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Introduction to Dynamic Simultaneous Equation Models

In this lecture we will introduce some simple dynamic simultaneous equation models. Problem Set

4 will deal with two classical examples of this class of models which are typically used in studying

partial equilibrium models of a single market.

Let's begin by considering a rather general class of models of this form,

(1) �yt = A(L)yt�1 + B(L)xt + ut

where we will refer to yt as a m-vector of endogenous variables, xt as a q-vector of exogenous variables,

and A(L) and B(L) denote matrix polynomials in the lag operator L, as usual. We will assume that

given vectors yt�1, and xt, a realization of the vector ut determines a unique realization of the response

vector yt, given the exogenous variables xt and the past. This uniqueness requires that the matrix �

be invertible. We may then \solve" the structural form of the model, (1), to obtain the reduced form,

(2) yt = 	(L)yt�1 + �(L)xt + vt

where 	(L) = ��1A(L);�(L) = ��1B(L) and vt = ��1ut. We can think of the structural form as

representing an idealized version of how the model \really works", while the reduced form is a cruder

version of the model which could be used for forecasting, for example.

It is helpful at this stage to have a more concrete example so let's consider the cobweb model from

part one of PS 4.

Qt = �1 + �2Pt�1 + �3zt + ut

(3)

Pt = �1 + �2Qt + �3wt + vt

To connect this model with the notation of (1) we may write,

xt =

0
BBB@

1

zt

wt

1
CCCA exogenous variables
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yt =

0
@ Qt

Pt

1
A endogenous variables

� =

0
@ 1 0

��2 1

1
A ; A(L) =

0
@ 0 �2

0 0

1
A ��1 =

0
@ 1 0

�2 1

1
A ; 	(L) =

0
@ 0 �2

0 �2�2

1
A

B(L) =

0
@ �1 �3 0

�1 0 �3

1
A ; �(L) =

0
@ �1 �3 0

�1�2 + �1 �2�3 �3

1
A

Now consider solving the model for an equilibrium form. This would yield, in the general case

(4) ye = (I � 	(1))�1�(1)xe

In the speci�c model (3) form, we would have

I �	(1) =

0
@ 1 ��2

0 1� �2�2

1
A

so

(I �	(1))�1 =

0
@ 1� �2�2 �2

0 1

1
A=(1� �2�2)

In this case we must check to be sure that

(I �	)�1 = I +	+ 	2 + � � �

converges in order to assure stability.

Having derived the equilibrium form of the model it is now an opportune moment to discuss

forecasting. This is again conveniently done using the reduced form. The one-step ahead forecast in

the simple case where 	(L) and �(L) are matrices independent of L, yields

ŷn+1 = 	yn + �xn+1

and thus two-steps ahead,

ŷn+2 = 	(	yn +�xn+1) + �xn+2

= 	2yn + 	�xn+1 +�xn+2

and thus for s steps ahead,

ŷn+s = 	syn +
s�1X
i=0

	i�xn+1+i
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Note that, although it might not be immediately obvious, this is completely consistent with the

previous discussion of equilibrium. Suppose xn+i = xe for all i � 0; then presuming that 	s ! 0 as

is obviously required for stability, we have

ŷn+s ! (
1X
i=0

	i)�xe = (I � 	)�1�xe

as previously discussed.

Estimation of Dynamic Simultaneous Equation Models

Estimation of simultaneous equation models pose some new problems which we will now gradually

introduce. It is convenient to begin with the simple case of recursive models which bring us just to

the edge of simultaneity, without quite plunging into it.

De�nition Model (1) is recursive if the following conditions hold, or if the endogenous variables

can be reordered so that these conditions are met: (i) The matrix � is lower triangular, and (ii) The

covariance matrix 
 = Eutu
0

t is diagonal, and futg is iid over time.

We hasten to point out that condition (i) is satis�ed by the cobweb model (3), so provided we

assume, in addition, in that model that Eutvt = 0 so that it satis�es (ii),we can say that it is in

recursive form.

What is so special above recursive models? Closer examination reveals that recursivity implies

an explicit causal ordering in the model. In our cobweb model (3) this is illustrated in the following

diagram.

Given an initial price p0, supply determines the next periods quantity, Q1. Demand in period

one then determines a price that will clear the market and this, then, triggers a supply response for

period two and the model continues to operate. In the �gure we see that for �xed supply and demand

functions (recall that in the constantly model as speci�ed in (3), these functions are shifting around

due both to changes in the exogenous variables xt and wt as well the random e�ects ut and vt), this

leads to convergence to an equilibrium (Pt; Qt) pair that looks a little like a spider web as it oscillates

around the equilibrium point. At this point you might explore what happens if the demand curve is

quite steep, i.e., inelastic, and supply is quite 
at, i.e., elastic. Explain how this connects with the

algebraic formulation of the model and the stability of equilibrium.

The crucial observation about causal ordering and estimation of recursive models concerns the

orthogonality of the errors and explanatory variables in models of this form. Note that in model (3)

pt�1 is clearly orthogonal to ut provided the futg are iid, and in the demand equation Qt is orthogonal

to vt provided that vt and ut are orthogonal. Clearly, Qt depends upon ut, so if ut and vt were
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Figure 1: A simple linear cobweb model of supply and demand

correlated, then this orthogonality (i.e., EQtvt = 0) would fail and ordinary least squares estimation

would be biased. Obviously, the conditions for recursivity are rather delicate. We need, not only that

the matrix � be triangular, a condition which itself is rather questionable, but we also rely on strong

assumptions about the unobservable error e�ects in the system of equations. An illustration of how

delicate things really are is provided by the e�ect of autocorrelation in ut in the �rst equation of model

(3). Note that if we perturb the model slightly and consider the possibility that

ut = �ut�1 + "t

with f"tg iid, now ut�1 clearly in
uences ut, but it also helps to determine Qt�1, thus pt�1, so

Eutpt�1 = 0 fails in this case and we need a more general estimation strategy that is capable of

dealing with these failures of orthogonality. We will introduce a test for this kind of e�ect in the next

lecture.

Instrumental Variables and Two Stage Least Squares

If correlation (read: lack of orthogonality) between X and u is a potential problem lurking in the

shadows of recursive models, it is fully armed and dangerous in the classical simultaneous equations
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model. For general � in (1), the model is truly simultaneous in that the realization of the error vector

ut jointly determines all of the endogenous variables and therefore, any contemporaneous endogenous

variable appearing on the right hand side of an equation is bound to be correlated with the error term

in that equation.

The remedy for this, fortunately, is rather simple. We must �nd, as we have already seen in dis-

cussion of estimating models with lagged dependent variables and autocorrelated errors, instrumental

variables, zi, that satisfy the conditions that (i) they are (asymptotically) uncorrelated with the errors

in the equation of interest, and (ii) they are (asymptotically) correlated with the included endogenous

variables in the equation.

Consider the problem of estimating one of a system of simultaneous equations, say the �rst one,

which we might write as,

(3) y1 = Y1
1 +X1�1 + u1

= Z1�1 + u1:

To connect this with our apparently more general class of models (1) take the �rst row of the

matrix � in (1) to be �1� = (1;�
 0; 00) where the 0 corresponds to all of the endogenous variables

that do not appear in the �rst equation. Let's begin by considering the simplest case in which (5) is

exactly identi�ed.

Partition the full set of exogenous variables as X = (X1

... ~X1) where X1 is the set of included

exogenous variables for equation one and ~X1 and the excluded exogenous variables. In this case we

may view ~X1 as immediately available IV's for the Y1's, since we have exactly, the same number of

~X1's as Y1's.

Consider two apparently di�erent instrumental variable estimators:

�̂1 = (Ẑ0

1Z1)
�1Ẑ0

1y1

that we will call the two stage least squares estimator, and

~�1 = ( ~Z0

1Z1)
�1 ~Z1y1

which is usually called the \indirect least squares" estimator, where Ẑ1 = PXZ1 = X(X 0X)�1X 0Z1;

and ~Z1 = (X1

... ~X1) = X: We will show that �̂1 = ~�1:

We may write the claim more explicitly as

(Z0

1PXZ1)
�1Z0

1PXy = (X 0Z1)
�1X 0y
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Now note that by assumption X 0Z1 is invertible so we can rewrite the lhs as

(Z 0

1PXZ1)
�1Z0

1PXy1 = (X 0Z1)
�1X 0X(Z0

1X)�1Z0

1X(X 0X)�1X 0y1

= (X 0Z1)
�1X 0y1

To explore the general case in which we have \more than enough" instrumental variables we

consider the two stage least squares estimator in a bit more detail. Consider the model

y = Y1
 +X1� + u1 = Z� + u1:

and de�ne instrumental variables ~Z = XA: Then it is easy to show that the instrumental variables

estimator

~� = ( ~Z0Z)�1 ~Z0y

has the asymptotic linear representation

p
n(~� � �) = (n�1A0X 0Z)�1n�1=2A0X 0u

and therefore, p
n(~� � �)

D! N (0; �2(A0MD)�1AMA(A0MD)�1)

where �2 = Eu2i ;M = lim n�1X 0X; D = [�1

...	1]; X	1 = X1; and �1 is the Y1 partition of the matrix

of reduced form coe�cients. The following result shows that among all possible choices of the matrix

A, the two stage least squares choice has a claim to optimality.

Theorem The two stage least squares choice, �̂ with A = (X 0X)�1X 0Z1 is optimal, i.e., V (�̂) � V (~�)

for all A.

Proof Note A ! D since, (X 0X)�1X 0Y1 = �̂1

P! �1 and (X 0X)�1X 0Z1 = 	1. Thus, avar(�̂) �
limV (

p
n(�̂ � �)) = �2(D0MD)�1. We would like to show that for all � 2 Rp1+q1 �0(V (�̂) �

V (~�))� � 0: It is equivalent, and slightly easier, to argue that for all � 2 Rp1+q1 , �0(V (�̂)�1 �
V (~�)�1)� � 0. Factor M = NN 0(Cholesky decomposition) and set h = N�1D� as h0h =

�0D0MD� and

�0V (�̂)�1� = �0D0MA(A0MA)�1A0MD� = h0G(G0G)�1G0h

where G = NA; so we may write

�0(V (~�)�1 � V (�̂)�1)� = h0(I �G(G0G)�1G0)h � 0

as required, since the matrix in parentheses is a projection and therefore positive semide�nite.
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