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Duration Models and Binary Response

This lecture is based mainly on Doksum and Gasko (1990, Intl Stat Review). We can think of the
usual binary response model as a survival model in which we �x the time of survival and ask, what is the
probability of surviving up to time t. For example, in the problem set we can ask what is the probability
of not quitting up to time 6 months. By then varying t we get a nice 1-1 correspondence between the two
classes of models. We can specify the general failure-time distribution,

F (tjx) = P (T < tjx)

and �xed t so we are simply modeling a survival probability, say S(tjx) = 1 � F (tjx) which depends on
covariates. We will consider two leading examples to illustrate this, the logit model, and the Cox proportional
hazard model.

Logit

In the logit model we have,

logit(S(tjx)) = log(S(tjx)=(1� S(tjx)) = x0�

where F (z) = (1 + e�z)�1 the df of the logistic distribution. In survival analysis this would correspond to
the model

logit(S(tjx)) = x0� + log �(t)

where �(t) is a baseline odds function which satis�es the restriction that �(0) = 0, and �(1) = 1. For
�xed t we can simply absorb �(t) into the intercept of x0�. This is the proportional-odds model. Let

�(tjx) = S(tjx)=(1� S(tjx)) = �(t) expfx0�g

and by analogy with other logit type models we can characterize the model as possessing the property that
the ratio of the odds-on-survival at any time t don't depend upon t, i.e.

�(tjx1)=�(tjx2) = exp(x01�)= exp(x
0

2�):

Now choosing some explicit functional form for �(t) for example log �(t) = 
 log(t), ie. �(t) = t
 , gives the
survival model introduced by Bennett (1983).
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Proportional Hazard Model

One can, of course, model not S, as above, but some other aspect of S which contains equivalent
information, like the hazard function,

�(tjx) = f(tjx)=(1� F (tjx))

or the cumulative hazard,
�(tjx) = � log(1� F (tjx)):

In the Cox model we take
�(tjx) = �(t)ex

0�;

so
�(tjx) = �(t)ex

0�;

which is equivalent to
log(� log(1� F (tjx)) = x0� + log�(t):

This looks rather similar to the the logit form,

logit(F (tjx)) = x0� + log �(t):

but it is obviously di�erent. This form of the proportional hazard model could also be written as,

F (tjx) = 	(x0� + log �(t)):

where 	(z) = 1� e�e
z

is the Type I extreme value distribution. For �xed t we can again absorb the log �(t)
term into the intercept of the x0� contribution and we have the formulation,

log(� log(1� �(x))) = x0�

this is sometimes called the complementary log� log model in the binary response literature. So this would
provide a binary response model which would be consistent with the Cox proportional hazard speci�cation
of the survival version of the model. In general, this strategy provides a useful way to go back and forth
between binary response and full-blown survival models, but I will leave a full discussion of this to 478.

Accelerated Failure Time Model

A third alternative, which also plays an important role in the analysis of failure time data is the accel-
erated failure time (AFT) model, where we have

log(T ) = x0� + u

with the distribution of u unspeci�ed, but typically assumed to be iid. A special case of this model is the
Cox model with Weibull baseline hazard, but in general we have

P (T > t) = P (eu > te�x
0�) = 1� F (te�x

0�)

where F denotes the df of eu and therefore in this model,

�(tjx) = �0(te
�x0�ex

0�)

where �0 denotes the hazard function corresponding to F . In e�ect the covariates are seen to simply
rescale time in this model. An interesting extension of this model is to write,

Qh(T )(� jx) = x0�(�)

and consider a family of quantile regression models. This allows the covariates to act rather 
exibly with
respect to the shape of the survival distribution.
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