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Lecture 5

Design of Experiments and Confidence Ellipses

In this lecture I’d like to discuss some very general considerations having
to do with design of experiments, relating them to the linear regression model
and eventually to their implications for making inferences about models with
elliptical confidence regions.

In light of these considerations, it is perhaps useful to review some basic
facts about confidence regions for parameters in the classical linear regression
setting. Suppose that we have a simple linear model with two covariates:

yi = β0 + x1iβ1 + x2iβ2 + ui

we know that for u spherically normal,

β̂ ∼ N (β, σ2(X>X)−1)

so the variance of any linear contrast α>β̂ is given by evaluating the quadratic
form, σ2α>(X>X)−1α. When x1 and x2 are positively correlated then β̂1

and β̂2 will be negatively correlated. This implies that we will be able to
estimate the sum of the β’s well, but not their difference.

To illustrate this effect consider the following example from Malinvaud’s
(1970) classic textbook. We have the following model of French imports:

yt = 0.133
(0.006)

x1t + 0.550
(0.110)

x2t + 2.10
(0.200)

x4t − 5.92
(1.27)

(1)

where yt is French imports, x1t is gdp, x2t is investment, x3t is consumption,
and x4t is dummy variable for EC membership. All variables are in millions
of French Francs in 1959 prices. In this model we are able to make reasonably
precise estimates of the effect of growth of gdp and investment on imports
with 95 percent confidence intervals (respectively)

β1 ∈ (0.121, 0.145)

β2 ∈ (0.33, 0.77)

However, if we introduce the consumption variable x3t, we obtain,

yt = − 0.021
(0.051)

x1t + 0.559
(0.087)

x2t + 0.235
(0.077)

x3t + 2.10
(0.16)

x4t − 9.79
(1.38)

(2)
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But now note that the confidence interval for β1 is (-.123,.081). What
happened? Roughly speaking, we will see that when, as in this example
the independent variables exhibit an approximately linear relationship, here
x3 ≡ γx1, then the ”regression” is incapable of precisely estimating the sep-
arate effects of the two variables. This is made more explicit if we consider
confidence elipses for pairs of coefficients. Without the consumption vari-
able we get a quite precise estimate of the gdp effect, but when we include
consumption the situation changes radically – we have a very imprecise es-
timate of the gdp effect – even the sign of the coefficient is in doubt, and
the joint confidence ellipse of the gdp and consumption coefficients is very
cigar shaped. Given the orientation of the cigar it is clear that we can quite
accurately estimate the effect of circumstances in which gdp and consump-
tion move in the same direction, but we are unable to predict what would
happen when they moved in opposite directions. Why?

The intuitive explanation of what went wrong is quite simple. In the
more complicated model consumption and gdp are very strongly positively
correlated: when gdp (income) goes up there is a natural tendency for per-
sonal consumption to also rise. The regression model as specified in (2)
would like to distinguish separate effects for these two variables, but the
historical experience represented by the data has never seen a period where
gdp and consumption deviated substantially from the pattern we have de-
scribed. When two x variables are very strongly positively correlated like
this, it is not surprising that the regression is able to infer very precisely
the sum of their two effects, but is unable to precisely infer the difference in
their effects. This is basic message of the cigar shape confidence region.

What general conclusions should we draw from this example? First, we
can say that it is generally desirable to have explanatory variables (x’s) that
are uncorrelated with one another. This is already clear from what we have
said about making partial residual plots. If x’s are uncorrelated then there
is no need for the first stage of the PRP procedure; removing the effect of x1

from x2 is superflous if they are already uncorrelated. When experiments
are designed so that covariates are uncorrelated then we have the luxury
of being able to do the least squares analysis one variable at a time. For
better or worse, this is rarely an option in economics, and we are usually
faced with x’s that can be quite strongly correlated. In such cases regression
methods do their best to distinguish the separate effects, but often they are
not able to do so very precisely. Fortunately, the standard tools for inference,
in particular drawing confidence ellipses for pairs of coefficients accurately
reflects this imprecision.

The second crucial experimental design consideration is variability of the
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Figure 1: Confidence ellipses for two pairs of coefficients in the Malinvaud
import demand equation. In the left panel the coefficients on gdp and in-
vestment are nearly independent, however in the right panel after adding
consumption spending, which is quite strongly correlated with gdp, the co-
efficients of these two variables are very strongly negatively correlated.
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covariates. As we saw already in bivariate regression, precision of the slope
estimate is inversely proportional to the variance of the observed x’s. Thus
well designed experiments should try to spread out the x variables as much
as possible. Sometimes this is difficult to do because extreme settings of
the covariates are difficult or expensive to implement, and in cases where
nonlinear effects are suspected there are good reasons to want more uniform
spacing, but generally we would like to have more variability in covariates to
obtain more precise estimates. Both of these general points are illustrated
in the next example.

As a second example consider the problem of jointly estimating confi-
dence intervals for income and price elasticities of gasoline. In Figure 2 we
illustrate .90 and .99 confidence ellipses for two estimated gasoline models.
One is based on data from 1947-72 prior to the first oil shock, and the other
is based on the entire period 1947-88. Several things are evident from the
figure. First, the full data set yeilds much more precise estimates (smaller
confidence regions). This is to be expected when there is more data, and
more especially when there is more variability in the x variables, as was
kindly provided by OPEC. Second, the orientation of the ellipses for the
full sample is somewhat more aligned with the coordinate axes indicating
that there is less correlation between the two elasticities than in the earlier
period. This reflects more independent movement of prices in the OPEC
period, whereas price and income were more strongly positively correlated
in the earlier pre-OPEC period. Finally, and most disturbingly note that
the evidence provided by the earlier period is wildly overconfident about
precision of the elasticity estimates. While admitting that the price elastic-
ity might be negative, it rules out very strongly the possibility that it could
be as small as -0.50, the value obtained using the full data set. Similarly, the
confidence in the lower estimate of the income elasticity is also misplaced.

Finally, to conclude this digression, let’s consider the relationship be-
tween the confidence ellipses that we have seen and the conventional one
dimensional confidence intervals. To fix ideas let’s consider the simplest
possible case: a situation in which we have a two dimensional parameter β

that happens to be standard normal, i.e. β ∼ N (0, I2). This is a totally
artificial situation in which we imagine that β̂ happens to take the value
(0, 0)> and have covariance matrix, I2. Then we have that

P (β2
1 + β2

2 < 5.99) = .95

since the sum of squares of the β’s is χ2
2. Thus, we get circular confidence

regions and the radius of the .95 region is 2.45. Compare the aria of this
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Figure 2: Confidence ellipses for income and price elasticities of gasoline in
the U.S.
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circle: πr2 = 18.81 with the area of the square formed by two .95 confidence
intervals for the separate parameters: which has area (2 · 1.96)2 = 15.36.
Why is this square smaller than the circle? Hint: Find the the square that
contains probability .95 and compare its area with those already computed.
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