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Adolphe Quetelet (1796 - 1874)

Father of Quantitative Social Social Science.

Discoverer of the Average Man.
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Quantiles

Q(τ)

Mass Mass
τ (1 − τ)

The τ th quantile, Q(τ), divides a univariate distribution into two parts:
mass to the left of Q(τ) is τ , mass to the right of Q(τ) is (1− τ).
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Sample Quantiles via Optimization

ττ − 1

ρτ(u)

Q(τ) = argmina∈<

∫
ρτ(y − a)dF (y)

Q̂(τ) = argmina∈<

n∑
i=1

ρτ(yi − a)
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How/Why Does It Work?

Median: Minimizers must balance the mass (number of observations)
above and below the estimate so that they are equal.
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Quantiles: Minimizers must asymmetrically balance the mass so that,

τ{#Above}+ (τ − 1){#Below} = 0

This requires that {#Above} be roughly (1− τ)n and {#Below} be
roughly τn
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How/Why Does It Work?

Median: Minimizers must balance the mass (number of observations)
above and below the estimate so that they are equal.

Quantiles: Minimizers must asymmetrically balance the mass so that,

τ{#Above}+ (τ − 1){#Below} = 0

This requires that {#Above} be roughly (1− τ)n and {#Below} be
roughly τn

How can these ideas be extended to the regression setting?
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The Least Squares Meta-Model

The unconditional mean solves

µ = min
m

E(Y −m)2
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The Least Squares Meta-Model

The unconditional mean solves

µ = min
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The conditional mean µ(x) = E(Y |X = x) solves

µ(x) = min
m

EY |X=x(Y −m(X))2.
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The Least Squares Meta-Model

The unconditional mean solves

µ = min
m
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The conditional mean µ(x) = E(Y |X = x) solves

µ(x) = min
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EY |X=x(Y −m(X))2.

Similarly, the unconditional τ th quantile solves
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a

Eρτ(Y − a)
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The Least Squares Meta-Model

The unconditional mean solves

µ = min
m

E(Y −m)2

The conditional mean µ(x) = E(Y |X = x) solves

µ(x) = min
m

EY |X=x(Y −m(X))2.

Similarly, the unconditional τ th quantile solves

ατ = min
a

Eρτ(Y − a)

and the conditional τ th quantile solves

ατ(x) = min
a

EY |X=xρτ(Y − a(X))
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Regression Quantiles via Optimization

The sample analogue of the foregoing population concepts yields, the
nonparametric quantile regression estimator

α̂τ(x) = argmina∈A

n∑
i=1

ρτ(yi − a(xi))

If we take A = {a : |Rp → |R|a(x) = x>β, β ∈ |Rp}, then we have the
linear (in parameters) quantile regression problem:

β̂(τ) = argmin
b∈|R

n∑
i=1

ρτ(yi − x>i b)
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Computation of Quantile Regression

Primal Formulation as a Linear Program

min{τ1>u + (1− τ)1>v|y = Xb + u− v, (b, u, v) ∈ |Rp × |R2n
+ }

Dual Formulation as a Linear Program

max{y′d|X>d = (1− τ)X>1, d ∈ [0, 1]n}

Solutions are characterized by an exact fit to p observations.
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Quantile Regression: A Movie

• Bivariate linear model with iid Student t errors

• Conditional quantile functions are parallel in green

• 100 observations indicated in blue

• Fitted quantile regression lines in red
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model

0 2 4 6 8 10

0
5

10

x

y

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
[ 0.675  ,  0.689  ]



19

Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Virtual Quantile Regression II

• Bivariate quadratic model with Heteroscedastic χ2 errors

• Conditional quantile functions drawn in green

• 100 observations indicated in blue

• Fitted quadratic quantile regression lines in red
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

0
20

40
60

80
12

0

x

y

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

[ 0.749  ,  0.75  ]



31

Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment
response:

“Suppose the treatment adds the amount ∆(x) when the response
of the untreated subject would be x. Then the distribution G of the
treatment responses is that of the random variable X + ∆(X) where
X is distributed according to F .”
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Lehmann QTE as a QQ-Plot

Doksum (1974) defines ∆(x) as the “horizontal distance” between F and
G at x, i.e.

F (x) = G(x + ∆(x)).

Then ∆(x) is uniquely defined as

∆(x) = G−1(F (x))− x.

This is the essence of the conventional QQ-plot. Changing variables so
τ = F (x) we have the quantile treatment effect (QTE):

δ(τ) = ∆(F−1(τ)) = G−1(τ)− F−1(τ).
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Lehmann-Doksum QTE
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An Asymmetric Example
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Treatment shifts the distribution from right skewed to left skewed making
the QTE U-shaped.
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QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

δ̂(τ) = Ĝ−1
n (τ)− F̂−1

m (τ)

where Ĝn and F̂m denote the empirical distribution functions of the
treatment and control observations, Consider the quantile regression model

QYi
(τ |Di) = α(τ) + δ(τ)Di

where Di denotes the treatment indicator, and Yi = h(Ti), e.g.
Yi = log Ti, which can be estimated by solving,

min
n∑

i=1

ρτ(yi − α− δDi)
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Four Applications

• Engel’s Law: A Classical Economic Example

• Infant Birthweight: A Public Health Example

• Melbourne Daily Temperature: A Time Series Example

• Infant and Adolescent Growth Charts
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Engel’s Food Expenditure Data
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Figure 1: Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the

dependence of households’ food expenditure on household income. Seven estimated quantile regression lines

for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot. The median τ = .5 fit is

indicated by the darker solid line; the least squares estimate of the conditional mean function is indicated by

the dashed line.
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Engel’s Food Expenditure Data
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Figure 2: Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the

dependence of households’ food expenditure on household income. Seven estimated quantile regression lines

for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot. The median τ = .5 fit is

indicated by the darker solid line; the least squares estimate of the conditional mean function is indicated by

the dashed line.
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A Model of Infant Birthweight

• Reference: Abrevaya (2001), Koenker and Hallock (2001)

• Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

• Response: Infant Birthweight (in grams)

• Covariates:

? Mother’s Education
? Mother’s Prenatal Care
? Mother’s Smoking
? Mother’s Age
? Mother’s Weight Gain
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Quantile Regression Birthweight Model I
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Quantile Regression Birthweight Model II
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Marginal Effect of Mother’s Age
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Marginal Effect of Mother’s Weight Gain
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AR(1) Model of Melbourne Daily Temperature
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Figure 3: The plot illustrates 10 years of daily maximum temperature
data for Melbourne, Australia as an AR(1) scatterplot. Superimposed are
estimated conditional quantile functions for τ ∈ {.05, .10, ..., .95}.
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Conditional Densities of Melbourne Daily Temperature
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Quetelet’s (1871) Growth Chart
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Penalized Maximum Likelihood Estimation

• References: Cole (1988), Cole and Green (1992), and Carey(2002)

• Data: {Yi(ti,j) : j = 1, . . . , Ji, i = 1, . . . , n.}

• Model: Z(t) = (Y (t)/µ(t))λ(t)−1
λ(t)σ(t) ∼ N (0, 1)

• Estimation:

max `(λ, µ, σ)− νλ

∫
(λ′′(t))2dt− νµ

∫
(µ′′(t))2dt− νσ

∫
(σ′′(t))2dt,

`(λ, µ, σ) =
n∑

i=1

[λ(ti) log(Y (ti)/µ(ti))− log σ(ti)− 1
2Z

2(ti)],
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Quantiles as Argmins

The τ th quantile of a random variable Y having distribution function F is:

α(τ) = argmin

∫
ρτ(y − α)dF (y)

where
ρτ(u) = u · (τ − I(u < 0)).
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Quantiles as Argmins

The τ th quantile of a random variable Y having distribution function F is:

α(τ) = argmin

∫
ρτ(y − α)dF (y)

where
ρτ(u) = u · (τ − I(u < 0)).

The τ th sample quantile is thus:

α̂(τ) = argmin

∫
ρτ(y − α)dFn(y)

= argmin n−1
n∑

i=1

ρτ(yi − α)
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Quantile Regression

The τ th conditional quantile function of Y |X = x is

g(τ |x) = argming∈G

∫
ρτ(y − g(x))dF

A natural estimator of g(τ |x) is

ĝ(τ |x) = argming∈G

n∑
i=1

ρτ(yi − g(xi))

with G chosen as a finite dimensional linear space,

g(x) =
p∑

j=1

ϕj(x)βj.
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Choice of Basis

There are many possible choices for the basis expansion {ϕj}. We opt for
the (very conventional) cubic B-spline functions:

Age

0 5 10 15 20

In R these quantile regression models can be estimated with the command.

fit <- rq(y ∼ bs(x,knots=knots),tau = 1:9/10)

Similar functionality in SAS is coming “real soon now.”
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Data

• Longitudinal measurements on height for 2514 Finnish children,
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Data

• Longitudinal measurements on height for 2514 Finnish children,

• 1143 boys, 1162 girls – all healthy, full-term, singleton births,

• About 20 measurements per child,

• Two cohorts: 1096 born between 1959-61, 1209 born between 1968-72

• Sample constitutes 0.5 percent of Finns born in these periods.
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Unconditional Reference Quantiles −− Boys 0−2.5 Years
Box−Cox
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Unconditional Reference Quantiles −− Boys 2−18 Years
Box−Cox
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Unconditional Reference Quantiles −− Girls 0−2.5 Years
Box−Cox
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Unconditional Reference Quantiles −− Girls 2−18 Years
Box−Cox
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Growth Velocity Curves
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Estimated Age Specific Density Functions
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Height Density at Age 1
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Conditioning on Prior Growth

It is often important to condition not only on age, but also on prior growth
and possibly on other covariates. Autoregressive models are natural, but
complicated due to the irregular spacing of typical longitudinal
measurements.

• Data: {Yi(ti,j) : j = 1, . . . , Ji, i = 1, . . . , n.}

• Model:

QYi(ti,j)(τ | ti,j, Yi(ti,j−1), xi) = gτ(ti,j)

+ [α(τ) + β(τ)(ti,j − ti,j−1)]Yi(ti,j−1) + x>i γ(τ).
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AR Components of the Infant Conditional Growth Model

τ Boys Girls

α̂(τ) β̂(τ) γ̂(τ) α̂(τ) β̂(τ) γ̂(τ)
0.03 0.845

(0.020)
0.147
(0.011)

0.024
(0.011)

0.809
(0.024)

0.135
(0.011)

0.042
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(0.015)

0.9 0.422
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(0.016)
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0.232
(0.024)

0.086
(0.027)
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AR Components of the Childrens’ Conditional Growth
Model

τ Boys Girls

α̂(τ) β̂(τ) γ̂(τ) α̂(τ) β̂(τ) γ̂(τ)
0.03 0.976

(0.010)
0.036
(0.002)

0.011
(0.013)

0.993
(0.012)

0.033
(0.002)

0.006
(0.015)

0.1 0.980
(0.005)

0.039
(0.001)

0.022
(0.007)
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(0.006)

0.039
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0.008
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0.042
(0.001)
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(0.005)

0.042
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0.019
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0.5 0.984
(0.004)

0.045
(0.001)
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(0.004)

0.984
(0.007)

0.045
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0.022
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(0.001)

0.002
(0.012)
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(0.014)

0.050
(0.002)

0.023
(0.015)

0.982
(0.013)

0.053
(0.001)

0.021
(0.018)
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Transformation to Normality

A presumed advantage of univariate (age-specific) transformation to
normality is that once observations are transformed to univariate
“Z-scores” they are automatically prepared to longitudinal autoregression:

Zt = α0 + α1Zt−1 + Ut

Premise: Marginal Normality ⇒ Joint Normality
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Transformation to Normality

A presumed advantage of univariate (age-specific) transformation to
normality is that once observations are transformed to univariate
“Z-scores” they are automatically prepared to longitudinal autoregression:

Zt = α0 + α1Zt−1 + Ut

Premise: Marginal Normality ⇒ Joint Normality

Of course we know it isn’t true, but we also think we know that
counterexamples are pathological, and don’t occur in “nature.”
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Quantile Regression for Growth Charts

• Nonparametric quantile regression using B-splines offers a reasonable
alternative to parametric methods for constructing reference growth
charts.

• The flexibility of quantile regression methods exposes features of the data
that are not easily observable with conventional parametric methods.
Even for height data.

• Longitudinal data can be easily accomodated into the quantile regression
framework by adding covariates, including the use of autoregressive
effects for unequally spaced measurements.
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General Conclusions

• Quantile regression methods complement established mean regression
(least-squares) methods.

• By focusing on local slices of the conditional distribution, they offer a
useful deconstruction of conditional mean models.

• They provide a more flexible role for covariate effects allowing them to
influence location, scale and shape of the response distribution.

• In applications a variety of unobserved heterogeneity phenomena are
rendered observable.


