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Positive Theory of Asset Pricing

In the previous lecture we described what may be called a “normative theory” of how the individual
should behave. Now, we try to infer how asset prices would behave assuming that the normative theory was
adhered to by investors.

In somewhat the same spirit as the previous lecture, assume that we have, initially, two assets; one risk
free, R0, with mean return µ0 and standard deviation, σ0 = 0, and the other consisting of a representative
portfolio of all existing assets, Rm, with mean return µm and standard deviation σm. Portfolios comprised
of these two assets have mean and standard deviation

µp = pµ0 + (1 − p)µm

σp = (1 − p)σm

Now consider a new asset, Ri, with mean µi and σi. If we combine Ri and Rm we have as before

µp = pµi + (1 − p)µm

σ2

p = p2σ2

i + (1 − p)2σ2

m + 2p(1 − p)σim

where σim = Cov(Ri, Rm) = E(Ri − µi)(Rm − µm).
We would like to ask how µp and σ2

p change as p changes, in particular, how do they change as we
introduce just a tiny bit of Ri. This is an exercise in calculus:
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But we really want dσp/dp not dσ2
p/dp so by the chain rule
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Now, if our new asset Ri is going to viable we need that its risk-return tradeoff is just like the risk-return
relationship prevailing between Rm and R0, i.e., we need that

µi − µm

(σim − σ2
m)/σm

=
µm − µ0

σm
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or

µi − µm = (µm − µ0)

(

σim − σ2
m

σ2
m

)

Subtract µm − µ0 to both sides to obtain,

µi − µ0 = (µm − µ0)

(

σim

σ2
m

)

This is a fundamental relationship – what does it say? Very simply it says that expected excess returns of
asset i, µi −µ0, is proportional to the expected excess returns on the market portfolio, µm −µ0, with factor
of proportionality σim/σ2

m. The latter factor is a regression coefficient.
Suppose we have the classical bivariate linear regression model

yi = α + βxi + ui

and we estimate α and β by minimizing the sum of squared deviations of the yi’s from the estimated line,
that is we solve

min
α,β

∑

(yi − α − βxi)
2

The solution is

β̂ =

∑

(yi − ȳ)(xi − x̄)
∑

(xi − x̄)2

α̂ = ȳ − β̂x̄

we can interpret β̂ as an estimate that simply a ratio of estimates of the covariance of x and y to the estimate
of the variance of x.

Looking back at our fundamental CAPM relationship we see that this precisely what our factor σim/σ2
m

is – the ratio of covariance of Ri and Rm to the variance of Rm. This yields the basic model,

(∗) Rit − R0t
= α + β(Rmt

− R0t
) + ut

where β now represents σim/σ2
m. Of course in the model we derived α = 0, so we need to consider this a

bit further. But the basic message is simple: Expected returns of Ri given market returns follows a simple,
linear regression model.

The regression formulation of our CAPM relationship yields a variety of new insights. The expected
excess return, µi − µ0, is sometimes called the risk premium of asset Ri since it measures how much above
the risk free rate of return the expected return on Ri needs to be to justify its uncertain return. Similarly,
µm − µ0 is the risk premium for the market portfolio. The coefficient β can then be viewed as establishing
a connection between the risk premium of asset, Ri, and the risk premium of the market as a whole. If β is
greater (less) than one, then Ri has a larger (smaller) risk premium than the market risk premium.

The regression formulation (∗) allows us to decompose the variance of Ri into a portion attributed to
variation in the market and a portion independent of the market,

σ2

R
= β2σ2

M
+ σ2

u.

So if we take variance as a measure of risk we can view the first component as risk associated with the market
that can’t be avoided, and the second component as risk that can be avoided by diversification. To see
how the latter works imagine a large number, n, of stocks that have random contributions u1t, u2t, . . . , unt
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independent of the market return. For simplicity suppose that we form a portfolio with equal portfolio
weights, 1/n, then

V (ūt) = V (
1

n

n
∑

i=1

uit) =
1

n2

∑

σ2

i

As long as the σ2

i are all roughly the same magnitude, say σ2

i ≤ σ2

0
for all i, then

V (ūt) ≤ σ2

0/n

so for large n the contribution of these components to the portfolio variance is small.
On the other hand, the portion of the variance associated with the market can’t be diversified away.

Assets with β > 1 have variability that magnifies the market variation and they – according to the CAPM
theory – can expect to earn a large risk premium to compensate. Assets with β < 1 vary less violently than
the market as a whole and therefore earn less than the market rate of return.

What if β ≤ 0? If β = 0, the model predicts that ERi = µ0, that is that the asset should earn the risk
free rate of return; this is true because in this case there is only diversifiable risk. When β < 0 the situation
is even more extreme: when the market goes up the expectation is that such assets go down and vice-versa.
This makes them ideal diversification investments: when the market declines they tend to soften the blow.
Unfortunately such assets are hard to find. In some periods gold has shown some tendency to exhibit a
negative β. This is explored in the last part of the first problem set.

Finally, a word about α in the regression model (∗). As derived, α should take the value zero. If when
we estimate the model we see an α̂ > 0 it means that over the estimation period the asset in question had
returns that exceeded that predicted by the CAPM, and likewise if α̂ < 0 its performance was worse than
predicted. Of course, when estimating such models from historical data, α̂’s are always non zero, what is
more important is to ask: how strong is the evidence that α 6= 0. Typically this evidence is very weak.
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