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Lecture 15

\Inference about tail-behavior and measures of inequality"

An important topic, which is only rarely addressed in econometrics courses, is the measure-
ment of inequality. This is a large topic which could easily occupy us for several weeks. I plan
more of a surgical strike rather than an extended siege on the topic.

A standard model for size distributions in economics, and beyond, is the Pareto distribution

F (x) = 1� (�=x)� x � �

which is also sometimes called Zipf's law. See Hill (1974) for an interesting discussion of how such
a distribution might arise. There are many examples of applications in economics: distribution
of incomes and size distributions of �rms being only the most widely studied.

There is a famous, or perhaps infamous would be more accurate, book by Zipf (1949) called
Human Behavior and the Principle of Least E�ort which o�ers a vast panoply of examples of the
applicability of the Pareto law, including examples in linguistics, music and demography. Hill
(1974) o�ers an interpretation in terms of the so-called Bose-Einstein model in which balls are
allocated to cells in such a way that, given the current allocation, the probabilities of allocation
to the various cells are proportional to the number of balls currently occupying each cell, i.e.,
growth proportional to current size. This is a model which has received considerable attention
in the IO literature on models of �rm growth. There is a recent review of the �rm growth
literature where a variant of the Bose-Einstein model is called Gibrat's Law, by Sutton (1997).
An interesting application which would be fun to explore as a thesis topic is the application of
these methods to a comparison of the productivity of research in various academic �elds over
the last century. Parzen(1985) has suggested that \economics is becoming more scienti�c" on
the basis that the tail exponent of its productivity distribution has decreased in recent years.
Unfortunately, I've never been able to track done a reliable reference for this observation.

The Pareto model o�ers a simple means of measuring inequality by looking simply at the tail
exponent �: (Note that in the terminology of Lecture 1, the Pareto distribution has algebraic
tails.)

MLE estimation of �.

f(x) = �(�=x)��1�=x2

= ���x�(�+1)

log f(x) = log �+ � log � � (�+ 1) logx

`n(�) = n log� + n� log � � (�+ 1)
nX

i=1

log xi
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r`n(�) =
n

�
+ n log � �

X
log xi

r`n(�) = 0) �̂ = (n�1
nX

i=1

log(xi=�))
�1

QMLE estimation of �

Often we are unwilling to make a commitment to a global model of the size distribution,
but might be willing to make inferences about only the upper tail of the distribution. Here, Hill
(1975), comes to the rescue.

Suppose we think that the Pareto model is adequate for x > �, but don't necessarily believe
it is appropriate below �: Alternatively, as is frequently the case, we may only have data for
x > � (the biggest �rms, for example) and don't want to be bothered by the smaller ones. Hill
proposes to construct random variables,

Vi = log Y (i) � log Y (i+1)

where Y (i) is the ith reverse-order statistic, i.e., Y (1) = Y(n); Y
(2) = Y(n�1); etc. Now, choose r

such that Y (r+1) � � and compute

�̂r = (r�1
rX

i=1

iVi)
�1

Note that setting yi = log Y (i), we have�

rX
i=1

iVi = (y1 � y2) + 2(y2 � y3) + 3(y3 � y4) + : : :+ r(yr � yr+1)

= y1 + y2 + y3 + : : :+ yr � ryr+1

=
rX

i=1

log(Y (i)=Y (r+1)

so �̂r is the MLE, conditional on only the �rst r (largest) order statistics. The theory of this is
quite elegant and is based on a nice representation of the order statistics by Renyi. Choosing r
is somewhat tricky, and is like choosing lag lengths or bandwidths for some other problems. One
strategy is to compute �̂r for several r's and try to �nd a value which \stabilizes the estimate"
{ whatever that means.

Now one might imagine having several samples at di�erent time periods, for example, and
one could compute estimates of �̂ for the various periods and compare, thus judging whether
the distribution was becoming more or less concentrated. The tail behavior of asset returns has
been a very controversial topic in �nance since early work by Mandelbrot suggested algebraic
tails might be an appropriate model. See, for example, the recent paper by McCulloch (1997)
for an introduction to this literature.

On the Renyi Representation Result

�This is sometimes referred to as \summation-by-parts" for obvious reasons.
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Thm (Renyi) (1953) Let fZig be iid from F; f with F (0) = 0; and Z(1) � Z(2) � : : : � Z(n)

be the (reversed) order statistics, then

Z(i) = F�1
�
exp

�
�
e1
k
�

e2
k � 1

� : : :�
ei

k � i+ 1

��
for i = 1; : : : ; k

where ei are iid exponential variates with mean 1.

Cor Inverting (solving for ei) we have

ej = (k � j + 1)[logF (Z(j�1))� logF (Z(j))] j = 1; : : : ; k

where by de�nition F (Z(0)) = 1:

Remark Since F (Z) � U and logU � e all of this makes a certain amount of sense. It is
also a fundamental result in the theory of rank statistics.

Relationship to Gini coe�cient and the Lorenz Curve

Another well known device for comparing measures of inequality is the Lorenz curve

�(�) =
Z �

0
F�1(t)dt=

Z 1

0
F�1(t)dt

The function �(t) is clearly convex since it is the integral of a monotonic function. Several
Lorenz curves for the Pareto distribution are illustrated below in Figure 1.

To the extent that the shaded region is large the distribution F deviates from uniformity. A
measure of departure from egalitarianism is therefore the twice the area between the curve and
the diagonal. This is the Gini index (coe�cient),


 = 1� 2

Z 1

0
�(t)dt:

In this form, the Gini coe�cient is a measure of dispersion scaled to lie between zero and one.
If this distribution, F , is degenerate at �, then 
 = 0: At the other extreme, if F puts mass 1=�
at �2 and mass (1� 1=�) at 0, then as �!1; 
 ! 1:

There are a number of other interesting ways to express 
: Another way to express the
geometric region represented by 
, i.e., double the shaded region in the �gure, is to write


 =
Z 1

0
td�(t)�

Z 1

0
�(t)dt:

This is simply the area of the region above the curve �(t) in the �gure, minus the area of the
region below. The area below the curve is clearly just

R
�, the area above the curve may be

found by viewing the picture from the opposite side of the page and rotating it by 90 degrees.
We are then integrating the function t with respect to the \density" d�(t) and we obtain the area
above the curve in the original picture. This may give some geometric insight into integration
by parts, since Z 1

0
td�+

Z 1

0
�dt = t�(t)j10 = 1:
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Figure 1: Several Lorenz Curves for the Pareto Distribution: The �gure illustrates the Lorenz
function for several di�erent tail exponents of the Pareto distribution.
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And this yields, substituting for
R
�;


 = 2
Z 1

0
td�� 1:

= 2��1
Z 1

0
tF�1(t)dt� 1

= 1� 2��1
Z 1

0
(1� t)F�1(t)dt

(Note that d�=dt = ��1F�1(t) provided F is continuous.) The last expression is related to the
reliability literature concept of cumulative rescaled total time on test. See Shorack and Wellner
(1986, x23.5). Another intriguing expression arises from rewriting the intermediate step above
as


 = 2��1
Z 1

0
tF�1(t)dt� 1 = 2��1

Z
1

�1

x(F (x)� 1=2)dF (x)

which Olkin and Yitzhaki (1992) interpret as 
 = 2Cov (X;FX(X))=� and relate to rank statis-
tics.

Finally, we should note that


 = (2�)�1
Z
1

0

Z
1

0
jx� yjdF (x)dF (y)

so we can interpret 
 as the ratio of the expected di�erence in two random draws from F , to
the expected sum of the two draws, i.e.,


 =
EjX � Y j

E(X + Y )

This expression suggests that 
 is a somewhat more robust alternative to the usual standard
deviation as a measure of dispersion. To connect the two we note that,

� = (
1

2
E(X � Y )2)1=2

where X; Y are independent with df F . Clearly � places more weight on large discrepancies
between X and Y than does 
: Neither quantity is formally robust in the sense of Hampel.

Example

The Pareto distribution provides a convenient example in which all the calculations are very
simple. We have

F (X) = 1� (�=x)�

f(x) = ���=x�+1

so provided � = 1;
� = ��=(�� 1):

The quantile function is
F�1(t) = �(1� t)�1=�
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and
�(t) = 1� (1� t)(��1)=�

so


 = 1� 2
Z 1

0
�(t)dt = 1=(2�� 1):

Thus we get a nice \closed form" expression for 
 and as expected as � increases giving a
thinner tail we have a smaller, 
; indicating a more egalitarian distribution. Several examples of
the Lorenz curve are illustrated in Figure 1 for di�erent tail exponents of the Pareto distribution.

The approach of Hill can be adapted to the Lorenz-Gini approach to measuring equality.
We can condition on only the upper tail of the distribution and reformulate the Lorenz curve
and therefore the Gini based on this \censored" portion of the full distribution. This would
be appropriate if we either (i) had data for only the upper tail, or (ii) we felt the functional
form employed for the Lorenz curve, say the Pareto was only appropriate in this range. This is
developed by Sen (1986).

There is a large literature on estimation of the Lorenz curve which essentially about sug-
gesting convenient parametric functional forms for �(t). See Sen (1973) for an overview of the
general issues surrounding inequality measurement. There is also a large related literature in
IO having to do with measuring concentration of �rms in particular markets.
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