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There is more to econometric life than is dreamt of in the conventional
regression philosophies of location-scale shift models.
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Reemployment Bonus Experiments

Can the durations of insured unemployment spells be shortened by offering cash bonuses
to recipients for early reemployment?

e 1988-89 Experiment in Pennsylvania

e 6 Treatments 4+ Control Group

* Two levels of bonus payment
* Two settings of the qualification period

e Randomized Assignment to Groups
e 13,913 Participants



Some Post-Modern Econometrics

The mean deconstructed into the quantiles:

u:/_C:a:dF(a;):/OlF_l(t)dt

K he mean treatment effect deconstructed into the quantile treatment effect:

5 = u(G) — (F) = / (G (t) — F\(t))dt

K he regression mean effect deconstructed into regression quantiles:

E(Y|:c):/0 Qy (7|x)dr



Regression is Demeaning

& -~ 'De mean is 'de meaning.

Regression is demeaning.

Regression is de-meaning.



Transformation Models for Durations

Suppose 1 .
G (S(t]2)) = h(t) — 2"

where S(t|x) is the conditional survival function. For h monotone,

P(h(T) > tlz) = P(T > h™'(t)|z)
= S(h'(t)|»)
= G{t—=z'p).

We have the transformation model
h(T) = :ETB + u

where wu is iid from G.



Example: Cox Proportional Hazard Model

For the Cox model
log Ao(T) = azTﬁ + u

with G(u) = 1 — exp(— exp(u)). For Ay Weibull,
log Ao(t) = vlogt — «,
we obtain the accelerated failure time model,
logT = :cTﬁ + wu.

with 1id w distributed as Weibull.



Quantile Regression Transformation Models

Given the transformation model the conditional quantile functions of h(T"), for
0<7™<1, are

Qur)(tlz) =2' B+ F, (1)
Since P(h(T) < t) = P(T < h™'(t)), (monotone equivariance!)

Qr(rlz) = h™ ' (z' B+ F, '(1)).

Instead, we will consider,
Qunery(t]z) = ' B(7),

for example, consider the location-scale shift model,
h(T;) = CU;]—CV + (ziy)u;
with u; iid from F'. In this model we have a linear family of conditional quantile functions
Qury(tlz) = ' a + (&' F, (1) = 2 B(r)

This is considerably more flexible.



An Inference Problem

We would like to test whether covariates have a pure location shift effect on the response,
a location-scale shift effect, or if they have some more general effect on the response
distribution:

e Location Shift Hypothesis:
H()ZBZ'(T):OAZ' ’L:2,,p
e Location-Scale Shift Hypothesis:

Holﬁi(T):Oéi—i—’yiﬁl(T) 7,:2,,]?

Tests of the Kolmogorov-Smirnov type based on the whole quantile regression process will
be considered.



The Kolmogorov-Smirnov Test

Suppose {Y1, ..., Y,} are iid from df F. We would like to test,

HQZF:F().

We want to consider the K-S statistic,

K, = sup V| Fy(z) — Fo(z)]
J:ER

where Fy,(2) = n 'S I(Y; < ).
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KS Test is ADF

Classically, from Doob (1949), we know

Un(z) = vVn(Fn(z) — Fo(z))
or, changing variables z — F. (1),

un(7) = V/n(r = Fo(F, (1))

converges weakly under H to a Brownian Bridge process, i.e., a Gaussian process, u,
with mean zero and covariance function C'ov(ug(71), uo(72)) = 71 A T2 — T1T2. so the
test is asymptotically distribution free (ADF).
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The Durbin Problem

Now suppose Fj is known only up to parameters, e.g., Fo(x, 0p) = ®((x — po)/00),
but 6y = (o, o) is unknown. We are tempted to consider the process,

Un(x) = vVn(Fu(z) — Fo(z, 0,))
and again changing variables, so 7 = Fy(x, 6y), setting G(7,6y) = T,
Un(7) = Vn(Gn(r) — G(7,6,))

Like w,(7), 1,(7) converges weakly to zero mean Gaussian process, say,
Un(T) = Go(7), but now for the mle 6,

E(ao(T1)ti0(T2)) = 71 A T2 — 1112 — go(T1) ' T~ go(72)

where go(7) = OFy(y, 60)/89|y:F0_1(T’00), and 7 is the Fisher information about 6 in

model Fy. Now K,, = sup |4, (7)| depends on Fy; this is the Durbin Problem.

12



The Doob-Meyer Decomposition
The process G,,(7) = Fo(F (7)) is Markov:
nAG,(7) = n[Gh(T 4+ AT) — G, (7)] ~ Bin(n(1 — G,(7)), AT7/(1 — 1)).

So,

1 — Gn(T)A’T

EIAGW ()| 7" = ——

and this suggests the representation,

G (1) = /Ot L= Gnl®) he 1 mn (o)

1 —s

where m,,(t) is a martingale. Now substituting from w, (t) = /n(G,(t) — t) we have

un(s)ds

wn(®) = ua®) + [ 4

where w,,(t) = v/nm,(t) = we(7), is standard Brownian motion.



“Marmalade” in a Martingale

Etymology: a. Fr. martingale of obscure etymology. [ First found in Rabelais in chausses
a la martingale, men’s socks that fastened at the back of the leg. This is commonly
supposed to mean literally ‘hose after the fashion of Martigues’ (in Provence).
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Doob-Meyer as Recursive OLS

Let g(t) = (t,g1(t),...,g,(t))" bea (p+ 1)-vector of real-valued functions on
[0, 1]. Suppose g(t) = dg(t)/dt are linearly independent, so

C(t) = / §(s)3(s) ds

is nonsingular, and consider the transformation,

wa(t) = va(t) — / §(s)TCY(s) / §(r)dv, (r)ds

In the Doob-Meyer case, we set g(t) =t so g(t) = 1, C(s) = 1 — s, and noting that,

/ §(F)dvn(r) = va(1) — va(s) = —va(s)

we obtain the Doob-Meyer decomposition.



Khmaladze’s Martingalization
Ingredients:
G(1,0,) =7+ (60 — 0y g(7,0%)
1
V(0 — 0y) = / h(s, 00)dun(s) + o,(1)
0

n (1) = Vn(Gu(T) — 7+ 7 — G(7,0,))
Combine and stir:

(1) = ua(r) = 9(7,00)" fy h(s, 00)dun(s) + 0p(1)
= uo(T) — g(7,00)" [ h(s, 6o)duo(s)

but,

Un(T) = an(r) — [y 9(s)TC7(s) [, g(r)di, (r)ds
= ’LU()(T)

Martingalization annihilates the g(7, 8y) term and restores ADF property of KS-test!

(1)
(2)

(3)
(4)
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Khmaladze for the Quantile Process

Let
&(t) = argmin, g > pr(yi — a)
where {y;} are iid from Fy((y — p) /o). Consider

Hy: «a(r)= Fy_l(T) = pn+ O‘Fo_l(T)

under Hy,
vn(7) = Vnpo(T)(&(1) — a(7)) /0 = vo(T)
where o(7) = fo(Fy (7)) and vo(7) is the Brownian Bridge process.
To test Hy, set &(7) = £(7)'0 = (1, F; '(7))0, then
On(t) = Vnpo(t)(a(t) — a(t))/o
= Vnpo(t)(a(t) — a(t) — (a(t) — a(t)))/o
= va(t) — Vpo(T)(0 — 60) 'E(t) /o

Now we apply martingalization as before.

(5)
(6)
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Testing for Normality

In the typical case that 6 consists of a location and scale parameter we have,

g(m) = (1, po(M)E(TM) )T

| g(r) = (L, f/£.1— Fy " (o) F /)7

where f/f is evaluated at F~!(7). In the Gaussian case, Fy = ®, we have

g(r) =1, —@ (1), 1 =@ ()"
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Inference for Quantile Regression

Now consider the quantile regression process,
B(T) = argmin, _|gp Z pr(yi — x:b)
The analogue of the location scale model is
Y = CU;I_Oé + (a:j*y)uz
with {u;} iid from Fy. This implies the null hypothesis,

Hy: Bi(t)=a;+vF, () i=1,..,p.

We would like to test, Hy, versus a general alternative. Note that, Hg implies that all p

coordinates of 3(-) are affine functions of a single univariate function.
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Simple Nulls

When «, 7y, Fy are all known we have, subject to some regularity conditions,
va(T) = v d PHL(B(1) = B(7)) = v

where vg is now a p-variate Brownian Bridge, J,, = n_lXTX, H, = n_lXTF_lX,
and T' = diag(x, 7).

This leads to Wald, LR and LM /rankscore tests as in Koenker and Machado (JASA,

1999), employing Bessel processes as in Kiefer(1959). But when («, «y) are unknown, the
Durbin problem arises again.
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A General Linear Hypothesis

Consider the hypothesis,
RB(T) —r = Y(1) TeT (8)

where R denotes a ¢ X p matrix, ¢ < p,r € IR?, and ¥(71) denotes a known function
W : 7 — IRY. and the local alternative,

RB, (1) —r —¥(1) = ((7)/Vn.
Test based on:
va(T) = Vnpo(T)(RQR") 7 (RB(T) — 7 — (7))

where (2 = ILIO_lJOI—IO_1 with Jo = limn ! > :cz-aciT, and
Hy=limn 'Y :UiaciT/WTa:i.
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Regularity Conditions

Assumption 1. The distribution function Fy, has a continuous Lebesgue density, fo,
with fo(u) > 0 on {u 0 < F()(’UJ> < 1}

Assumption 2. The sequence of design matrices { X,,} = {(x;);_,} satisfy:

(l) ri1 =1 1 =1,2,...

(i) J, =n"'X] X, — Jo, a positive definite matrix.

i) H, =n'X'T"'X, — H,, a positive definite matrix where T,, = diag(~ " x;).
n n fy

Assumption 3. There exists a fixed, continuous function {(7) : [0, 1] — IR? such that
for samples of size n,

RBu(1) —r — ¥(7) = {(7)/V/n.



More Regularity Conditions

Assumption 4. There exist estimators p,,(7) and §,, satisfying

L. sup,er |9n(T) — wo(r)| = 0p(1),
i 1192, — Q1] = 0p(1).

Assumption 5. The function g(t) satisfies:

i 1) 17 dt < oo,

i {9:(t)

: 1= 1,...,m} are linearly independent in a neighborhood of 1.
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Theorem 1. Let T denote the closed interval [e, 1 — €], for some e € (0,1/2). Under
conditions A.1-3

va(T) = Vnpo(T)(RQR)TA(RB(T) — r — (7)) (9)
= vo(T) +n(7) forT € T (10)

where vo(T) denotes a q-variate standard Brownian bridge process and n(T) =
©0o(T)(RQR)Y2¢ (7). Under the null hypothesis, ((7) = 0, the test statistic

sup || vn(7) [[= sup || vo(7) || -
TeT TeT

Theorem 2. Under conditions A.1-5, we have

0n(7) = Vnpo(T)[RaQR,]™2(RuB(T) — 1 — W (7)) (11)
= ZJf(T) + vo(T) +n(r) forT € T (12)

where £(7) = o(T)(1, Fy 1(7)) ", and Z, = O,(1), with vo(T) and n(T) as specified
in Theorem 1.



Theorem 3. Under conditions A.1 - 6, we have

oo(T)T = 0a(T)T = [T g(s)TCTH(s) [, g(r)din(r) " ds (13)
= wo(T) + 1(7) for T € T (14)

where wo(T) denotes a q-variate standard Brownian motion, and under the null hypothesis,

¢(r) =0,
sup || 9,(7) ||= sup || wo(7) || -
TeT T€T
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Pennsylvania Bonus Experiment

Table 1: Treatment Groups

Group Bonus Qualification Workshop
Amount Period Offer
Controls 0 0 No
Treatment 1  Low Short Yes
Treatment 2 Low Long Yes
Treatment 3 High Short Yes
Treatment 4  High Long Yes
Treatment 5  Declining  Long Yes
Treatment 6  High Long No

Note: The low benefit was 3 times Ul weekly benefit amount, the high benefit was 6
times this amount. The declining bonus declined from 6 times the weekly benefit to zero,
over a 12 week period. The short qualification period was 6 weeks, and the long period
was 12 weeks.



Sample Sizes

Groups Target n Collected n Analysis n
Control 3,000 3,392 3,354
Treatment 1 1,030 1,395 1,385
Treatment 2 2,240 2,456 2,428
Treatment 3 1,740 1,910 1,885
Treatment 4 1,590 1,771 1,745
Treatment 5 1,740 1,860 1,831
Treatment 6 1,780 1,302 1,285
Total 13,120 14,086 13,913
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Quantile Regression Process
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Khmaladzized
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Test Results

Variable Location Scale Shift | Location Shift
Treatment 541 5.48
Female 4.47 4.42
Black 5.77 22.00
Hispanic 2.74 2.00
N-Dependents 2.47 2.83
Recall Effect 4.45 16.84
Young Effect 3.42 3.90
Old Effect 6.81 7.52
Durable Effect 3.07 2.83
Lusd Effect 3.09 3.05
Joint Effect 112.23 449 .83

Table 2: Tests of the Location-Scale and Location Shift Hypotheses: Critical
values for the univariate tests are 1.92 at .05 and 2.42 at .01. For the joint
tests the .01 critical value is 16.0.
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Conclusions

Quantile regression methods complement established survival analysis methods.

By focusing on local slices of the conditional distribution, they offer a useful decon-
struction of conditional mean models.

They offer a more flexible role for covariate effects allowing them to influence location,
scale and shape of the response distribution.

The Khmaladze transformation approach offers a flexible way to handle nuisance
parameter problems in semi-parametric inference for quantile regression.



