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Economics 472
Lecture 18
Duration Models

There is considerable interest, especially among labor-economists in models of duration. These models
originated in biomedical applications, insurance, and quality control but are now being applied broadly to
unemployment, retirement and an array of other issues.

Survival Functions and Hazard Rates

Often duration models are described in terms of survival models of the sort that might be appropriate
for biomedical clinical trials in which we are interested in evaluating the effectiveness of a medical treatment
and the response variable is the length of time that the patient lives following the treatment. But there
are a wide variety of other applications. I like to think of this in terms of predicting time of birth, ex ante
we have some positive random variable, T', with density f(¢), and distribution function F'(¢). One can then
consider the conditional density of the birth date given that a birth hasn’t occurred up to time ¢. This
is rather like the computations we considered in the previous lecture. There is a considerable amount of
specialized terminology which we will need to introduce. The survival function is simply

S(t)=1— F(t) = P[T > ]

and the hazard function is

_f)
A =T
note that
A(t)dt = Plt<T <t+dt|T >t] = P( born in hour ¢ + 1| not born by hour {]
clearly,
t
/ Mu)du = —log(1 — F(u))|§ = —log(1 — F(t)) = —log 5(t)

0

so™

Digression on the Mills’ Ratio & Hazard Rates.

Suppose X is a positive r.v. representing life time of an individual, with density f, and df F, obviously,
P(X >2)=1- F(z) Given that survival until  what is probability of death before z 4 ¢
Ple<X<az+t) Fle+t)—F(z)

PX>z+tX>2)= PX > 1) = = (o)

*Such so-called product integrals have a rich theory which has been recently developed in Gill & Johanson Annals, 1990,
but we will not concern ourselves with this here.



to get a death rate (deaths per unit time) between z and z + ¢ compute

PP f)
t—0 1 - F(z) 1— F(z)

which is called the hazard rate. The reciprocal of the hazard rate is sometimes called the Mills ratio.

A common problem in data of this sort is that we observe T for only some observations, while for others
we observe only that T is greater that some censoring time ., e.g., in a clinical trial, individuals may be
still alive at the end of the experimental period. So we see

T, ifT; <t
Yl_{tc ifT; >t

Maximum Likelihood Estimation of Parametric Models.

The likelihood for a fully parametric model is given by,

n

£(0) = [T £y, 0)% Sy, 0)

=1

where 6; denotes the censoring indicator,

5 — 1 T, <t
L 0 Tzztc

so this is somewhat like the tobit model of the last lecture. Of course we now need to specify the parametric
model for f and 5.

Menu of Choices for the Parametric Specification

1. Exponential — this is simplest

At) = A>0= S(t)=eM
f(t) = Xe M
E(T) = At
V(T) = A2
median = —log(1/2)/A = .69/A

2. Gamma — generalization of exponential

AO[
f(ty = ——t*7le™  a>0,A>0
()
E(T) = ao/A
V(T) = a/X\
S(T) is messy (involves incomplete gamma,)



3. Weibull — another generalization of exponential model
A1) = aA(M)*™H a>0,A>0
Sty = e (°
(1) = ar(A)* e (0"

Note that depending upon whether oo < 1 you get either increasing or decreasing hazard. This model
is probably the most common parametric one.

4. Rayleigh A(t) = Ao + At
5. Uniform U[0,1] M(t) = 1

Clearly there is some a priori ambiguity as to which probability model should be used. This leads naturally
to the next topic.

Nonparametric Methods — The Kaplan-Meier Estimator

Suppose you have a reasonably homogeneous sample like our WECO employees and we want to estimate
a “survival” distribution for them — how long they stay on-the-job. We can chop the time axis into arbitrary
intervals and write,

S(Tk) = P[T>Tk]
P[T > n|P[T > n|T > 7]...P[T > 13|T > 75-1]
= P1-DP2- Pk

as an estimate of p; we could use

. 1_@ B 1_#quitinperiodi
pi = ni) # left in period ¢

Then the survival function can be estimated as,

k

S(me) =[] 5

i=1

The Kaplan Meier estimator of S(¢) is like the previous method except that we replace the fixed in-
tervals with random intervals determined by the observations themselves. As above, we observe pairs:
(Y1,61),...,(Y,,6,) where Y; is observed duration for ith subject and

5 — 1  uncensored
71 0 censored

Let (Y3, 6(;)) denote the ordered observation (ordered on Y’s!). Then set as above

n; = 3 alive at time Y, —¢

di = # died at time Y(;

pi = P[ surviving through period I;| alive at beginning of I;]
G = 1=pi



00 02 04 06 08 10

Figure 1: A Simple Kaplan Meier Plot for 5 Observations: The figure illustrates a very simple version of
the Kaplan Meier estimator of the survival function for 5 observations, one of which is censored and the
others of which are uncensored. The 5 observed times are represented on the horizontal axis as plotted
points with vertical coordinate zero. A useful exercise is to compute the vertical ordinates of S(t) given in
the figure. Note that there is no drop in the estimated function at y, since this observation is censored.
The dotted lines denote a confidence band for S(¢) which, since there are so few observations is essentially
uninformative.

then ¢; = 6;/n;, so

. 1—L iféy =1
po= lmaE gy if 6 =0
Then (drum roll!) the product-limit Kaplan-Meier estimate is,

& 1 8

) ) 1 — 1
S(t) = F.H: H|§|s. H: Hlﬁl@.n_vw H: §W@I@H

Yy <t Yy <t Yy <t yiy <t
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This estimator satisfies several nice requirements

(i) It is consistent

(ii) It is asymptotically normal (involves weak convergence to Brownian motion argument.

(iii) It is a generalized MLE & la Kiefer- Wolfowitz.

(iv) Without censoring it is the empirical df, i.e. S(t) = 1 — F(t) where F(t) = n=' Y I(T} < 1).
This is particularly good for one-and two-sample problems.

The estimates p;’s are the conditional probabilities, while one needs to compute the associated conditional
survival probabilities to find the Survival Function Estimate, and the product accomplishes this.



In Splus this is done using the function survfit. To use it e.g., try plot(survfit(Surv(y,d)~
strata) ,data=some.dataframe). The difficulty of this approach in most econometric applications is that
we can’t usually rely on a simple categorization of the sample observations into a small number of groups,
we have covariates which we would like to use in a way which is close to the usual linear regression model
fashion. This leads to an attempt to make some compromise between the nonparametric and parametric
approaches.

Semi-Parametric Models — Cox’s Proportional Hazard Model

This is a common econometric approach. Let {7;} and {C;} be independent r.v’s. C; is the censoring
time associated with survival times 7;. We observe {(Y;,6;)} where

Y; min{7;, C;}
6; = I(TZ’ < Ci)

we also observe a vector of covariates «; for each “individual.” Of course “individuals” might be firms which
we are modeling bankruptcy decisions for, or some other unit of economic analysis. Recall,

il — D)

11— F(t|z)
The crucial assumption of the Cox model is,
At|z) = P Xg(t)

Note that the form h(z) = e”P is far less essential than multiplicative separability of the function in z and
t. We now introduce a rather high-brow definition which is useful in interpretating the essential role of the
Cox assumption.

Definition: A family of df’s F constitute a family of Lehmann alternatives if there exists F € F such that
forany F € F,1— F(t) = (1 — Fy(t))” for some v > 0 and all ¢. Le. S(t) = 57 (1).

Clearly the proportion hazard model implies a family of L alternatives since,
¢
S(tyz) = exp{—/ Alu; x)du}
0
¢
= exp{—ew/ Ao(u)du} Recall(!) e = (e")*
0
= So(t)” where 7y = %",

Special case: if we have the two sample problem, then 28 = either 0 or 1 so Sy(¢) = S5(¢) for some
constant 7.

Estimation (Sketchy)
Let ¥(;y denote the set of individuals at risk at time y(;) — ¢, for each uncensored time, y;

Pla death in [y, y) + AR = Y e Xo(ym)) Ay
JER()
hazard
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Note that the Ag effect cancels in numerator and denominator. and this gives the partial likelihood

O
ﬁ(ﬁ) = H [Z ex(])ﬁ]

i TER(

P{ death of (i) at time y(;)| a death at time y;)} =

Cox’s proposal was to estimate 5 by maximizing this partial likelihood. In what sense is this likelihood
partial? This is really a question for Fconomics 476, but here I will just say that we have ignored the Aqg
contribution to the full likelihood by the trick used above, and we have to hope that this isn’t really very
informative about the parameter 4. This turns out to be more or less true, of course we still might worry
about the loss of efficiency entailed, and also about the plausibility of the Cox model assumption which we
would like to test. This too will be left for 476. A partial explanation of why the partial likelihood doesn’t
sacrifice much information is the following. It conditions on the set of instants at which “failures” occur,
since Ag(?) is assumed arbitrary no information about 3 is contained in those instants. Why? This mystery
is revealed in recent martingale reformulations of the Cox Model.

Estimating the Baseline Hazard

It remains to discuss how to estimate Ag from the Cox model,

Aolt) = /0 t o) du

in the Cox Model. Breslow assumes a la Cox that Ag(¢) is constant between uncensored observations,
. 1
Ao(t) = 3
(Yu(s) = Yu(i-1)) Z;emu(i) ert

for t € (Yu(i=1)» Yu(s)) and u(i) index of ith censored observations. Then,

S =] (1_%)

{imy <t} JER )
Note here )
So(t) # e~ Mo

But it has the virtue that we get Kaplan Meier when 3 = 0! Since 3 %% in this case is just the number of
observations in the risk set.
Tsiatis uses instead,

So(t) = el

Ao(l) = Z du

, p
2169?(1') e

This doesn’t simplify like the Breslow estimator. The relationship between Tsiatis and Breslow estimates is
seen simply by noting that —log(1 — z) ~ z for small z.



