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Lecture 16

Binary Dependent Variable Models

Let's begin with a model for an observed proportion, or frequency. We would like to explain
variation in the proportion pi as a function of covariates xi. We could simply specify that

pi = x0i� + error

and run it as OLS regression. But this has certain problems. For example, we might �nd that
p̂i =2 [0; 1]: So we typically consider transformations

g(pi) = x0i� + error

where g is usually called the \link" function. A typical example of g is the logit function

g(p) = logit(p) = log(p=1� p)

this corresponds to the logistic df.
The transformation may be seen to induce a certain degree of heteroscedasticity into the model.

Suppose each observation p̂i is based on a moderately large sample of ni observations with p̂i ! pi:
We may then use the �-method to compute the variability of logit(p̂i),

V (g(p̂i)) = (g0(pi))
2V (p̂i)

g(p) = log(p=(1� p))

g0(p) =
1� p

p
� d
dp

�
p

1� p

�
=

1

p(1� p)

V (p̂i) =
pi(1� pi)

ni
so

V (logit(p̂i)) =
1

nipi(1� pi)

Thus GLS would suggest running the weighted regression of logit(p̂i) on xi with weights nipi(1� pi).
Of course, we could, based on considerations so far, replace logit(p̂i) with any other quantile-type
transformation from [0,1] to jR. For example, we might use ��1(p̂i) in which case the same logic
suggests regressing

��1(p̂i) on xi with weights
ni�

2(��1(pi))

pi(1� pi)

An immediate problem presents itself, however, if we would like to apply the foregoing to data in
which some of the observed pi are either 0 or 1.

Since the foregoing approach seems rather ad hoc any way based as it is an approximate normality
of the p̂i we might as well leap in the briar patch of mle. But to keep things quite close to the
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regression setting we will posit the following latent variable model. We posit the model for the latent
(unobserved) variable y�i and assume that the observed binary response variable yi is generated as,

y�i = x0i� + ui

yi =

�
1 if y�i > 0
0 otherwise

so letting the df of ui be denoted by F ,

P (y = 1) = P (ui > �x0i�) = 1� F (�x0i�)
P (y = 0) = F (�x0i�)

For F symmetric F (z) + F (�z) = 1 so f(z) = f(�z) and we have

P (y = 1) = F (x0i�)

P (y = 0) = 1� F (x0i�)

and we may write the likelihood of seeing the sample fyi; xi) : i = 1; : : : ; ng as
L(�) =

Y
i:yi=0

(1� F (x0i�))
Y

i:yi=1

F (x0i�)

=
nY
i=1

F yi
i (1� Fi)

1�yi

Now we need to make some choice of F . There are several popular choices:

(i): Logit p = F (z) = ez

1+ez ) log(p=1� p) = z so Eyi = pi = F (xi�)) logit(pi) = x0i�

(ii): Probit F (z) = �(z) =
R z
�1 �(x)dx ��1(p) = x0i�

(iii): Cauchy F (z)12 + ��1 tan�1(z) F�1(p) = tan(�)(p� 1
2)) = x0i�:

(iv): Complementary log log

F�1(p) = log(� log(1� p)) = x0i�

(v): log-log
F�1(p) = � log(� log(p)) = xi�
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Figure 1. Comparison of �ve link functions: The horizontal axis is on the logistic scale
so the logit link appears as the 45 degree line. Symmetry around the y-axis indicates
symmetry of the distribution corresponding with the link as in the logit, probit and
Cauchy cases. The log-log forms are asymmetric in this respect. Note that while the
probit and logit are quite similar the Cauchy link is much more long tailed.
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\#plots of link functions for binary dep models

postscript("fig1.ps",horizontal=F,width=6.5,height=6.5,

font=7,pointsize=12)

eps_.2

u_(1:999)/1000

plot(log(u/(1-u)),log(u/(1-u)),type="l",axes=F, xlab="",ylab="")

tics_c(.001,.01,.1)

tics_c(tics,1-tics)

ytics_0*tics

segments(log(tics/(1-tics)),ytics,log(tics/(1-tics)),ytics+eps)

text(log(tics/(1-tics)),ytics+3*eps,paste(format(round(tics,3))))

text(log(tics[2]/(1-tics[2])),1.3,"probablility scale")

tics_c(2,4,6)

tics_c(tics,-tics)

ytics_0*tics

segments(tics,ytics,tics,ytics-eps)

text(tics,ytics-3*eps,paste(format(round(tics))))

text(tics[2],-1.3,"logit scale")

segments(-eps,ytics,eps,ytics)

text(-3*eps,tics,paste(format(round(tics))))

abline(h=0)

abline(v=0)
lines(log(u/(1-u)),qnorm(u),lty=2)

lines(log(u/(1-u)),log(-log(1-u)),lty=3)

lines(log(u/(1-u)),-log(-log(u)),lty=4)

lines(log(u/(1-u)),tan(Pi*(u-.5)),lty=5)

text(-c(6,6,5,5,2),-c(1,3,4,6,4),c("log-log","probit","logit","c-loglog","cauchy"))

frame()
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Interpretation of the coe�cients

In regression we are used to the idea that

@E(yjx)
@xi

= �i

provided we really have a linear model in xi, but under our symmetry assumption here the situation
is slightly more complicated. Now,

E(yijxi) = 1 � P (yi = 1) + 0 � P (yi = 0) = F (xi�)

so now
@E(yjx)
@xj

= f(x0�)�j

for logit we have

F (z) =
ez

1 + ez

so

f(z) = F (z)(1� F (z))

while for probit we have

f(z) = �(z) =
1p
2�

e�z
2=2

and for Cauchy

f(z) =
1

�(1 + z)2

We can compare these, for example, at z = 0 where we get

factor from f(0)
logit 1/4
probit 1=

p
2�

Cauchy 1=�

and roughly speaking the whole �̂-vector should scale by these factors so e.g.,

1

4
�
logit
j � 1p

2�
b
probit
j

so

�
logit
j � 1:60�

probit
j

Diagnostic For the Logistic Link Function

Let g(p) = logit(p) in the usual one observation per cell logit model, and suppose we've �tted the
model

logit(pi) = X�
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but we'd like to know if there is some more general form for the density which works better. Pregibon
suggests, following Box-Cox,

g(p) =
p��� � 1

�� �
� (1� p)��� � 1

� + �

note as �; � ! 0 we get

= log p� log(1� p)

= log(p=1� p):

� = 0) symmetry, � governs fatness of tails. Expanding g in �; � we get (with diligence)

g(p) = g0(p) + �g�0 (p) + �g�0(p)

g�0 (p) =
1

2
[log2(p)� log2(1� p)]

g�0(p) = �1

2
[log2(p) + log2(1� p)]

LM tests of signi�cance of g�; g�; in an expanded model in which we include g�0 (p̂) and g�0 (p̂) where
these variables are constructed from a preliminary logistic regression, can be used to evaluate the
reasonableness of the logit speci�cation.

Semiparametric Methods for Binary Choice Models

It is worthwhile to explore what happens when we relax the assumptions of the prior analysis, in
particular the assumptions that a.) we know the form of the df F , and b.) that the ui's in the latent
variable formulation are iid. Recall that in ordinary linear regression we can justify OLS methods
with the minimal assumption that u is mean independent of the covariates x, i.e., that E(ujx) = 0.

We will see that this condition is not su�cient to identify the parameters � in the latent variable
form of the binary choice model. The following example is taken from Horowitz (1998). Suppose we
have the simple logistic model,

y�i = xi� + ui

where ui is iid logistic, i.e., has df

F (u) = 1=(1 + e�u)

It is clear that multiplying the latent variable equation through by � levels observable choices
unchanged, so the �rst observation about identi�cation in this model is that we can only identify �
\up to scale". This is essentially the reason we are entitled to impose the assumption that u has a
df with known scale. Now let 
 be another parameter vector such that 
 6= �� for any choice of the
scalar �:

It is easy to construct new random variables, say v, whose dfs will now depend upon x, and for
which

(�) Fvjx(x
0
) = 1=(1 + exp(�x�))
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and

E(vjx) = 0

Thus, 
 and the v's would generate the same observable probabilities as � and the u's and both would
have mean independent errors with respect to x.

The argument is most easily seen by drawing a picture. Suppose we have the original (�; u) model
with nice logistic densities at each x, the and a line representing x
 and we could imagine recentering
the logistic densities so that they were centered with respect to the x
 line. Now on the left side of
the picture imagine stretching the right tail of the density until the mean matches x�, similarly we
can stretch the left tail an the right side of the picture { as long as the stretching doesn't move mass
across the x
 line (*) is satis�ed.

What this shows is that mean independence is the wrong idea for thinking about binary choice
models. What is appropriate? The example illustrates that the right concept is median independence.
As long as

median(ujx) = 0

we do get identi�cation under two rather mild conditions.
A simple way to see how to exploit this is to recall that under the general quantile regression

model,

Qy(� jx) x�
equivariance to monotone transformations implies that for the rather drastic transformation I(x > 0)
we have

QI(y>0)(� jx) = I(x� > 0)

but I(y > 0) is just the observable binary variable so this suggests the following estimation strategy

min
jj�jj=1

X
�I(yi � I(xi� > 0))

where yi is the binary variable. This problem is rather tricky computationally but it has a natural
interpretation { we want to chose � so that as often as possible I(xi� > 0) predicts correctly.

Manski (1975) introduced this idea under the rather unfortunate name \maximum score" estima-
tor, writing it as

max
jj�jj=1

X
(2yi � 1)(2I(x0i� � 0)� 1)

In this form we try to maximize the number of matches, rather than minimizing the number of
unmatches but the two problems are equivalent. The large sample theory of this estimator is rather
complicated, but an interesting aspect of the quantile regression formulation is that it enables us by
estimating the model for various values of � to explore the problem of \heteroscedasticity" in the
binary choice model.

Discrete Choice Models { Some Theory

The theory of discrete choice has a long history in both psychology and economics. McFadden's version
of the Thurstone (1927) model may be very concisely expressed as follows:
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m choices

y�i = utility of ith choice

yi =

�
1 if y�i = maxfy�1 ; : : : ; y�mg
0 otherwise

Suppose we can express the \utility of the ith choice" as,
y�i = v(xi) + ui

where xi is a vector of attributes of the ith choice, and fuig are iid draws from some df F . Note
that in contrast to classical economic models of choice, here utility has a random component. This
randomness has an important role to play, because it allows us to develop simple models with \common
tastes" in which not everyone make exactly the same choices.
Thm. If the ui are iid with F (u) = F (ui < u) = e�e

�u
, then P (yi = 1jxi) = eviP

evi
where vi � v(xi).

Remark. F (�) is often called the Type 1 extreme value distribution.
Proof. y�i = maxf�g ) ui + vi > vj + vj for all j 6= i or uj < ui + vi � vj . So, conditioning on ui and
then integrating with respect to the marginal density of ui,

P (y�i = 1jxi) =
Z Y

F (ui + vi � vj)f(ui)dui

Note if F (u) takes the hypothesized form, then f(u) = e�e
�u � e�u = e�u�e

�u
soY

i

F (ui + vi � vj)f(ui) =
Y
j

exp(� exp(�ui � vi + vj)) exp(�ui � exp(�ui))

= exp(�ui � e�ui (1 +
X
j 6=i

evj

evi
))

let

�i = log(1 +
X
j 6=i

evj=evi) = log(
mX
j=1

evj=evi)

so

P (y�i = 1jxi) =

Z
exp(�ui � e�(ui��i))dui

= e��i
Z

exp(�~ui � e�~ui)d~ui ~ui = ui � �i

= e��i

=
eviPn
j=1 e

vj

Extensions:

y�ij = utility of ith person for jth choice

y�ij + xij� + zi�+ uij
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Then assuming uij iid F yields

pij = P (yij = 1jxij;zi) =
exij�+zi�P
exij�+zi�

E.g., here xij is a vector of choice speci�c individual characteristics like travel time to work by the ith

mode of transport, and zi is a vector of individual characteristics, like income, age, etc.

Critique of IIA { Independence of Irrelevant Alternatives

Luce derived a version of the above model from the assumption that the odds of choosing alternatives

i and j shouldn't depend on the characteristics of a 3rd alternative k. Clearly here

Pi
Pj

=
P (yi = 1)

P (yj = 1)
=

evi

evj

which is independent of vk. One should resist the temptation to relate this to similarly named concepts
in the theory of voting. For some purchases this is a desirable feature of choice model, but in other
circumstances it might be considered a \bug." Debreu in a famous critique of the IIA property
suggested that it might be unreasonable to think that the choice between car and bus transportation
would be invariant to the introduction of a new form of bus which di�ered from the original one only
in terms of color. In this red-bus-blue-bus example we would expect that the draws of ui's for the
two bus modes would be highly correlated, not independent. Recently, there has been considerable
interest in multinomial probit models of this type in which correlation can be easily incorporated.
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