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Abstract. We review some recent developments in the theory of risk assessment.
A pessimistic decision theory emerges that replaces the subjective probability as-
sessments of the Savage expected utility criterion with a Choquet expectation that
accentuates the likelihood of the least favorable outcomes. We show that pessimistic
portfolio optimization may be formulated as an exercise in quantile regression.

1. Introduction

Many economic decision problems boil down to a choice among competing ran-
dom variables. In the von Neumann and Morgenstern (1947) and Savage (1954) for-
malisms an investor comparing two prospects evaluates the expected utilities of their
(subjective) returns distributions: a prospect with return distribution F is preferred
to another with distribution G provided that,Z

1

�1

u(x)dF (x) �

Z
1

�1

u(x)dG(x):

This approach places a heavy burden on the utility function, u(x), to fully reect
investors' attitudes toward risk, and has been called into question by Ellsberg (1961)
and many subsequent authors. In reaction to such criticism an alternative formalism,
variously called rank-dependent, or non-additive, or Choquet expected utility, has
gradually emerged based on work of Quiggin (1981), Schmeidler (1989) Wakker (1989)
and others. See Fishburn (1988) and Starmer (2000) for valuable surveys of this work,
placing it in the broader context of other alternatives to expected utility theory. The
crucial feature of the Choquet approach is that it allows the investor to systematically
distort the probability assessments underlying the Savage calculus and thereby reect
more nuanced attitudes toward risk and uncertainty.
Without delving deeply into technical or philosophical details, we will try to pro-

vide an elementary exposition of Choquet expected utility and illustrate how it is
connected to some recent developments in risk assessment and the measurement of
inequality. Our primary objective will be to link the rather abstract idea of Choquet
risk with a very concrete new approach to portfolio optimization. We will restrict
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2 How to be Pessimistic

attention to the case of scalar random variables so we may write expected utility as,

Eu(X) =

Z
1

�1

u(x)dF (x) =

Z 1

0

u(F�1(t))dt:

where F�1(t) = inffx : F (x) � tg.
Now let � be a distribution function on [0; 1] and de�ne the Choquet expected

utility of X as,

E�u(X) =

Z 1

0

u(F�1(t))d�(t):

Obviously, for �(t) = t we have the Savage special case. The distortion � reweights
the probability assessments according to their rank order in utility. This presumes,
of course, that utility is monotone. The family of distortions, ��(t) = minft=�; 1g for
� 2 [0; 1] will play an important role. Focusing for a moment on a single �� we have,

E��u(X) = ��1
Z �

0

u(F�1(t))dt;

and we see that { relative to the Savage computation of expected utility { the prob-
abilities of the � least favorable outcomes are accentuated and the 1� � most favor-
able outcomes are discounted entirely. This may be interpreted as a form of investor
pessimism: subjective probabilities are distorted to make the least favorable events
appear more likely and the most favorable events less likely. As your gloomy aunt
might put it: \Expect the worst, and you won't be disappointed." The crucial feature
of the Choquet expectation is that it restricts the distortion to depend only on the
rank of the events. Thus, in comparing two prospects that have the same ordering of
events, i.e. random variables that di�er only by monotonic transformation, we can
revert to the Savage comparison. Such prospects are termed comonotone. 1

We have, at least once heard it objected against the Choquet view of expected
utility that the distortions of pessimism, or optimism, can be simply accomodated
into Savage's personalistic view of probability. On this point we reserve judgement,
but it seems worthwhile to recall that Savage himself did not think so:

I have, at least once heard it objected against the personalistic view
of probability that, according to that view, two people might be
of di�erent opinions, according as one is pessimistic and the other
optimistic. I am not sure what position I would take in abstract dis-
cussion of whether that alleged property of personalistic views would
be objectionable, but I think it is clear from the formal de�nition of

1More formally, two random variables, X;Y are comonotone, if there exists monotone functions
f; g and a random variable U � U [0; 1] such that X = f(U) and Y = g(U).
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qualitative probability that the particular personalistic view spon-
sored here does not leave room for optimism and pessimism, how-
ever these traits may be interpreted, to play any role in the person's
judgement of probabilities. (Savage(1954, p. 68)

1.1. Inequality Assessment. Measurement of inequality is closely related to risk
assessment. We can imagine Veblen's Social Engineer trying to compare income
distributions behind the Rawlsian veil of ignorance. A classical measure of inequality
is the Gini coeÆcient,

 = 1� 2

Z 1

0

L(t)dt

where L(t) is the Lorenz function,

L(t) =

Z t

0

F�1(s)ds=

Z 1

0

F�1(s)ds

As noted by Gajdos (2002) the Gini coeÆcient reects an assumption of linearity in
envy in the sense that a Pigou-Dalton transfer between adjacent individuals at the top
of the income distribution has the same e�ect on the Gini as the same transfer between
adjacent individuals at the bottom of the distribution. There has been considerable
interest in generalized Gini coeÆcients that reweight the Lorenz curve according to
something other than Lebesgue measure, motivated by the idea that transfers at
the bottom of the distribution might be considered more signi�cant. Clearly, the
Lorenz curve is closely akin to �� Choquet expected utility. It is a linear functional
of the quantile function, and thus reweighted Gini's are representable as Choquet
expectations. See, e.g. Denneberg (1990).

1.2. Quotidian Risk. In the everyday drudgery of decision making { should I rob
that bank? should I agree to surgery tomorrow? { we are often confronted with com-
plicated problems of risk assessment. In evaluating the risk of medical interventions
we �nd it helpful to consider the Lehmann quantile treatment e�ect, see Koenker
and Geling (2001). Suppose that as a patient facing surgery you are told that in the
absence of surgery you face the survival distribution S0(t) = 1 � F0(t) while if you
elect to have the surgery you face S1(t) = 1 � F1(t). In the absence of any further
information, it is reasonable to evaluate the two prospects on the basis of the quantile
treatment e�ect function,

Æ(t) = F�10 (t)� F�11 (t) = S�11 (1� t)� S�10 (1� t):

Integrating, we obtain,

�Æ =

Z 1

0

Æ(t)dt;

the mean treatment e�ect, the average di�erence in survival times between the control
and treatment regimes. The dedicated follower of Savage might simply evaluate the
two prospects by computing this quantity, and choose accordingly.
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In the next section we provide an overview of some recent work on risk assessment
and its relation to Choquet expected utility. The third section links the resulting
notion of Choquet risk the optimization problem underlying quantile regression. And
it is shown that portfolio optimization methods based on minimizing Choquet risk
can be easily implemented using existing algorithms for quantile regression.

2. Choquet Risk

In response to regulatory concerns in the �nance sector there has been intensive
recent interest in the question of how to evaluate portfolio risk. An inuential paper
in this literature is Artzner, Delbaen, Eber, and Heath (1999), which provides an
axiomatic foundation for \coherent" risk measures.

De�nition 1. (Artzner et al) For real valued random variables X 2 X on (
;A) a
mapping % : X ! R is called a coherent risk measure if it is:

(i) Monotone: X; Y 2 X ;with X � Y ) %(X) � %(Y ).
(ii) Subadditive: X; Y;X + Y 2 X , ) %(X + Y ) � %(X) + %(Y ).
(iii) Linearly Homogeneous: For all � � 0 and X 2 X , %(�X) = �%(X).
(iv) Translation Invariant: For all � 2 R and X 2 X , %(�+X) = %(X)� �.

These requirements rule out many of the conventional measures of risk traditionally
used in �nance. In particular, measures based on second moments including the
standard deviation are ruled out, as are quantile based measures like the value at
risk. A measure of risk that has gained considerable recent prominence in the wake
of these �ndings is,

%��(X) = ���1
Z �

0

F�1(t)dt:

Variants of %��(X) have been suggested under a variety of names: expected shortfall
(Acerbi and Tasche (2002)), conditional VaR (Rockafellar and Uryasev (2000)), tail
conditional expectation (Artzner, Delbaen, Eber, and Heath (1999)).2 For the sake
of brevity we will call %��(X) the �-risk of the random prospect X. Clearly, �-risk is
simply the negative Choquet �� expected return.3 Having de�ned �-risk in this way,
it is natural to consider the criteria: %��(X)���(X), or �(X)��%��(X): Minimizing
the former criterion may be viewed as minimizing risk subject to a constraint on mean
return; maximizing the latter criterion may be viewed as maximizing return subject to

2The terminology of Uryasev and Rockafellar seems somewhat unfortunate, since it seems to
suggest that cVaR is a conditional quantile rather than a conditional mean.

3We note in passing, in the hope that it may be deemed relevant at some later point, that elsewhere
in the probability literature, e.g. Hurlimann (1998) and Hobson (1998), the random variable X�

whose quantile function is,

F�1
X� (u) = (1� u)�1

Z
1

u

F�1
X

(v)dv

is called the Hardy-Littlewood transform ofX . Obviously, the �-risks constitute the negative Hardy-
Littlewood transform of the random variable �X .
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a constraint on �-risk. Several authors, including Denneberg (1990), Rockafellar and
Uryasev (2000), and Jaschke and K�uchler (2001), have suggested criteria of this form
as alternatives to the classical Markowitz criteria in which �-risk is replaced by the
standard deviation of the random variable X. Since �(X) =

R
F�1X (t)dt = �%1(X)

these criteria are special cases of the following more general class.

De�nition 2. A risk measure % will be called pessimistic if, for some probability
measure ' on [0; 1],

%(X) =

Z 1

0

%��(X)d'(�):

To see why such risk measures are pessimistic, note that by the Fubini Theorem
we can write,

%(X) = �

Z 1

0

��1
Z �

0

F�1(t)dtd'(�) = �

Z 1

0

F�1(t)

Z 1

t

��1d'(�)dt:

In the simplest case, we can take ' as a sum of point masses, say d' =
P

i 'iÆ�i with
'i > 0 and

P
'i = 1 and noting thatZ 1

t

��1Æ� (�)d� = ��1I(t < �);

we can write

%(X) =

Z 1

0

%��(X)d'(�) = �

Z 1

0

F�1(t)(t)dt

where (t) =
P

i 'i�
�1
i (1� I(t < �i)). Positivity of the point masses, 'i, assures that

the resulting density weights are decreasing, so the resulting distortion in probabili-
ties acts to accentuate the implicit likelihood of the least favorable outcomes. Such
preferences are clearly \pessimistic".
Following Kusuoka (2001) we will impose some additional regularity conditions on

%:

De�nition 3. Let L1 denote the space of all bounded real-valued random variables
on (
;F ;P) with P non-atomic. A map % : L1 ! R is a regular risk measure if:

i. % is law invariant, i.e. %(X) = %(Y ) if X; Y 2 L1 have the same probability
law.

ii. % satis�es the Fatou property, i.e. if fXng
n
i=1 � L

1 are uniformly bounded
and converge to X in probability then %(X) = lim infn!1 %(Xn).

iii. % is comonotone, i.e. X; Y 2 L1 comonotone implies that %(X + Y ) =
%(X) + %(Y ).

The �rst two regularity conditions impose a relatively weak form of continuity,
while the third condition re�nes slightly the the subadditivity property. We can now
succinctly reformulate the main representation result of Kusuoka (2001).

Theorem 1. A regular risk measure is coherent if and only if it is pessimistic.
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One could, of course, also consider a more general class of Choquet risk measures,

%(X) = �

Z
F�1X (t)d�(t);

for distribution functions � on [0; 1]. Pessimistic risk measures correspond to con-
cave �, assigning decreasing density on the interval [0; 1]. \Optimistic" risk measure
would have convex �, thus reweighting more favorable outcomes more heavily, and
discounting the likelihood of less favorable eventualities. It is quite plausible to con-
sider � that are concave in the lower tail and convex in the upper tail as a way to
rationalize the commonly observed willingness to purchase insurance and buy lottery
tickets. Quiggin (1993) provides an excellent discussion of possible motivations for
these possibilities, so we will resist the temptation to delve further into them. Instead,
we now turn to a description of an empirical approach to portfolio optimization based
on pessimistic risk measures.

3. How to be Pessimistic

Empirical strategies for optimizing �-risk lead immediately into the realm of quan-
tile regression. Let �� (u) = u(� � I(u < 0)) denote the \check function" of Koenker
and Bassett (1978) and consider the problem,

min
�2R

E��(X � �):

We know that any � solving this problem is an �th quantile of the random variable
X. Evaluating at the minimizer, �� we �nd that minimizing the usual �-quantile
objective function is equivalent to evaluating the sum of expected return and the
(Choquet) �-risk of X, and then multiplying by �.

Theorem 2. Let X be a real-valued random variable with EX = � <1, then

min
�2R

E��(X � �) = �(�+ %��(X)):

Proof: Noting that,

E��(X � �) = �(�� �)�

Z �

�1

(x� �)dFX(x);

is minimized when �� = F�1X (�), we have,

E��(X � ��) = ��+ �%��(X):

The empirical analogue of �-risk can thus be formulated as

%̂��(x) = (n�)�1min
�2R

nX
i=1

��(xi � �)� �̂n

where fxi : i = 1; :::; ng constitutes a random sample on X, and �̂n denotes an
estimator of EX = �, presumably, �xn. Of course %̂��(x) could easily be de�ned in a
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seemingly more direct manner, but the value of the proposed optimization formulation
becomes apparent as soon as we begin to consider portfolios of assets. Let Y = X>�
denote a portfolio of assets comprised of X = (X1; :::; Xp)

> with portfolio weights �.
Suppose we observe a random sample fxi = (xi1; :::; xip) : i = 1; :::; ng and we wish
to consider portfolios minimizing

(3.1) min
�

%��(Y )� ��(Y ):

This is evidently equivalent to simply minimizing %��(Y ) subject to a constraint on
mean return. We will impose the additional constraint that the portfolio weights �
sum to one, and reformulate the problem as,

min
�

%��(X
>�) s:t: �(X>�) = �0; 1

>� = 1:

Taking the �rst asset as numeraire we can write the sample analogue of this problem
as

(3.2) min
(�;�)2Rp

nX
i=1

��(xi1 �

pX
j=2

(xi1 � xij)�j � �) s:t: �x>�(�) = �0;

where �(�) = (1 �
Pp

j=2 �j; �
>)>. It is easy to verify that the solution is invariant

to the choice of the numeraire asset. At the solution, �̂ is the �th sample quantile of
the chosen portfolio's returns distribution. The required return constraint implicitly
corresponds to a particular � in the original speci�cation (3.1). Note that we have
not (yet) imposed any further constraints on the portfolio weights �, but given the
linear programming form of the problem (3.2) it would be straightforward to do so.
The problem posed in (3.2) is (almost) a conventional quantile regression problem.

The only idiosyncrasy is the mean return constraint, but it is easy to impose this
constraint by simply adding a single pseudo observation to the sample consisting of
response �(�xi� �0) and design row �(0; �x1� �x2; :::; �x1� �xp)

>. For suÆciently large �
we are assured that the constraint will be satis�ed. Varying �0 we obtain an empirical
�-risk frontier.
Example 1. Our �rst illustration of the approach will be based on a small arti-

�cial dataset. We generate independent returns on 4 assets with marginal densities
illustrated in Figure 1. Solving (3.2) with various values of �0, we obtain portfolios
with weights illustrated in Figure 1c and the risk-return frontier appearing in Figure
2. How do these portfolios compare to the mean-variance portfolios of the classical
theory for this data? In Figure 3 we compare the returns densities of the optimal
�-risk portfolio with the optimal mean variance portfolio performance for two di�er-
ent levels of required mean return. The four assets should be seen as two pairs: a
lower pair consisting of a normal density with mean .04 and standard deviation .02
and a left skewed reversed �2

3 density with the same mean and standard deviation,
and an upper pair consisting of a normal density with mean return .08 and standard
deviation .05, and a right skewed �2

3 density with the the same mean and standard
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Figure 2. Four Asset Densities for Example 1: We will construct
portfolios comprised of four independent asset returns with marginal
densities illustrated above.

deviation. The �-risk portfolios tend to prefer the right skewed asset and disdain the
left skewed one. For example at required mean return .07, the �-risk portfolio puts
weight .55 on right skewed asset and only .11 weight on its normal counterpart, while
the mean-variance portfolio places equal weight, .33, on both.
Example 2. Our second illustration constitutes a mild perturbation of the pre-

vious example, but the conclusions change quite dramatically. We illustrate the new
densities of the four independent candidate assets in Figure 4; they are rescaled ver-
sions of the prior densities with more separation between the performance of the more
dispersed, higher return densities. Repeating the previous exercise, if we compute the
mean variance frontier for portfolios comprised of these assets we obtain the �rst panel
of Figure 5, however the � risk frontier with � = :1 appearing in the second panel
indicates that returns can be increased without bound, while at the same time de-
creasing �-risk. What is happening? A look at the resulting �-risk portfolios reveals
that as the required mean return is pushed up, the investor puts larger and larger
weight on the positively skewed asset and this produces portfolio returns distributions
that are increasingly skewed to the right, having larger and larger mean, but also hav-
ing smaller and smaller �-risk. The mean-variance portfolios have a similarly skewed
character as required mean return is increased, however using standard deviation of
the portfolio returns as a risk measure views upside risk as just as dangerous as down
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Figure 3. The �-risk-return frontier: For the four arti�cial asset re-
turns series we compute the risk-return frontier according to (3.2) in
panel b. The portfolio weights as functions of the required mean return
are depicted in Panel c.

side risk. This accounts for the observed e�ect that in the mean variance frontier risk
increases with the mean return.
Although the �-risks provide a convenient one-parameter family of coherent risk

measures, they are obviously rather simplistic. As we have already suggested, it is
natural to consider weighted averages of �-risks:

%�(X) =
mX
k=1

�k%��k (X):

Where the weights, �k : k = 1; :::; m, are positive and sum to one. This risk criterion
can also be easily implemented empirically extending the formulation in (3.2)

(3.3) min
(�;�)2Rp+m

mX
k=1

nX
i=1

�k��(xi1 �

pX
j=2

(xi1 � xij)�j � �k) s:t: �x
>�(�) = �0:

The only new wrinkle is the appearance of m distinct intercept parameters repre-
senting the m estimated quantiles of the returns distribution of the chosen portfolio.
In e�ect we have simply stacked m distinct quantile regression problems on top of
one another and introduced a distinct intercept parameter for each of them, while
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Figure 4. Mean-variance vs. �-risk portfolio returns: Based on the
data of example 1 we illustrate the estimated density of portfolio re-
turns for the optimal mean-variance portfolio and the optimal �-risk
portfolio for required mean return of .07. Note the the solid curve rep-
resenting the �-risk returns has better performance than the dotted
mean-variance density in both tails.

constraining the portfolio weights to be the same for each quantile. Since the �k are
all positive, they may passed inside the �� function to rescale the argument. The
statistical theory of such constrained quantile regression estimators is discussed in
Koenker (1984).

4. Extensions

There are many loose ends and topics for future research. An important byproduct
of the quantile regression formulation of the �-risk portfolio optimization problem is
the attendant statistical inference provided. This is most straightforward in the case
of the simple �-risk objective function, but can be extended to the general case of
weighted sums of �-risks. We hope to consider these issues in future work. There
are also many other possible re�nements including the incorporation of additional
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Figure 5. Four Asset Densities for Example 2: Portfolios are com-
prised of four independent asset returns with marginal densities illus-
trated above.

constraints. Upper and lower bounds on the positions held in the portfolio would
often be appropriate, and would be easy to implement, as would shrinkage of portfolio
weights toward some a priori portfolio. Most importantly, it is necessary to explore,
prod, and test the Choquet approach on realistic applied problems.
The expected utility theory of von Neumann and Morgenstern is �rmly embedded

in the zeitgeist of modern decision theory. It has withstood more than a half century
of severe criticism, whether a viable alternative theory can be built on the foundations
of Choquet expectation remains an open question. But it is a question that deserves
further investigation.
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