Penalty Methods for Nonparametric Quantile Regression

Roger Koenker
University of Illinois at Urbana-Champaign

NAKE Workshop
Groningen
December, 2003

Or ... Pragmatic Goniolatry

"Goniolatry, or the worship of angles, ..." Thomas Pynchon (Mason and Dixon, 1997).

Univariate \mathcal{L}_{2} Smoothing Splines

The Problem:

$$
\min _{g \in \mathcal{G}} \sum_{i=1}^{n}\left(y_{i}-g\left(x_{i}\right)\right)^{2}+\lambda \int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} d x
$$

Gaussian Fidelity to the data:

$$
\sum_{i=1}^{n}\left(y_{i}-g\left(x_{i}\right)\right)^{2}
$$

Roughness Penalty on \hat{g} :

$$
\lambda \int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} d x
$$

Quantile Smoothing Splines

The Problem:

$$
\min _{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{i}\right)\right)+\lambda J(g)
$$

Quantile Fidelity to the Data:

$$
\rho_{\tau}(u)=u(\tau-I(u<0))
$$

Total Variation Roughness Penalty on \hat{g} :

$$
J(g)=V\left(g^{\prime}\right)=\int\left|g^{\prime \prime}(x)\right| d x
$$

Ref: Koenker, Ng, Portnoy (Biometrika, 1994)

Running Speed of Mammals versus Weight

Three Median Smoothing Spline Fits

Four Quantile Smoothing Spline Fits

Thin Plate Smoothing Splines

Problem:

$$
\min _{g} \sum_{i=1}^{n}\left(z_{i}-g\left(x_{i}, y_{i}\right)\right)^{2}+\lambda J(g)
$$

Roughness Penalty:

$$
J(g, \Omega)=\iint_{\Omega}\left(g_{x x}^{2}+2 g_{x y}^{2}+g_{y y}^{2}\right) d x d y
$$

Equivariant to translations and rotations.
Easy to compute provided $\Omega=\mathbb{R}^{2}$. But this creates boundary problems.
References: Wahba(1990), Green and Silverman(1998).
I
Question: How to extend total variation penalties to $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$?

Thin Plate Example

Figure 1: Integrand of the thin plate penalty for the He, Ng, and Portnoy tent function interpolant of the points $\{(0,0,0),(0,1,0),(1,0,0),(1,1,1)\}$. The boundary effects are created by extension of the optimization over all of \mathbb{R}^{2}. For the restricted domain $\Omega=[0,1]^{2}$ the optimal solution $g(x, y)=x y$ has considerably smaller penalty: 2 versus 2.77 for the unrestricted domain solution.

Three Variations on Total Variation for $f:[a, b] \rightarrow \mid \mathbf{R}$

1. Jordan(1881)

$$
V(f)=\sup _{\pi} \sum_{k=0}^{n-1}\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|
$$

where π denotes partitions: $a=x_{0}<x_{1}<\ldots<x_{n}=b$. 【
2. Banach (1925)

$$
V(f)=\int N(y) d y
$$

where $N(y)=\operatorname{card}\{x: f(x)=y\}$ is the Banach indicatrix
3. Vitali (1905)

$$
V(f)=\int\left|f^{\prime}(x)\right| d x
$$

for absolutely continuous f.

Total Variation for $f:\left|\mathbf{R}^{k} \rightarrow\right| \mathbf{R}^{m}$

A convoluted history ... de Giorgi (1954)
For smooth $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
V(f, \Omega)=\int_{\Omega}\left|f^{\prime}(x)\right| d x
$$

For smooth $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$

$$
V(f, \Omega,\|\cdot\|)=\int_{\Omega}\|\nabla f(x)\| d x
$$

Extension to nondifferentiable f via theory of distributions.

$$
V(f, \Omega,\|\cdot\|)=\int_{\Omega}\left\|\nabla f(x) * \varphi_{\epsilon}\right\| d x
$$

Roughness Penalties for $g:\left|\mathbf{R}^{k} \rightarrow\right| \mathbf{R}$

For smooth $g: \mathbb{R} \rightarrow \mathbb{R}$

$$
J(g, \Omega)=V\left(g^{\prime}, \Omega\right)=\int_{\Omega}\left|g^{\prime \prime}(x)\right| d x
$$

For smooth $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$

$$
J(g, \Omega,\|\cdot\|)=V(\nabla g, \Omega,\|\cdot\|)=\int_{\Omega}\left\|\nabla^{2} g\right\| d x
$$

Again, extension to nondifferentiable g via theory of distributions.
Choice of norm is subject to dispute.

Invariance Considerations

Invariance helps to narrow the choice of norm.
For orthogonal U and symmetric matrix H, we would like:

$$
\left\|U^{\top} H U\right\|=\|H\|
$$

Examples:

$$
\begin{gathered}
\left\|\nabla^{2} g\right\|=\sqrt{g_{x x}^{2}+2 g_{x y}^{2}+g_{y y}^{2}} \\
\left\|\nabla^{2} g\right\|=\left|\operatorname{trace} \nabla^{2} g\right| \\
\left\|\nabla^{2} g\right\|=\max |\operatorname{eigenvalue}(H)| \\
\left\|\nabla^{2} g\right\|=\left|g_{x x}\right|+2\left|g_{x y}\right|+\left|g_{y y}\right| \\
\left\|\nabla^{2} g\right\|=\left|g_{x x}\right|+\left|g_{y y}\right|
\end{gathered}
$$

Solution of associated variational problems is difficult!

Triograms

Following Hansen, Kooperberg and Sardy (JASA, 1998):
Let \mathcal{U} be a compact region of the plane, and let Δ denote a collection of sets $\delta_{i}: i=1, \ldots, n$ with disjoint interiors such that $\mathcal{U}=\cup_{\delta \in \Delta} \delta$.

If $\delta \in \Delta$ are planar triangles, Δ is a triangulation of \mathcal{U},
Definition: A continuous, piecewise linear function on a triangulation, Δ, is called a triogram.

For triograms roughness is less ambiguous.

A Roughness Penalty for Triograms

For triograms the "ambiguity of the norm" problem for total variation roughness penalties is resolved.

Theorem. Suppose that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, is a piecewise-linear function on the triangulation, Δ. For any coordinate-independent penalty, J, there is a constant c dependent only on the choice of the norm such that

$$
\begin{equation*}
J(g)=c J_{\triangle}(g)=c \sum_{e}\left\|\nabla g_{e}^{+}-\nabla g_{e}^{-}\right\|\|e\| \tag{1}
\end{equation*}
$$

where e runs over all the interior edges of the triangulation $\|e\|$ is the length of the edge e, and $\left\|\nabla g_{e}^{+}-\nabla g_{e}^{-}\right\|$is the length of the difference between gradients of g on the triangles adjacent to e.

Computation of Median Triograms

The Problem:

$$
\min _{g \in \mathcal{G}_{\triangle}} \sum\left|z_{i}-g\left(x_{i}, y_{i}\right)\right|+\lambda J_{\triangle}(g)
$$

can be reformulated as an augmented ℓ_{1} (median) regression problem,

$$
\min _{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left|z_{i}-a_{i}^{\top} \beta\right|+\lambda \sum_{k=1}^{M}\left|h_{k}^{\top} \beta\right|
$$

where β denotes a vector of parameters representing the values taken by the function g at the vertices of the triangulation \triangle. The a_{i} are barycentric coordinates of the $\left(x_{i}, y_{i}\right)$ points in terms of these vertices, and the h_{k} represent the penalty contribution in terms of these vertices.
I
Extensions to quantile and mean triograms are straightforward.

Barycentric Coordinates

Triograms, \mathcal{G}, on Δ constitute a linear space with elements

$$
g(u)=\sum_{i=1}^{3} \alpha_{i} B_{i}(u) \quad u \in \delta \subset \Delta \quad B_{1}(u)=\frac{\text { Area }\left(u, v_{2}, v_{3}\right)}{\text { Area }\left(v_{1}, v_{2}, v_{3}\right)} \text { etc. }
$$

Delaunay Triangulation

Properties of Delaunay triangles:

- Circumscribing circles of Delaunay triangles exclude other vertices,
- Maximize the minimum angle of the triangulation.

Robert Delaunay

B.N. Delone (1890-1973)

Four Median Triograms Fits

Consider estimating the noisy cone:

$$
z_{i}=\max \left\{0,1 / 3-1 / 2 \sqrt{x_{i}^{2}+y_{i}^{2}}\right\}+u_{i}
$$

with the $\left(x_{i}, y_{i}\right)$'s generated as independent uniforms on $[-1,1]^{2}$, and with the u_{i} are iid Gaussian with standard deviation $\sigma=.02$. With sample size $n=400$, the triogram problems are roughly 1600 by 400 , but very sparse.

Four Median Triograms Fits

Figure 2: Four median triogram fits for the inverted cone example. The values of the smoothing parameter λ and the number of interpolated points in the fidelity component of the objective function, p_{λ} are indicated above each of the four plots.

Four Mean Triograms Fits

Figure 3: Four mean triogram fits for the noisy cone example. The values of the smoothing parameter λ and the trace of the linear operator defining the estimator, p_{λ} are indicated above each of the four plots.

Figure 4: Perspective Plot of Median Model for Chicago Land Values. Based on 1194 vacant land sales in Chicago Metropolitan Area in 1995-97, prices in dollars per square foot.

Figure 5: Contour Plot of First Quartile Model for Chicago Land Values.

Figure 6: Contour Plot of Median Model for Chicago Land Values.

Figure 7: Contour Plot of Third Quartile Model for Chicago Land Values.

Automatic λ Selection

Schwarz Criterion:

$$
\log \left(n^{-1} \sum \rho_{\tau}\left(z_{i}-\hat{g}_{\lambda}\left(x_{i}, y_{i}\right)\right)\right)+(2 n)^{-1} p_{\lambda} \log n
$$

where the dimension of the fitted function, p_{λ}, is defined as the number of points interpolated by the fitted function \hat{g}_{λ}. Other approaches: Stein's unbiased risk estimator, Donoho and Johnstone (1995), and e.g. Antoniadis and Fan (2001).

Extensions

Triograms can be constrained to be convex (or concave) by imposing m additional linear inequality constraints, one for each interior edge of the triangulation. This might be interesting for estimating bivariate densities since we could impose, or test (?) for log-concavity. Now computation is somewhat harder since the fidelity is more complicated.

Partial linear model applications are quite straightforward.
Extensions to penalties involving $V(g)$ may also prove interesting.

Monte-Carlo Performance

Design: He and Shi (1996)

$$
z_{i}=g_{0}\left(x_{i}, y_{i}\right)+u_{i} \quad i=1, \ldots, 100
$$

$g_{0}(x, y)=\frac{40 \exp \left(8\left((x-.5)^{2}+(y-.5)^{2}\right)\right)}{\left(\exp \left(8\left((x-.2)^{2}+(y-.7)^{2}\right)\right)+\exp \left(8\left((x-.7)^{2}+(y-.2)^{2}\right)\right)\right)}$
with (x, y) iid uniform on $[0,1]^{2}$ and u_{i} distributed as normal, normal scale mixture, or slash.
I
Comparison of both L_{1} and L_{2} triogram and tensor product splines.

Monte-Carlo MISE (1000 Replications)

Distribution	L_{1} tensor	L_{1} triogram	L_{2} tensor	L_{2} triogram
Normal	0.609	0.442	0.544	0.3102
	(0.095)	(0.161)	(0.072)	(0.093)
Normal Mixture	0.691	0.515	0.747	0.602
	(0.233)	(0.245)	(0.327)	(0.187)
Slash	0.689	4.79	31.1	171.1
	(6.52)	(125.22)	(18135)	(4723)

Monte-Carlo MISE (1000 Replications)

Distribution	L_{1} tensor	L_{1} triogram	L_{2} tensor	L_{2} triogram
Normal	0.609	0.442	0.544	0.3102
	(0.095)	(0.161)	(0.072)	(0.093)
Normal Mixture	0.691	0.515	0.747	0.602
	(0.233)	(0.245)	(0.327)	(0.187)
Slash	0.689	4.79	31.1	171.1
	(6.52)	(125.22)	(18135)	(4723)

Monte-Carlo MISE (998 Replications)

Distribution	L_{1} tensor	L_{1} triogram	L_{2} tensor	L_{2} triogram
Normal	0.609	0.442	0.544	0.3102
	(0.095)	(0.161)	(0.072)	(0.093)
Normal Mixture	0.691	0.515	0.747	0.602
	(0.233)	(0.245)	(0.327)	(0.187)
Slash	0.689	0.486	31.1	171.1
	(6.52)	(3.25)	(18135)	(4723)

Gaussian Additive Models

References: Stone (1985, 1986, ...) Hastie and Tibshirani (1986, 1987) Breiman and Friedman (1985) and may subsequent authors.

$$
\begin{gathered}
E(Y \mid X=x)=\alpha+g_{1}\left(x_{1}\right)+\ldots+g_{p}\left(x_{p}\right) \\
\min _{\left(\alpha, g_{1}, \ldots, g_{p}\right)} \sum_{i=1}^{n}\left(y_{i}-\alpha-\sum_{j=1}^{p} g_{j}\left(x_{i j}\right)\right)^{2}+\sum \lambda_{j} \int_{\Omega_{j}}\left(g_{j}^{\prime \prime}(t)\right)^{2} d t .
\end{gathered}
$$

Software for R by Gu and Wood allows thin-plate, i.e. bivariate, components.

Bounded Variation Additive Models

The R package nprq available on CRAN at wwww. R-project. org allows one to fit additive nonparametric, partial linear quantile regresion models.

$$
\begin{gathered}
\text { rqss }(z \sim x+q s s(z 1, \text { lambda }=.3, \text { constraint }=" I "), \\
\text { qss }(z 2, \text { lambda }=4), \text { tau }=.75)
\end{gathered}
$$

x linear (in parameters) components
z1 univariate nonparametric (piecewise linear) component
z2 bivariate nonparametric (triogram) component

- λ controls degree of smoothing, τ controls the quantile.

Dogma of Goniolatry

I

- Triograms are nice elementary surfaces 【
- Roughness penalties are preferable to knot selection I
- Total variation provides a natural roughness penalty I
- Schwarz penalty for λ selection based on model dimension 【
- Sparsity of linear algebra facilitates computability \}
- Quantile fidelity yields a family of fitted surfaces

