric mean it slightly underestimates it.

Answer:

lim
�!0

x� � 1

�
=

d
d�(e

� logx � 1)

1
j�=0

= e� logx � log xj�=0

= log x

The family of Box-Cox transformations is illustrated in Figure 3 for 6 di�erent values of �: The
family is quite exible and useful, but it is somewhat limited because it is only fully applicable
for x � 0: It has been suggested that one might extend the de�nition using

�(x) = (jxj� sgn (x)� 1)=�

but this behaves rather strangely and is rarely used in applications.
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Figure 3. The Box-Cox Power Transformations: The Figure illustrates 6 ver-
sions of the Box-Cox Power family of transformations. Note that the log trans-
formation �ts nicely into the family with � = 0.

As an exercise in reviewing some basic ideas about maximum likelihood estimation, let's
consider, following Box and Cox (1964), the problem of estimating the model

h(yi; �) = xi� + ui

assuming that fuig is iid N (0; �2). The log likelihood is

`(�; �; �) = �
n

2
log(2��2)�

1

2�2

X
(h(Yi; �)� xi�)

2 + log jJ j

where J =
Qn

i=1 j@�(yi)=@yij is the determinant of the transformation from u to h(y; �): Note
that

@h(yi; �)

@yi
= y��1i

so

log jJ j = (�� 1)
nX

i=1

log(yi):

Concentrating the likelihood we have

`(�; �) = �
n

2
log �̂2 + log J +K
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Box-Cox problem under consideration we would often like to test the hypothesis H0 : � = �0.
This is e�ectively done using the fact (whose proof is deferred to 476) that under H0,

(�) �(�0) = 2(`(�̂)� `(�0)); �21

where �̂ denotes the maximum likelihood estimate of �: The limiting behavior of this likelihood
ratio statistic can also be used to construct con�dence intervals for �: we simply �nd the set of
�0 such that �(�0) fails to reject at a speci�ed level of con�dence. This is illustrate in Figure 4.

Sometimes we would rather not go to the bother of estimating the Box-Cox model, but
instead we would like to estimate some \preferred" form and then test whether this choice of
� is reasonable. A simple test suggested by David Andrews (1971) handles this situation, and
since it nicely illustrates an important principle of diagnostic test design we will develop it in
some detail. Consider

h(y; �) = x0i� + ui

with � = 1 as our \preferred" value. Expanding in Taylor series we have

h(y; �) = y � 1 + (�� 1)
d�(y)

d�
j�=1

= (�� 1)y log y � (y � 1)

Thus, for � close to one,

y � 1 ' x0� + (�� 1)y log y

this seems rather strange since it suggests that we should regress y on y log y { this is clearly
unsound. But if we instead proceed in two steps:

1. Estimate the linear model and compute ŷi = xi�̂ for i = 1; : : : ; n and then
2. Reestimate the augmented model

yi = x0i� + ŷi log ŷi

and test H0 :  = 0.

This procedure, in e�ect provides one-step approximation to the mle for � i.e., �̂ = ̂ + 1:

Question: What about the 1?

Exercises (Review) For the OLSE �̂ show (1.) �̂(�y + X;X) = ��̂(y;X) + , and (2.)

�̂(y;XA) = A�1�̂(y;X):
On the other hand if H0 : � = 0 is the preferred version, then at � = 0, we have,

d�(y)

d�
j�=0 =

1

2
(log y)2

so now we would �t

log(y) = x0� + � � (dlog y)2
so here � estimates (1=2)� under the alternative hypothesis.

Conicting Objectives of Transformations

We have 3 possibly conicting objectives in choosing a transformation. We would like the
transformation to (simultaneously) yield a model
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(i) which is linear in parameters
(ii) homoscedastic
(iii) has approximately \normal" conditional density

Carroll and Ruppert have proposed a more general strategy which they call \transforming both
sides". We begin with a model like

yt = f(xt; �):

One might think of this as the systematic part of the model before any noise is introduced. Now
we might consider models of the form

h(yt; �) = h(f(xt; �); �) + ut

This is quite di�erent than the Box-Cox transformation we considered above. Here f(xt; �) is
intended to deal with the non-linearity, while h is hopefully going to transform to homoscedastic
and normal errors. How does h(�) work?

Suppose yi has E(yijxi) = �i; V (yijxi) = �2i and �i = �g(�i), then

V (h(yi)) ' E(h(yi)� h(�i))
2

' (h0(�i))
2E(yi � �i)

2

= (h0(�i))
2�2(g(�i))

2

[Note these approximations depend on � being \small"]
Thus if we were to choose h so that

h0(�i) =
1

g(�i)

then we would have (approximate) homoscedasticity. For example, in Poisson cases

g(�) = �1=2

so

h(�) = 2�1=2 ) h0(�) =
1

�1=2

and

g(�) = �) h(�) = log(�)) h0(�) =
1

�

and
g(�) = �(1��) ) h(�) = y(�) ) h0(�) = ���1

Another way to look at this is to say that if �2 is small relative to the variability of �i's, then

h(yi) = h(�i) + h0(�i)(yi � �)

For this order of approximation we are back to a \simple" heteroscedastic model,

yi = �i + �h0(�i)"i

Note that the interpretation of the �'s is quite di�erent in this setup than in the classical Box-
Cox setup. There the �'s don't mean much independent of � { recall @y=@x expression, { but
here they do.

Transformation and weighting: Consider the model

h(yi; �) = h(f(yi; �); �)+ �g(�i(�); zi�)"i

Now we can think of g(�) as modeling the heteroscedasticity and h(�) being exclusively for
achieving normality, while f(�) �xes the non-linearity in the conditional mean relationship. This
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model is considerably more complicated to estimate, but may arise naturally in the process of
diagnostic checking.

Interpreting Transformed Models

It is very important to be clear about what parameters \mean" in transformation models,
In the normal linear model

yi = xi + � + �"i "i � N (0; 1)

P (yi < yjxi) = �((y � xi�)=�)

Qyi(pjxi) = xi� + ���1(p)

In the Box-Cox framework we have,

h(y; �) = xi� + �"

so the pth quantile of yijxi is yi = h�1� (xi� + �")

Qyi(pjxi) = h�1� (xi� + ���1(p))

Thus if we wanted to estimate the e�ect of a change in xij on median yi, we would write

@

@xij
Qyi(1=2jxi) =

@

@xij
[h�1� (xi� + ���1(p))]

For example, if

h�(hi) =
y�i � 1

�
then,

y�i = �hi + 1

yi = (�hi + 1)1=�

yi = (�(xi� + ���1(p)) + 1)1=�

@yi
@xij

=
1

�
(�(xi� + ���1(p)) + 1)

1

�
�1 � ��j = (�(xi� + ���1(p)) + 1)

1

�
�1�j

This could then be used to generate a con�dence interval. Note that models for expectations
are less convenient here since E(h(y)) 6= h(Ey).

Transformations for Proportions

Often we are interested in estimating models of proportions, for example, Engel Curves
for proportions of expenditure, unemployment rates, etc. Two simple alternatives are logit:
h(y) = log(y=(1� y)) or more generally h(y; �) = y� � (1 � y)� folded power transformation.
Note lim�!0 h(y; �) = log(y=(1� y))

References

Andrews, D. A note on the selection of data transformations, Biometrika, 58, 249-54.

Box, G.E.P. and D.R. Cox (1964), Analysis of Transformations, (with discussion), JRSS(B), 26,
211-52.

Carroll, R. and D. Ruppert (1988), Transformation and Weighting in Regression, Chapman-Hall.

White, H. (1980), Using least squares to approximate unknown regression functions, IER, 21,
149-170.


