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Incidental Parameters and Dynamic Bias in Panel Data

In the previous lecture we found that (apparently) �̂w was safe in the sense that it provided

a consistent estimate of the parameters as T ! 1 and n ! 1 regardless of whether there was

correlation between individual e�ects and the included explanatory variables. The situation is less

comforting when T is �xed and n! 1 as we might view as typical in many econometric panel data

problems. (expanding n is relatively easy, expanding T is usually not.) Chamberlain (1980) and

Nickell (1981) consider the following model:

yit = yit�1 + �i + uit

then the within estimator is

̂w =

PP
(yit � �yi)(yit�1 � �yi;�1)PP

(yi;t�1 � �yi;�1)2
=
XX

wit(yit � �yi)

=  +
XX

(uit � �ui)wit

repeatedly substituting we have,

yit = uit + uit�1 + � � �+ t�1uit + ty0i +
1� t

1� 
�i

so

TX
t=1

yit�1 = (1 +  + 2+ : : :+ T�1)y0i +

 
T � 1� T + T

(1� )2

!
�i

+
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1� 
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1� T�2

1� 
ui2 + : : :+ ui;T�1:

Similar computations for the denomination of ̂w eventually yield
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Thus for example we have in the simple version of the model with gamma = :5,

T = 2 ABias = �(1 + )=2 �3=4

T = 3 ABias = �(2 + )(1+ )=(2(3+ )) �:53

T = 10 �:16

These asymptotic biases are obviously very large relative to the true  = :5.

There is an emerging consensus that the best approach to dealing with the problems we have just

seen in dynamic panel data models is based on generalized method of moments (GMM) methods. We

are already familiar with many important examples of GMM, although we may not have explicitly

recognized this. For example, my usual simpli�ed derivation of OLS and IV estimators proceeds by

�rst assuming we have an orthogonality condition between observed x's and unobserved u's, and then

impose this orthogonality on the sample to get OLS:

EX 0u = 0) X 0û = 0) �̂ = (X 0X)�1X 0y

In the instrumental variables version of this, X isn't orthogonal to u, but we have exactly the right

number of IV's, say Z, and we obtain

EZ0u = 0) Z0û = 0) �̂ = (Z 0X)�1Z0y

and �nally, if we have too many IV's we would like to impose the orthogonality condition EZ0u = 0

on the sample, but Z 0û = 0 in this case is expecting us to solve q > p equations in only p unknowns,

which is not generally feasible, so we need a new idea.

One approach which suggests itself is to minimize the length of the vector Z0û. This sounds

reasonable and is also suggested by least squares ideas, so we would solve

min
b

û(b)0ZZ0û(b)

which yields

�̂ = (X 0ZZ0Z)�1X 0ZZ0y

What is wrong with this? What is missing if we want to get 2SLS? How do we rationalize the 2SLS

choice

�̂ = (X 0PZX)�1X 0PZy

Well, let's work backward. We see immediately that if we had minimized instead,

min
b

û(b)0Z(Z0Z)�1Z0û(b);
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we would get 2SLS, does this make any particular sense? Maybe.

Suppose we had something like the following

M(�); N (0; V )

for example M(�) = M�, and we wanted to estimate � with V known. What would we do? What

might be the argument for solving

min
�

M(�)0V �1M(�)?

Suppose, �rst that V were diagonal, then this would weight the coordinates so that they all had �21

behavior. A better, more general, idea would be to say \let's think of this as nonlinear regression."

The model is then,

yi = Mi(�) + vi i = 1; : : : ; P

where Evv0 = V; so the GLS estimator minimizes the weighted sum of squares.

Now in the 2SLS context we need to compute V = V (Z0u). This is easy if we assume that

E(uu0jZ) = �2I as usual, then we get

V = V (Z0u) = E(Z0uu"Z) = �2Z0Z;

so we do indeed get back to 2SLS, by taking this route. Note that if E(uu0jZ) = 
, then we get the

the GIVE estimate, as discussed in an earlier lecture.

This justi�es GMM as GLS for a nonlinear regression model. Note that the assumption of ex-

act normality is rather implausible, but approximate normality is easy to justify since one would

hope/expect that

n�1=2Z0û

would satisfy conditions for a CLT. So in practice, we have approximate normality and we solve

min
�

M(�)1V �1
n M(�)

where Vn ! V in probability.

Now, in considerably more general situations than 2SLS we may think of orthogonality conditions

generating a set of ? conditions

M(�) = 0

with V = EMM 0 and we can, on the same principle as we have just developed suggest using

�̂ = argmin
�

M(�)0V �1M(�)
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Suppose we had some consistent estimator of �, say �̂0, then by Taylor expansion

M(�) = M(�0) + (� � �̂0)
0rM(~�0)

and a one-step estimation of � would minimize

min
�
(M(�̂0)� rM(~�0)

0(� � �̂0))
0V �1(M(�̂0)�rM(~�0)(� � �̂0))

) �̂1 = �̂0 + (rM 0V �1rM)�1rMV �1M(�̂0):

ne could continue to iterate this solution, which would yield (eventually) a solution to the original

problem.

Now, we are ready to consider the use of GMM methods in panel data. To �x some ideas, consider

our very simple dynamic panel model

yit = �yit�1 + �i + �it

where E�it�is = 0 for t 6= s: We are interested in estimating the vector � and to do so we would like

to �nd an exhaustive list of available, valid moment conditions.

The �rst problem is that the �i's generate dependence over time, the second problem is that if

we pursue the HT strategy of applying the Q transformation to get rid of �i, we lose the time-series

structure of the data. What to do? Consider �rst di�erencing the data. We get

�yit = ��yit +��it

But if the �it are iid, then yt�2 is independent of ��it; and so is yt�3; etc. So we may collect these

conditions to write

E[(�yit� ��yit�1)yi(t�j)] = 0

t = 3; : : : ; T ; j = 2; : : : ; t� 1

From these conditions we may design an estimator �a la GMM. Anderson and Hsiao (1981) suggest

estimating (�) by IV using either yit�2 or �yit�2 as an IV. Since we obviously have more serviceable

instruments it (may) make sense to use more instruments. AB(1991) suggests using all the ? conditions

and GMM.

They write

Zi =

0
BBBBBB@

yi1

(yi1; yi2)
. . .

: : : (yi1; yi2; : : : ; yi(T�2)

1
CCCCCCA
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(T � 2)� (m = (T � 2)(t� 1)=2)

Note that 1 + 2+ : : :+ (T � 2) = m: And

~vi =

0
BBBBBB@

�vi3

�vi4
...

�viT

1
CCCCCCA :

The ? conditions say that

EZ0

i~vi = 0

so GMM suggests that we minimize

(
nX

i=1

~vi(�)
0Zi)An(

nX
i=1

Z0

i~vi(�))

for some appropriate choice of An. Which one? This would yield the estimator (4) in AB (1991)

�̂ =
�y�1ZAZ

0�y

��y�1ZAZ0�y�1

Consider V (n�1
P
Z 0

i~vi) = n�1
P
Zi(E~vi~v0i)Zi where

E~vi~v
0

i = �2u

0
BBBBBBBBB@

2 �1

�1 2 �1

0 �1 2 �1
.. .

: : : : : : �1 2

1
CCCCCCCCCA

Since

E~vit~vit = E(vit � vit�1)(vit � vit�1)

= Ev2i � 2vitvit�1 + v2it�1

= 2�2v

E~vit~vit�1 = E(vit � vit�1)(vit�1 � vit�2)

= ��2v

If there is heteroscedasticity, then things are more complicated. Of course

E~vit~vit�s = 0 for s � 2:
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T 3 6 10 20

q 1 10 36 171

n 20 20000 933000 100000000

N 7 3333 93000 5000000

This gives a one-step estimator. A two step estimator may be constructed using the White type

estimator,

V̂n = n�1
X

Z0

i ~̂vi ~̂vi
0

Zi

In e�ect these estimators are like the Anderson-Hsiao estimator, but (i) They use more IV's (ii) They

use a better V̂n. It is interesting to consider how the number of IV's grows with T in the AB model.

A simple computation yields the following table which describes the situation

It is reasonably straightforward to consider adding exogenous variables. Consider

yit = �yit�1 + x0it� + �i + uit

if we don't wish to assume xit ? �i, then we get Z like previous case except that in addition to

yit; : : : ; yis we have xi1; : : : ; xis+1: for predetermined x's and xi1 : : : xiT for strictly exogenous x's.

More generally, as in HT, we could partition x's into x1; x2 with x1 ? �, then we get even more ?

conditions which could be exploited.
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