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An Outline

1 Compound Decisions, the Ur Example, or
Why minimax procedures can be suboptimal.

2 Empirical Bayes Deconvolution and Stein Shrinkage, or
Borrowing strength, or why it takes a village.

3 Nonparametric Maximum Likelihood for Mixtures, or
Convex optimization rules the waves.

4 Ranking and Selection as Compound Decisions, or
How to do ranking and selection, if you must.
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Robbins (1951) The Ur Compound Decision Problem

Suppose we observe, y = (y1, · · · ,yn) from,

Yi = θi + ui, θi ∈ {−1, 1}, ui ∼ N(0, 1)

and we would like to estimate θ ∈ {−1, 1}n under loss,

L(θ̂i, θi) = n
−1

n∑
i=1

|θ̂i − θi|.

Robbins shows that for n = 1 the minimax procedure is,

δ1/2(y) = sgn(y),

and he shows that this rule remains minimax for n > 1.
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Let’s be Bayesian

Lacking further information we may be willing to assume that the Yi are
exchangeable, and thus that the θi are iid Bernoulli (p). The minimax
principle presumes that malevolent nature has chosen p = 1/2.

Robbins observes that if we knew p,

P(θ = 1|y,p) =
pϕ(y− 1)

pϕ(y− 1) + (1 − p)ϕ(y+ 1)

we should guess θ̂i = 1 if this probability exceeds 1/2, or equivalently, with
a tiny bit of algebra, we obtain this elegant logistic shrinkage formula,

δp(y) = sgn(y− 1
2 log((1 − p)/p))

But we don’t know the “prior” p. Let’s try to estimate it.
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Hierarchical Bayes Methods
We have the log likelihood,

`n(p|y) =

n∑
i=1

log(pϕ(yi − 1) + (1 − p)ϕ(yi + 1))

a symmetric beta prior is convenient, like a flips of a fair coin,

logπ(p) = a log(p) + a log(1 − p) − logB(a,a).

The posterior for θi is,

p(θi = 1 | y1, . . . ,yn) =
ϕ(yi − 1)p̄

ϕ(yi − 1)p̄+ϕ(yi + 1)(1 − p̄)
,

where p̄ is the posterior mean of p given all the data y.

p̄ =

∫
p
∏

(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))π(p)dp∫∏
(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))π(p)dp

.

and we have a plug-in Bayes rule,

δp̄(yi) = sgn(yi − 1
2 log((1 − p̄)/p̄)).
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Empirical Risk for Minimax vs. Empirical Bayes Rules
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Free the θ’s: The Gaussian Sequence Model

Restricting the θi’s to live in {−1, 1} seems a bit cruel, why not let them
roam free? Suppose that, in the simplest case, we have

Yi = θi + ui, θi ∼ G, ui ∼ N(0, 1)

so marginally Yi ∼ f(y) =
∫
ϕ(y− θ)dG(θ). Under squared error loss

Robbins (1956) shows that the posterior mean, the optimal Bayes rule
estimator, of the θ’s is given by,

δ(y) = y+ f ′(y)/f(y).

Efron (2011) calls this Tweedie’s formula; it provides a general shrinkage
strategy for Gaussian noise models, encompassing various parametric
Stein rule procedures. When G is known we’re good to go, otherwise we
need to estimate our prior, G.
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Tweedie’s formula becomes a Stein Rule for Gaussian G
When the mixing distribution, G, is itself Gaussian, then the mixture
density f is also Gaussian, and the Tweedie log derivative term simplifies
to a linear (or perhaps affine) function and the Tweedie formula becomes
linear shrinkage à la Stein. If θi ∼ G = N(µ0,σ2

0) we shrink toward the
prior mean,

δ(y) = µ0 +

(
1 −

1

1 + σ2
0

)
(y− µ0),

Estimating the prior mean parameter costs us one degree of freedom, and
we obtain the celebrated James-Stein (1960) estimator,

δ̂(y) = Ȳn +

(
1 −

n− 3

S

)
(y− Ȳn),

with Ȳn = n−1
∑
Yi and S =

∑
(Yi − Ȳn)

2.

This is the original Bayesian sin: we have estimated the prior!
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linear shrinkage à la Stein. If θi ∼ G = N(µ0,σ2

0) we shrink toward the
prior mean,

δ(y) = µ0 +

(
1 −

1

1 + σ2
0

)
(y− µ0),

Estimating the prior mean parameter costs us one degree of freedom, and
we obtain the celebrated James-Stein (1960) estimator,

δ̂(y) = Ȳn +
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with Ȳn = n−1
∑
Yi and S =

∑
(Yi − Ȳn)
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Fisherian Deconvolution

Having observed a random sample on Y ∼ f(y) =
∫
ϕ(y− θ)dG(θ), we

would like to recover an estimate of the mixing distribution G. This is
generally viewed as deconvolution and attacked with Fourier methods.
Robbins thought differently, and asked, “why not maximum likelihood?”
This yields a nice convex optimization problem:

min
G∈G

{−

n∑
i=1

log f(yi) | f(yi) =

∫
ϕ(yi − θ)dG(θ)}

Works for any mixture problem, not just classical deconvolution

Given a G we can compute posterior means, posterior quantiles,
posterior whatevers for within-sample or out-of-sample observations.

Location shift equivariant, unlike typical Bayesian shrinkage, e.g.
spike and slab or horseshoe priors.
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Minimalist G-Modeling and Alternatives

When ϕ is Gaussian we have a classical deconvolution problem, but
Fourier methods perform poorly, while maximum likelihood in several
forms performs quite brilliantly.

Efron’s logspline approach expresses g = G ′ as a natural spline:

log g(θ) =

p∑
j=1

αjψj(θ),

and estimates the parameters α ∈ |Rp by penalized maximum
likelihood.

The Kiefer and Wolfowitz NPMLE yields a discrete G typically with
only a few atoms, and has the advantage that it is tuning parameter
free.

Both approaches share the advantage that they are applicable to the
general class of mixture problems, not only to Gaussian deconvolution.
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A Simple Discrete Mixture Example
Consider the simple model, Yi ∼ N(θi, 1), with θ ∈ {1, 4} with probabilities
(0.75, 0.25) respectively. We draw a sample of n = 1000, Y’s, plot their
histogram, and then overplot the Kiefer-Wolfowitz NPMLE in red.
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Tweedie Shrinkage for Posterior Means

Given our Ĝ we can compute a posterior mean estimate for any value of y.
What does this look like?

−2 0 2 4 6

Tweedie shrinkage is quite smart about adapting shrinkage to the form of
the G. No longer are we simply shrinking all observations toward the same
fixed value.
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Needles and Haystacks
It is commonly assumed that G contains a large mass point concentrated
at zero, the haystack, and a smaller mass well separated from zero, i.e.
the needles. Castillo and van der Vaart (2012) compare several Bayes and
empirical Bayes procedures in this setting.

s = 25 s = 50 s = 100
3 4 5 3 4 5 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
NPMLE 80 57 30 122 81 40 174 112 53

Mean squared error of several estimators considered by Castillo and van der Vaart
and the NPMLE procedure of Robbins. Sample size n = 500 throughout, with s
non-null observations concentrated at θ ∈ {3, 4, 5}. Based on 100 replications for
the first eight Castillo and van der Vaart procedures, and 1000 replications for the
NPMLE.
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Ranking and Selection

Ranking and selection are inextricably linked in applications; we rank
because we want to select “the best” or “the worst.”
We see noisy measurements, yk of some latent quality, θk and would like
to select the α-best, {k : θk > θα ≡ G−1(1 − α)}.
The optimal procedure is to compute posterior tail probabilities for each
unit,

vα(yk) = P(θk > θα|Y = yk),

and then rank the the vα(yk) and select according to the rule,

δ(yk) = 1{vα(yk) > λα},

where λα satisfies, P{vα(Yk) > λα} = α,
This is compound decision rule since all the observations contribute to the
determination of the vα(yk) through the estimation of G. It can be quite
different than ranking on the basis of posterior means which is typically
employed.
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Isn’t Selection a lot like Multiple Testing?
Indeed! In fact, 1 − vα(y) is the local false discovery rate for testing,

Ho : θk < θα vs. Ha : θk > θα

as in Efron, Tibshirani, Storey, and Tusher (2001). In our simplest
Gaussian sequence setting,

vα(y) = αf1(y)/f(y) = P{θk > θα|Y = y},

where,

f1(y) = α
−1

∫∞
θα

ϕ(y− θ)dG(θ)

and

f(y) =

∫
ϕ(y− θ)dG(θ)

Note that this depends on knowing the mixing distribution, G, or being able
to estimate it. Given a Ĝ we can easily compute vα’s and do selection.
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Selection with δ(y) is a Bayes Rule

Two preliminary lemmas are relatively easy:

Lemma 1
Let hk = 1(θk > θα), then δk = δ(yk) minimizes the Bayes (compound)
risk of misclassification,

R(δ) = E
[∑
k

L(δk,hk) = λ1{hk = 0, δk = 1}+ 1{hk = 1, δk = 0}
]

Lemma 2
When the variances of the yk are homogeneous, ranking by posterior
means or posterior tail expectations (shortfall) are identical to the posterior
tail probability ranking, so their selection rules are also equivalent.
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Guarding Against False Discoveries

Rather than simply trying to control the size of the selected set, we may
also wish to constrain the false discovery rate, that is the proportion of
selected observations that fail to meet our standard,

FDR = P(θ < θα | δα(Y) = 1)

To control both the proportion selected and false discovery rate we
propose the loss,

L(δ, θ) =
n∑
i=1

hi(1−δi)+τ1

( n∑
i=1

{
(1−hi)δi−γδi

})
+τ2

( n∑
i=1

δi−αn
)

where hi = 1{θi > θα}, and the Lagrange multipliers τ1 and τ2 are
chosen to control FDR at γ and capacity at α. When the problem is
difficult, so FDR is high this formulation tends to reduce the proportion of
selected units below the initially specified capacity level α.
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Guarding Against False Discoveries

To gauge the difficulty of a particular selection problem it is important to
know:

The proportion of targeted “true” discoveries that are missed,

The proportion selected units that are “false” discoveries

We will call these proportions FNR and FDR respectively. We may want to
control not only the proportion selected, α, but the proportion of false
discoveries.
A crucial advantage of estimating the mixing distribution, G, is that it
enables us to estimate FDR and thereby compute thresholds required to
construct Bayes selection rules for our augmented loss function.
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A Normal Example that Gives the Oracle a Headache

Consider the simplest Gaussian model Yi ∼ N(θi, 1) and θi ∼ N(0, 1), we
would like to select the best α proportion. An oracle possessing full
knowledge of this setting, knowing that G is standard normal and therefore
the marginal distribution of the Yk’s is N(0, 2), incurs the errors appearing
below.
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So, for example, when α = 0.10, more than half of the Oracle’s selections
are “false” and about six percent of those not selected should have been
selected.
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Heterogeneous Precision of the Yk

Often it is important to account for observed differences in the precision of
the measurements, Yk, the number of “at bats” in the baseball batting
average applications that pervade the early empirical Bayes literature, or
the number of student test takers in the teacher value added applications.

Yk ∼ N(θk,σ2
k), and θk ∼ G, σ2

k ∼ H, σk ⊥⊥ θk

The posterior tail probability criterion becomes,

vα(yk,σk) = P(θk > θα|yk,σk) =

∫+∞
θα

ϕσk(yk − θ)dG(θ)∫+∞
−∞ ϕσk(yk − θ)dG(θ)

where ϕσ(u) = ϕ(u/σ)/σ.
Now we have a “selection boundary” a curve in the (y,σ) plane that
separates regions of selected from unselected observations.
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Selection Boundaries and Conflicts Between Rules
When only capacity is constrained, the tail probability rule is willing to
select some high variance units that the posterior mean rule would reject.
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A simulation of 10,000 observations with G standard Gaussian and σi ∼ U[0.5, 2.5]. Grey

points indicate units selected by both posterior tail probability and posterior mean rules,

blue points are those selected by PM but not TP, and red are those selected by TP but not

PM.
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Selection Boundaries and Conflicts Between Rules
When both capacity and FDR are constrained, many fewer units are
selected, but still the posterior tail probability rule selects a few more high
variance units.
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Even a very lax FDR constraint with γ = 0.40 dramatically reduces the number of selected

units.
Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 23 / 39



Nested Selection

Generally, we would expect that relaxing the capacity constraint, letting α
to be larger for any fixed FDR control γ, would enlarge the selection
regions,

Ωα,γ = {(y,σ) : vα(y,σ) > λ∗α,γ}

Lemma 3
Let fv(v;α) denote the density function of vα(yk,σk), if ∇α log fv(v;α) is
non-decreasing in v, then the selection regions are nested, that is, for fixed
γ, α1 6 α2 implies Ωα1,γ ⊆ Ωα2,γ

The monotonicity condition can be interpreted as a variant of the classical
monotone likelihood ratio condition.
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A Taste of Simulation
Not suprisingly tail behavior of the true mixing distribution G has an
important impact on the performance of ranking and selection methods. To
explore this we consider several Student t choices for G, with independent
and obsesrvable σ2 ∼ U[0.5, 1.5]. Five selection procedures are
compared:

OTP Oracle posterior tail probability ranking

OPM Oracle posterior mean ranking

Efron Efron posterior tail probability ranking

KWs Smoothed Kiefer-Wolfowitz posterior tail probability ranking

EM Efron & Morris (1973) linear shrinkage posterior mean
ranking

Performance is measured by Power, the proportion of the true top α of the
θk’s that are selected, an estimate of:

β(δ) = P(θk > θα, δk = 1)/P(θk > θα)
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The Closer to Normality the Harder Selection Becomes
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P
ow

er

0.2

0.4

0.6

0.8

2 4 6 8 10

0.05

2 4 6 8 10

0.1

2 4 6 8 10

0.15

OTP OPM Efron KWs EM

Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 26 / 39



Ranking and Selection of U.S. Dialysis Centers

There is a well established data collection and analysis system for ranking
and rating the performance of U.S. kidney dialysis centers. We use panel
data on 3230 of these centers from 2004-2017 to illustrate our methods.

Centers have different mixes of patients, so the primary measure of center
performance, patient mortality, is adjusted for “expected mortality” as
estimated by a Cox proportional hazard model that captures variation in
the patient mix. Observed deaths, denoted yit for center i in year t are
modeled as Poisson,

yit ∼ Pois(λiµit)

where µit is center i’s expected deaths as predicted by the Cox model in
year t and λi is the center’s unobserved mortality rate, assumed constant
over 3 to 5 year time horizons.

Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 27 / 39



Ranking and Selection of U.S. Dialysis Centers

There is a well established data collection and analysis system for ranking
and rating the performance of U.S. kidney dialysis centers. We use panel
data on 3230 of these centers from 2004-2017 to illustrate our methods.

Centers have different mixes of patients, so the primary measure of center
performance, patient mortality, is adjusted for “expected mortality” as
estimated by a Cox proportional hazard model that captures variation in
the patient mix. Observed deaths, denoted yit for center i in year t are
modeled as Poisson,

yit ∼ Pois(λiµit)

where µit is center i’s expected deaths as predicted by the Cox model in
year t and λi is the center’s unobserved mortality rate, assumed constant
over 3 to 5 year time horizons.

Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 27 / 39



Back to Normality
The classical variance stabilizing transformation for the Poisson takes us
back to the Gaussian model,

zit =
√
yit/µit ∼ N(θi,σ

2
i/wit),

where θi =
√
λi and wit = 4µit. Exchangeability of the centers yields a

mixture model in which the parameters (θi,σ
2
i), are assumed to be drawn

iidly from the joint distribution, G. The σ2
i account for overdispersion of the

Poisson. We have sufficient statistics:

Ti =

m∑
t=1

witzit/Wi ∼ N(θi,σ
2
i/Wi),

and

Si = (m− 1)−1
m∑
t=1

(zit − Ti)
2/wit ∼ Γ(r,σ

2
i/r),

where Wi =
∑
twit and r = (m− 1)/2, which give us an explicit

likelihood for G.
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Ranking Dialysis Centers

Given an estimate, Ĝ, we can use posterior tail probability to rank:

vi = P(θi > θα|ti, si,wi) ≈
∫+∞
θα

ϕ(ti|θi,σ
2
i/wi)Γ(si|r,σ

2
i/r)dĜ(θ,σ2)∫+∞

−∞ ϕ(ti|θi,σ2
i/wi)Γ(si|r,σ

2
i/r)dĜ(θ,σ2)

.

and thresholds may be computed to control capacity and the false
discovery rate. To simplify the exposition, we will assume σi ≡ 1, so there
is no over-dispersion, then,

vi = P(θi > θα|ti,wi) ≈
∫+∞
θα

ϕ(ti|θi, 1/wi)dĜ(θ)∫+∞
−∞ ϕ(ti|θi, 1/wi)dĜ(θ)

.

But bivariate heterogeneity is entirely feasible, as in our previous work on
PSID income dynamics.
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Comparison of TP Selection with MLE Selection
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Centers selected as best (22% lowest mortality). Blue curve is selection
boundary for posterior tail probability rule, vertical red line is MLE selection
boundary. Red points are selected by MLE, but not TPR, blue points by
TPR not MLE.
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TP vs MLE Selection with γ = 0.20 FDR Control
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Centers selected as best (22% lowest mortality) with FDR constrained to
20%. Blue curve is selection boundary for TP rule, vertical red line is MLE
selection boundary. Red points are selected by MLE, but not TPR, blue
points by TPR not MLE.
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Comparison of TP Selection with James-Stein Selection

T

W

0.5 0.6 0.7 0.8 0.9 1.0

0
20

0
40

0
60

0
80

0

Agree
TP extra
JS extra

Centers selected as best (22% lowest mortality). Blue curve is selection
boundary for posterior tail probability rule, red curve is the James-Stein
selection boundary. Red points are selected by James-Stein, but not TPR,
blue points by TPR not James-Stein.
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TP Selection vs James-Stein with FDR Control
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Centers selected as best (22% lowest mortality). Blue curve is selection
boundary for posterior tail probability rule, red curve is the James-Stein
selection boundary. Red points are selected by James-Stein, but not TPR.
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Temporal Stability of Ranking and Selection
One might wonder whether there was “significant” autocorrelation in the
standardized mortality ratio that we have denoted by zit. A histogram of
the estimated AR(1) coefficients for the 3230 centers suggests
considerable heterogeneity, but little systematic persistence.
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Temporal Stability of Ranking and Selection II
Another way to explore temporal stability is to select centers into rating
categories and estimate transition probabilities between categories. To
implement this we compute posterior tail probability rankings for each of 5
3-year periods from 2004-2017. Centers are selected into one of 5 rating
groups 22% A’s, 30% B’s, 35% C’s, 9% D’s and 4% F’s, in each of these
periods. The estimated Markov transition matrix looks like this:

A B C D F
A 0.440 0.330 0.200 0.024 0.006
B 0.248 0.357 0.328 0.059 0.007
C 0.122 0.286 0.440 0.113 0.039
D 0.060 0.188 0.436 0.208 0.108
F 0.021 0.081 0.352 0.217 0.329

Estimated First Order Markov Transition Matrix: Entry i, j of the matrix estimates
the probability of a transition from state i to state j based on posterior tail proba-
bility rankings for 3-year longitudinal grouping of the center data
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Conclusions

Robbins’s compound decision framework is well suited to the ranking
and selection problem,

The nonparametric MLE of Kiefer and Wolfowitz is an essential tool
for compound decision making, but may need a little smoothing,

Ranking and selection is difficult even for an Oracle who knows the
probabilistic structure of the problem,

Ranking and selection is especially difficult in Gaussian settings
where conventional linear shrinkage methods are most appropriate.

Nonparametric empirical Bayes methods are still somewhat
mysterious from a formal theoretic viewpoint, so there are many
important open questions.

Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 36 / 39



Selected References I
BAHADUR, R. R., AND H. ROBBINS (1950): “The Problem of the Greater Mean,” The

Annals of Mathematical Statistics, 21, 469–487.
CHETTY, R., J. N. FRIEDMAN, AND J. E. ROCKOFF (2014): “Measuring the impacts of

teachers I: Evaluating bias in teacher value-added estimates,” American Economic
Review, 104, 2593–2632.

EFRON, B. (2016): “Empirical Bayes deconvolution estimates,” Biometrika, 103, 1–20.
(2019): “Bayes, Oracle Bayes and Empirical Bayes,” Statistical Science, 34,

177–201.
EFRON, B., AND C. MORRIS (1973): “Stein’s Estimation Rule and Its Competitiors - An

Empirical Bayes Approach,” Journal of the American Statistical Association, 68, 117–130.
EFRON, B., R. TIBSHIRANI, J. STOREY, AND V. TUSHER (2001): “Empirical Bayes

Analysis of Microarray Experiments,” J. American Statistical Association, 96, 1151–1160.
GILRAINE, M., J. GU, AND R. MCMILLAN (2020): “A New Method for Estimating Teacher

Value-Added,” NBER Working Paper Series Number 27094.
GOLDSTEIN, H., AND D. J. SPIEGELHALTER (1996): “League tables and their limitations:

Statistical issues in comparisons of institutional performance, (with discussion),” Journal
of the Royal Statistical Society: Series A, 159, 385–443.

GU, J., AND R. KOENKER (2016): “Unobserved Heterogeneity in Income Dynamics: An
Empirical Bayes Perspective,” J. of Economic and Business Statistics, forthcoming.

Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 37 / 39



Selected References II
HECKMAN, J., AND B. SINGER (1984): “A Method for Minimizing the Impact of

Distributional Assumptions in Econometric Models for Duration Data,” Econometrica, 52,
63–132.

KIEFER, J., AND J. WOLFOWITZ (1956): “Consistency of the Maximum Likelihood
Estimator in the Presence of Infinitely Many Incidental Parameters,” The Annals of
Mathematical Statistics, 27, 887–906.

KOENKER, R., AND J. GU (2015): “REBayes: An R Package for Empirical Bayes
Methods,” Available from https://cran.r-project.org/package=REBayes.

KOENKER, R., AND I. MIZERA (2014): “Convex Optimization, Shape Constraints,
Compound Decisions and Empirical Bayes Rules,” J. of Am. Stat. Assoc., 109, 674–685.

LAIRD, N. (1978): “Nonparametric Maximum Likelihood Estimation of a Mixing
Distribution,” Journal of the American Statistical Association, 73, 805–811.

LIN, R., T. LOUIS, S. PADDOCK, AND G. RIDGEWAY (2006): “Loss Function Based
Ranking in Two-Stage, Hierarchical Models,” Bayesian Analysis, 1, 915–946.

(2009): “Ranking USRDS provider specific SMRs from 1998-2001,” Health Service
Outcomes Research Methodology, 9, 22–38.

LINDSAY, B. (1995): “Mixture Models: Theory, Geometry and Applications,” in NSF-CBMS
regional conference series in probability and statistics.

Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 38 / 39

https://cran.r-project.org/package=REBayes


Selected References III

MOGSTAD, M., J. ROMANO, A. SHAIKH, AND D. WILHELM (2020): “Inferences for ranks
with applications to mobility across neighborhoods and academic achievement across
countries,” preprint.

ROBBINS, H. (1950): “A Generalization of the Method of Maximum Likelihood: Estimating
a Mixing Distribution (Abstract),” The Annals of Mathematical Statistics, 21, 314–315.

(1951): “Asymptotically Subminimax Solutions of Compound Statistical Decision
Problems,” in Proceedings of the Berkeley Symposium on Mathematical Statistics and
Probability, vol. I, pp. 131–149. University of California Press: Berkeley.

(1956): “An Empirical Bayes Approach to Statistics,” in Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability, vol. I, pp. 157–163.
University of California Press: Berkeley.

UNIVERSITY OF MICHIGAN KIDNEY EPIDEMIOLOGY AND COST CENTER (2009–2019):
“Dialysis Facility Reports,” available from:
https://data.cms.gov/dialysis-facility-reports.

Roger Koenker (UCL) Invidious Comparisons Milano*: 19.8.2020 39 / 39

https://data.cms.gov/dialysis-facility-reports

