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Economics 472

Lecture 12

Estimation of Systems of Simultaneous Equation Model

In this brief lecture we try to introduce estimation methods for simultaneous equation models
which apply to the entire system rather than treating the models one equation at a time as we have
done thus far with two stage least squares.

Consider the model,
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which we will write simply aw
y = Z� + u

We will assume as in the SUR model that

Euu0 = 

 In

so there is contemporaneous correlation across equation errors, but each equation has a classical,
spherical error structure. The model di�ers from SUR in that each Zi has the structure

Zi = [Yi
...Xi]

with the possible inclusion of endogenous variables Yi in each equation. This obviously necessitates
some form of instrumental variables estimation method in addition to the problem of dealing with the
correlation introduced with 
:

To motivate the simultaneous treatment of both problems, let's consider how to deal with them
separately. The SUR solution for the 
 problem introduced a weighting matrix 
�1 
 I so if Z were
orthogonal to u we could use

�̂SUR � (Z0(
�1 
 I)Z)�1Z 0(
�1 
 I)y:

On the other hand, suppose 
 = �2I then the 2SLS estimator for the whole system could be written
as,

�̂2SLS = (Z0(I 
 PX)Z)
�1Z0(I 
 PX)y
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NOte that this is equivalent to doing m separate 2SLS estimations

�̂
(i)
2SLS = (Z0

iPXZi)
�1Z0

iPXyi i = 1; : : : ; m:

Can we do both of these steps together? Yes, consider the following estimator,

�̂3SLS = argmin �f(y � Z�)(
�1 
 PX)(y � Z�)g:

One way to see how this works is to consider the construction of IV"s for the whole system of equations
as

~Z = (
�1 
 In)(Im 
 PX)Z

= (
�1=2 
 In)Ẑ

where Ẑ = (Im 
 PX)Z:

In e�ect, this transformation �rst creates predicted Z's using the instrument set X and then reweights
the equations to get the 
 e�ect.

Having seen how this works in estimating systems of equations, it is perhaps useful to go back and
review how it is connected to the single equation theory. Recall that in the classical single equation
setting

y = X� + u with Euu0 = 


the GLS estimator

�̂ = argmin f(y �X�)0
�1(y �X�)g

= (X 0
�1X)�1X 0
�1y

is optimal among linear unbiased estimator for general error distributions, and optimal among unbiased
estimators for Gaussian errors. here, the 
�1 reweights the usual orthogonal projection of ordinary
least squares to accommodate the nonspherical error structure.

In the case of two stage least squares we have the model

y = Z� + u with Euu0 = �2I

but Z 6? u: This is resolved by the estimator,

�̂ = argmin (y � Z�)0PX(y � Z�) = (Z0PXZ)
�1Z0PXy

where PX = X(X 0X)�1X 0 is the projection onto the column space of the full set of available instru-
mental variables, X . Thus, here PX plays somewhat the same role as 
�1 in the GLS problem.

This leads naturally to the question what should we do in single equation situations in which we
have need of both 2SLS and GLS? COnsider the model

y = Z� + u with Euu0 = 


and Z 6? u; but X ? u as in the 2SLS case. Clearly, the 2SLS estimator is ine�cient in this case and
it is easy (please verify!) to show that

V (�̂2SLS) = (Z0PXZ)
�1X 0PX
PXZ(Z

0PXZ)
�1
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This is a particular form of \sandwich formula" which we gradually learn to associate with asymptotic
covariance matrices which are ine�cient. The e�cient estimator for this situation is,

�� = (Z0P �

X
Z)�1Z0P �

X
y

where P �

X
= X(X 0
X)�1X 0: As a �nal exercise prove Var(��) = Z0P �

X
Z)�1. Note that P �

X
is not a

projection matrix so we should regard �� as a proper IV estimator, but not a proper 2SLS estimator.
Hendry calls it a GIVE estimator, for generalized IV estimator.
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