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Discoverer of the Average Man.
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Q(1)

The 7th quantile, Q(7), divides a univariate distribution into two parts:
mass to the left of Q(7) is 7, mass to the right of Q(7) is (1 — 7).



Sample Quantiles via Optimization

Q(r) = argmin, g / or(y — a)dF ()

A

Q(7) = argmin,cp ¥ p-(yi — a)

=1



How/Why Does It Work?




Median: Minimizers must balance the mass (number of observations)
above and below the estimate so that they are equal.

Quantiles: Minimizers must asymmetrically balance the mass so that,
7{#Above} + (7 — 1){#Below} =0

This requires that {#Above} be roughly (1 — 7)n and {#Below} be
roughly ™



Median: Minimizers must balance the mass (number of observations)
above and below the estimate so that they are equal.

Quantiles: Minimizers must asymmetrically balance the mass so that,
7{#Above} + (7 — 1){#Below} =0

This requires that {#Above} be roughly (1 — 7)n and {#Below} be
roughly ™

How can these ideas be extended to the regression setting?



The Least Squares Meta-Model




The Least Squares Meta-Model

p(x) = mnibn By |x=z(Y —m(X))~.



The unconditional mean solves
= mniln E(Y —m)?
The conditional mean u(x) = E(Y|X = x) solves
p(z) = min By|x—, (Y — m(X))".

Similarly, the unconditional 7th quantile solves

ar = min Ep- (Y — a)



The unconditional mean solves
= mniln E(Y —m)?
The conditional mean u(x) = E(Y|X = x) solves
p(z) = min By|x—, (Y — m(X))".
Similarly, the unconditional 7th quantile solves
oy = main Ep-(Y —a)
and the conditional 7th quantile solves

7 (@) = min By x—apr (¥ — a(X))



The sample analogue of the foregoing population concepts yields, the
nonparametric quantile regression estimator

G- (x) = argmin,c 4 Z pr(yi — a(z;))
i=1

If we take A = {a: R? — R|a(z) = 2'3, 8 € RP}, then we have the
linear (in parameters) quantile regression problem:

A

B(T) = argmin, _|R ZpT(yi — a:sz)

1=1



Primal Formulation as a Linear Program
min{r1 u + (1 — 7)1 "v|y = Xb+u — v, (b,u,v) € R” x R}
Dual Formulation as a Linear Program
max{y'd| X' 'd=(1—-7)X"1,d €[0,1]"}

Solutions are characterized by an exact fit to p observations.



Bivariate linear model with iid Student t errors
Conditional quantile functions are parallel
100 observations indicated in blue

Fitted quantile regression lines in red



Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model

[0.754 , 0.775 ]




Quantile Regression in the iid Error Model

[0.924 , 0.943 ]




Bivariate quadratic model with Heteroscedastic 2 errors
Conditional quantile functions drawn
100 observations indicated in blue

Fitted quadratic quantile regression lines in red
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model

120

[0.956 , 0.961 ]

o
(ee]
o
O
o
q
o
N
o




33

Lehmann (1974) proposed the following general model of treatment
response:

“Suppose the treatment adds the amount A(xz) when the response
of the untreated subject would be x. Then the distribution G of the
treatment responses is that of the random variable X + A(X) where
X is distributed according to F'."



Doksum (1974) defines A(x) as the “horizontal distance” between F' and

G at z, i.e.
F(x) = Gz + A(x)).

Then A(x) is uniquely defined as

This is the essence of the conventional QQ-plot. Changing variables so
T = F(x) we have the quantile treatment effect (QTE):
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Lehmann-Doksum QTE
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Treatment shifts the distribution from right skewed to left skewed making
the QTE U-shaped.



The Lehmann QTE is naturally estimable by

where G’n and Fm denote the empirical distribution functions of the
treatment and control observations, Consider the quantile regression model

Qy,(T|D;) = a(r) + (1) D;

where D; denotes the treatment indicator, and Y; = h(T;), e.g.
Y, = log T}, which can be estimated by solving,

iy pr(yi — o — 6Dy
1=1
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Engel's Law: A Classical Economic Example

Infant Birthweight: A Public Health Example

Melbourne Daily Temperature: A Time Series Example

Infant and Adolescent Growth Charts
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Engel’'s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the
dependence of households’ food expenditure on household income. Seven estimated quantile regression lines
for - € {.05,.1,.25,.5,.75,.9,.95} are superimposed on the scatterplot. The median 7 = .5 fit is
indicated by the darker solid line; the least squares estimate of the conditional mean function is indicated by

the dashed line.
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Engel Curves for Food: This figure plots data taken from Engel’'s (1857) study of the
dependence of households’ food expenditure on household income. Seven estimated quantile regression lines
for - € {.05,.1,.25,.5,.75,.9,.95} are superimposed on the scatterplot. The median 7 = .5 fit is
indicated by the darker solid line; the least squares estimate of the conditional mean function is indicated by

the dashed line.



Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)

Covariates:

Mother's Education
Mother's Prenatal Care
Mother's Smoking
Mother's Age

Mother's Weight Gain
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Quantile Regression Birthweight Model |1
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Marginal Effect of Mother’s Age
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Marginal Effect of Mother’'s Weight Gain
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AR(1) Model of Melbourne Daily Temperature
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The plot illustrates 10 years of daily maximum temperature
data for Melbourne, Australia as an AR(1) scatterplot. Superimposed are
estimated conditional quantile functions for 7 € {.05, .10, ...,.95}.



Conditional Densities of Melbourne Daily Temperature
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Quetelet’s (1871) Growth Chart




References: Cole (1988), Cole and Green (1992), and Carey(2002)

Data: {Y;(t@,j) j: 1,...,J7;, 1= 17...,71.}

A(t) _
Model: Z(t) = XML A0, 1)

Estimation:

max {(\, p, o) — v /()\"(t))2dt — v, /(,u”(t))th — Uy /(a”(t))th,

n

(A, p,0) = Z[A(ti) log (Y (ts)/p(t:)) —log o(t:) — 52°(t:)],

=
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Quantiles as Argmins

pr(u) =u- (1t —I(u<0)).



The 7th quantile of a random variable Y having distribution function F' is:

a@ﬁza@mm/ﬁAy—amF@)
where

pr(u) =u- (17— I(u<0)).
The 7th sample quantile is thus:

@v>:=a@mm/ﬁ4y—aME&n

= argminn™ ') pr(yi — )
1 =1

54



The 7th conditional quantile function of Y| X =z is

g(tlx) = argmi“geg/m(y —g(z))dF

A natural estimator of g(7|z) is

g(r|z) = argmin g > pr(yi — g(x:))
=1

with G chosen as a finite dimensional linear space,

9(x) = Z ;i ()05
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There are many possible choices for the basis expansion {¢;}. We opt for
the (very conventional) cubic B-spline functions:

Al

Age

In R these quantile regression models can be estimated with the command.

fit <- rq(y ~ bs(x,knots=knots),tau = 1:9/10)

Similar functionality in SAS is coming “real soon now.”
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e Longitudinal measurements on height for 2514 Finnish children,

e 1143 boys, 1162 girls — all healthy, full-term, singleton births,

e About 20 measurements per child,
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Longitudinal measurements on height for 2514 Finnish children,

1143 boys, 1162 girls — all healthy, full-term, singleton births,

About 20 measurements per child,

Two cohorts: 1096 born between 1959-61, 1209 born between 1968-72
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Longitudinal measurements on height for 2514 Finnish children,

1143 boys, 1162 girls — all healthy, full-term, singleton births,

About 20 measurements per child,

Two cohorts: 1096 born between 1959-61, 1209 born between 1968-72

Sample constitutes 0.5 percent of Finns born in these periods.
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. . Box—Cox
Unconditional Reference Quantiles —— Boys 0-2.5 Years

Parameter Functions
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" . Box-Cox
Unconditional Reference Quantiles —— Boys 2-18 Years

Parameter Functions
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.. . . Box—Cox
Unconditional Reference Quantiles —— Girls 0-2.5 Years

Parameter Functions
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QR edf = 16
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.. . . Box—Cox
Unconditional Reference Quantiles —— Girls 2-18 Years

Parameter Functions
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Growth Velocity Curves
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Height Density at Age 1
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It is often important to condition not only on age, but also on prior growth
and possibly on other covariates. Autoregressive models are natural, but

complicated due to the irregular spacing of typical longitudinal
measurements.

e Data: {Y;(t@’]) 5 ]: 1,...,Jz’, 1= 1,...,7@.}
e Model:

Qv H(T | tig, Yiltij—1), z:) = g-(ti5)
+  [a(7) + B(7) (i — tig—1)]Yiltij—1) + z (7).



T Boys Girls
a(r) | B(r) | 4(r) || &(r) | B(7) | A(7)
0.03 || 0.845 | 0.147 | 0.024 || 0.809 | 0.135 | 0.042
(0.020) | (0.011) | (0.011) | (0.024) | (0.011) | (0.010)
0.1 || 0.787 | 0.159 | 0.036 || 0.757 | 0.153 | 0.054
(0.020) | (0.007) | (0.007) | (0.022) | (0.007) | (0.009)
0.25 || 0.725 | 0.170 | 0.051 || 0.685 | 0.163 | 0.061
(0.019) | (0.006) | (0.009) [ (0.021) | (0.006) | (0.008)
0.5 || 0.635 | 0.173 | 0.060 || 0.612 | 0.175 | 0.070
(0.025) | (0.009) | (0.013) | (0.027) | (0.008) | (0.009)
0.75 || 0.483 | 0.187 | 0.063 || 0.457 | 0.183 | 0.094
(0.029) | (0.009) | (0.017) | (0.027) | (0.012) | (0.015)
0.9 | 0.422 | 0.213 | 0.070 || 0.411 | 0.201 | 0.100
(0.024) | (0.016) | (0.017) | (0.030) | (0.015) | (0.018)
0.97 | 0.383 | 0.214 | 0.077 || 0.400 | 0.232 | 0.086
(0.024) | (0.016) | (0.018) | (0.038) | (0.024) | (0.027)
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T Boys Girls
a(r) | B(r) | 4(7) || &(r) | B(7) | A(7)
0.03 || 0.976 | 0.036 | 0.011 || 0.993 | 0.033 | 0.006
(0.010) | (0.002) | (0.013) | (0.012) | (0.002) | (0.015)
0.1 (| 0.980 | 0.039 | 0.022 || 0.989 | 0.039 | 0.008
(0.005) | (0.001) | (0.007) | (0.006) | (0.001) | (0.007)
0.25 || 0.978 | 0.042 | 0.021 || 0.986 | 0.042 | 0.019
(0.006) | (0.001) | (0.006) | (0.005) | (0.001) | (0.006)
0.5 || 0.984 | 0.045 | 0.019 || 0.984 | 0.045 | 0.022
(0.004) | (0.001) | (0.004) | (0.007) | (0.001) | (0.006)
0.75 || 0.990 | 0.047 | 0.014 || 0.985 | 0.050 | 0.016
(0.004) | (0.001) | (0.006) | (0.007) | (0.001) | (0.006)
0.9 [ 0.987 | 0.049 | 0.012 || 0.984 | 0.052 | 0.002
(0.009) | (0.001) | (0.009) [ (0.008) | (0.001) | (0.012)
0.97 || 0.980 | 0.050 | 0.023 || 0.982 | 0.053 | 0.021
(0.014) | (0.002) | (0.015) | (0.013) | (0.001) | (0.018)
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A presumed advantage of univariate (age-specific) transformation to
normality is that once observations are transformed to univariate
“/-scores’ they are automatically prepared to longitudinal autoregression:

Zy = oo+ a1+ Uy

Premise: Marginal Normality = Joint Normality
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A presumed advantage of univariate (age-specific) transformation to
normality is that once observations are transformed to univariate
“/-scores’ they are automatically prepared to longitudinal autoregression:

Zy = oo+ a1+ Uy

Premise: Marginal Normality = Joint Normality

Of course we know it isn't true, but we also think we know that
counterexamples are pathological, and don't occur in “nature.”
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e Nonparametric quantile regression using B-splines offers a reasonable
alternative to parametric methods for constructing reference growth
charts.
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e Nonparametric quantile regression using B-splines offers a reasonable
alternative to parametric methods for constructing reference growth

charts.

e The flexibility of quantile regression methods exposes features of the data
that are not easily observable with conventional parametric methods.

FEven for height data.
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e Nonparametric quantile regression using B-splines offers a reasonable
alternative to parametric methods for constructing reference growth

charts.

e The flexibility of quantile regression methods exposes features of the data
that are not easily observable with conventional parametric methods.

FEven for height data.

e Longitudinal data can be easily accomodated into the quantile regression
framework by adding covariates, including the use of autoregressive
effects for unequally spaced measurements.
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General Conclusions




e Quantile regression methods complement established mean regression
(least-squares) methods.

e By focusing on local slices of the conditional distribution, they offer a
useful deconstruction of conditional mean models.
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e They provide a more flexible role for covariate effects allowing them to
influence location, scale and shape of the response distribution.
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Quantile regression methods complement established mean regression
(least-squares) methods.

By focusing on local slices of the conditional distribution, they offer a
useful deconstruction of conditional mean models.

They provide a more flexible role for covariate effects allowing them to
influence location, scale and shape of the response distribution.

In applications a variety of unobserved heterogeneity phenomena are
rendered observable.
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