Quantile Regression Methods
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Amemiya (1982) and Powell (1983) consider analogues of 2SLS for
median regression models

Chen and Portnoy (1986) consider extensions to quantile regression

Abadie, Angrist and Imbens (2002) consider models with binary endo-
gonous treatment

Chesher (2002, 2003) considers triangular models with continuous endo-
gonous variables.



How do changes in class size affect the academic performance of Dutch
primary school students?

e Do small classes improve performance of all students?
e By the same amount?

e lrrespective of initial class size?

e For language and math equally?

e Are there interactions with other covariates?

e Should class size be treated as endogonous?



e Dutch PRIMA school survey: 1994-1995

e Academic performance measured by:
language score
math score

e Covariates:
Pupils: 1Q, gender, SES, peer effects, risk

Class: class size, teachers’ experience
School: denomination (public/parochial)



Min Max Mean | Std. Dev.
Language Score 341.80 | 1261.20 | 1073.26 51.56
Math Score 822.70 | 1361.30 | 1123.49 83.94
Pupil’s Gender (Female=1) 0 1 0.50 0.50
1Q 4.00 37.00 25.53 4.95
Socio-Economic Status 0 1 0.53 0.50
Risk 1.00 5.00 2.20 0.87
Peers (Language) 935.65 | 1179.10 | 1073.19 40.99
Peers (Math) 852.67 | 1271.16 | 1123.44 69.70
Class Size* 5 39 23.81 6.46
Teacher's Experience * 1 40 19.05 8.06
School Denomination ** 0 1 0.72 0.44
Weighted Enrollment ** 23 684 | 250.35 120.42

PRIMA Survey Summary Statistics: There are 12,203 observations

grades 4, 6, and 8 combined.




Does Class Size Matter for Math?
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Red lines indicate least squares fit and confidence interval.

Solid line indicates the quantile regression point estimates with gray 90
percent confidence band.
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A Linear Location Shift Recursive Model




Yy —

S:

Sai+x ' ag+ e+ v
2B+ Botv

(1)
(2)

Suppose: € Il v and (e,v) L (z,z). Substituting for v from (2) into (1),

QY(TI‘SVQ?:Z) —
QS(7-2|2733) —

7T1(7'1772)

Slar +A) + 3 (g — A\B2) + 2(=AB1) + F. H(m1)
261+ Bo+ F, (1)

VZiQY%|Si=QSi

VS,L.QY?;\SFQ& T vziQSi
(a1 +A) + (=A61)/ 6

a1
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A Linear Location-Scale Shift Model




Y = Saj+z'ag+ Sle+ M)
S = zBi+z'Betv
7'('1(7'1,’7'2) = Oél—i—Fe_l(Tl)—l—)\Fy_l(Tg)

Qv (1|5, 2,2) = S6i(11) +2' 0+ 505+ Sz0,4 + Sz ' 65

Qs(m2lz,7) = Zﬁ1+$Tﬁz+Fy_1(T2)
- _ < 4 SN ) TA QSiéZL(Tl)
7'('1(7'1,7'2) — Zwi{91(71)+2Q52.6’3(71)—|—z7;94(71)—|—:1:i (95(7'1)—|— = }
i=1 51(7'2)

a weighted average derivative estimator with QSZ. = Qs(72|2i, ;).
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Y = ¢i(S,x,¢,v; a)
S = 902(27:67V; B)

Suppose: € 1l v and (e,v) 1L (z,x). Solving for v and substituting we
have the conditional quantile functions,

Qy(m1|S,xz,z) = hi(S,z,2,0(11))
Qs(m2|z,2) = ha(z,x,B(12))
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Y = ¢i(S,x,¢,v; a)
S = QOQ(Z,CC,V; 6)

Suppose: € 1l v and (e,v) 1L (z,x). Solving for v and substituting we
have the conditional quantile functions,

Qy(m1|S,xz,z) = hi(S,z,2,0(11))
Qs(m2|z,2) = ha(z,x,B(12))

Extensions to more than two endogonous variables are " straightforward.”
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The (Chesher) Weighted Average Derivative Estimator

1=

where p,(u) = u(t — I(u < 0)), giving structural estimators:



O(r1) = argming Y pr, (Y — hi(S,,2,60(m1)))

1=1

argmlnﬁzpm (2,2, 8(72)))

@

—~

x|

N——"
|

where p-(u) = u(7 — I(u < 0)), giving structural estimators:

. A 210111 S. =h,
(71, T2) = E wi{vshli|5i:ﬁ2i‘|‘ ~ Z}?
n il
~ 12 S_hg
2(71,T2) E wi{vxh1¢|5i:g% —=V h2z}7
i=1 V hQ’L
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2SLS as a Control Variate Estimator

Set V=S — S = MxY;, and consider the least squares estimator of the
model, A
Y =Za+V~y+w



Y = Soi+Xiawt+u=Za+u
XB+V, where X = [X7:X5]

n
|

Set V=9 — S = MxY;, and consider the least squares estimator of the
model, A
Y=Za+Vy+w

Claim: acy = (ZTM‘A/Z)_lzTM‘A/Y = (ZTPXZ>_1ZTPXY = (99[,S.

14



My = Mys =1 — MxS(S'MxS)™'S' My

S'M;, = S'-S8"Mx=S8"Py
X/ M, = X -XMx=X=X/Px

Reward for information leading to a reference prior to Dhrymes (1970).

Recent work on the control variate approach by Blundell, Powell, Smith,

Newey and others.
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Location scale shift model:

Y = Slar+e+)+z" o
S = z68i+z' B+

Using 0(72) = S — Qs(72|2, =) as a control variate,
Y = w'a(m,n)+AS(Qs — Qs)+ S(e — F~1(n)),
where w' = (S,z",80(m))

a1y, 72) = (0q (11, 72), a2, \) '

&1(7’1,7’2) = (1 - F€_1(7'1> + )\Fy_l(Tg).

&(T1,T2) = argmin,, Z pr (Y —w,/ a).
i=1
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Y = ¢i(S,x,¢,v; a)
S = 902(Z7337V; B)

Regarding v(12) = v — F; 1(73) as a control variate, we have

Qy(7'1|S,337V(7'2)) — gl(Sax7V(T2)7a(7_177_2))
Qs(m2lz,z) = g2(2,%,B(2))
ﬁ(TQ) — 902_1(‘97273773) — 902_1(Qsaza$73)

&(71,T2) = argmin,, ZpTl(Y; — 91(S,z,0(12),a)).

1=1
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Theorem: Under regularity conditions, the weighted average derivative
and control variate estimators of the Chesher structural effect have an
asymptotic linear (Bahadur) representation, and after efficient reweighting
of both estimators, the control variate estimator has smaller covariance
matrix than the weighted average derivative estimator.



Theorem: Under regularity conditions, the weighted average derivative
and control variate estimators of the Chesher structural effect have an
asymptotic linear (Bahadur) representation, and after efficient reweighting
of both estimators, the control variate estimator has smaller covariance
matrix than the weighted average derivative estimator.

Remark: The control variate estimator imposes more stringent restrictions
on the estimation of the hybrid structural equation and should thus be
expected to perform better when the specification is correct. The
advantages of the control variate approach are magnified in situations of
overidentification.
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We consider a simple location-scale shift model:

Y1 = 1+ o + (Ck3 + 5()\V + 6))Y2
Yo = Bi+fex+ Pz +v

where x, z, 1 and vy are generated as the following:
T ~t3, z~ N(15,2%), e~ N(0,1), v~ N(0,0.5%).

Parameters: (a1, ag,a3,0, ) = (3,4,4,5,3), The structural quantile
treatment effect of Y5 on Yj is

(11, T2) =4+ 15F,/_1(7'2) + 5F€_1(71).

For the sake of simplicity, we consider only 74 = 75 = 7.
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e [he serious contenders:

WADQR Weighted Average Derivative Quantile Regression Estimator
CVQR Control Variate Quantile Regression Estimator

e [he also rans:

2SQRQ — 25QR using 75 quantile regression in stage one
2SQRA — 2SQR using median regression in stage one
2SQRS — 2SQR using least squares in stage one

QR — naive QR
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Coefficient Bias Std. Error RMSE

71 =19 = 0.1
Theoretical Value -12.019 0.000 0.000 0.000
CVQR -10.799 1.221 11.715 11.778
WADQR -10.748 1.271 12.057 12.124
2SQRQ -7.191 4.829 11.505 12.478
2SQRA -7.149 4871 11.473 12.464
2SQRS -7.152 4.867 11.473 12.463
QR -2.788 0.231 11.820 14.997

71 =19 = 0.3
Theoretical Value -2.555 0.000 0.000 0.000
CVQR -1.969 0.586 8.905 8.925
WADQR -1.876 0.679 9.280 9.305
2SQRQ -0.345 2.210 9.225 9.486
2SQRA -0.337 2.218 9.229 0.492
2SQRS -0.330 2.225 9.226 9.490
QR 4.031 6.586 0.086 11.221

71 =79 =0.5
Theoretical Value 4.000 0.000 0.000 0.000
CVQR 3.715 -0.285 8.656 8.661
WADQR 3.722 -0.278 8.934 8.939
2SQRQ 3.847 -0.153 8.488 8.490
2SQRA 3.847 -0.153 8.488 8.490
2SQRS 3.855 -0.145 8.490 8.492
QR 8.006 4.006 8.313 0.228
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Coefficient Bias Std. Error RMSE

T1 =719 = 0.7
Theoretical Value 10.555 0.000 0.000 0.000
CVQR 9.945 -0.610 8.953 8.974
WADQR 9.968 -0.587 9.506 9.524
2SQRQ 8.417 -2.138 8.895 0.148
2SQRA 8.425 -2.130 8.896 0.148
2SQRS 8.425 -2.130 8.900 9.152
QR 12.626 2.071 8.694 8.937

71 =719 = 0.9
Theoretical Value 20.019 0.000 0.000 0.000
CVQR 19.507 -0.513 11.166 11.177
WADQR 19.367 -0.653 12.390 12.407
2SQRQ 14.750 -5.270 11.617 12.756
2SQRA 14.796 -5.223 11.665 12.781
2SQRS 14.787 -5.232 11.656 12.776
QR 19.191 -0.828 11.385 11.415
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We now reconsider our model of primary school academic performance
treating class size as endogonous. Following Levin (2001), we use as our

instrumental variable, the Dutch Ministry of Education’s “weighted school

enrollment”,
ng

Zz' = 1.03 max{(z Sij — 09?%), 77,7;},
j=1
where n; is total enrollment of school ¢ and s;; is the socio-economic
status of student j, scored 1-5, in school z.

This variable clearly influences class size, via funding decisions, but

conditional on our other covariates is plausibly independent of student
performance.
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Policy Prescriptions




e With class size treated as exogonous:

Smaller classes improve performance in both language and math.

e With class size treated as endogonous:

For language: weaker students do better with large classes, while
better students do marginally better with smaller classes.

For mathematics: weaker students do slightly better with small classes,
and there are no significant class size effects for average and good

students.
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e With class size treated as exogonous:

Smaller classes improve performance in both language and math.

e With class size treated as endogonous:

For language: weaker students do better with large classes, while
better students do marginally better with smaller classes.

For mathematics: weaker students do slightly better with small classes,
and there are no significant class size effects for average and good

students.

e Other covariate effects are unaffected by endogoneity treatment of class
size.

e Peer effects remain a major empirical challenge.
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Triangular structural models facilitate causal analysis via recursive con-
ditioning.

Recursive conditional quantile models yield interpretable heterogeneous
structural effects.

Control variate methods offer computationally and statistically efficient
strategies for estimating heterogeneous structural effects.

Weighted average derivative methods offer a less restrictive strategy for
estimation that offers potential for model diagnostics and testing.
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