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There is more to statistical life than is dreamt of in the conventional
regression philosophies of location-scale shift models.
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Reemployment Bonus Experiments

Can the durations of insured unemployment spells be shortened by offering cash bonuses
to recipients for early reemployment?

e 1988-89 Experiment in Pennsylvania

e 6 Treatments 4+ Control Group

* Two levels of bonus payment
* Two settings of the qualification period

e Randomized Assignment to Groups
e 13,913 Participants
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Some Post-Modern Econometrics

The mean deconstructed into the quantiles:

u:/_c:a:dF(a:):/olF_l(t)dt

The mean treatment effect deconstructed into the quantile treatment effect:

5 = u(G) — u(F) = / (G (t) — Fi(t))dt

The regression mean effect deconstructed into regression quantiles:

E(Y|:c):/0 Qy (7T|x)dT
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Transformation Models for Durations

Suppose -
G (S(tle)) =h(t) —z' B

where S(t|x) is the conditional survival function. For h monotone,

P(h(T) > tlz) = P(T > h™'(t)|z)
= S(h™'(t)|»)
= G{t-—=z'p).

We have the transformation model
h(T) = :IzTﬁ + u

where wu is iid from G.



Example: Cox Proportional Hazard Model

For the Cox model
log Ao(T) = azTﬁ + u

with G(u) = 1 — exp(— exp(u)). For Ag Weibull,
log Ao(t) = vlogt — «,
we obtain the accelerated failure time model,
logT = a:Tﬁ + u.

with 1id w distributed as Weibull.



Quantile Regression Transformation Models

Given the transformation model the conditional quantile functions of h(T"), for
0<7<1, are

Qunry(tlz) = =" B+ F, ' (7)
Since P(h(T) < t) = P(T < h™'(t)), (monotone equivariance!)

Qr(r|z) = h™(z' B+ F, ' (1)).

Instead, we will consider,
Qunery(t]z) = ' B(7),

for example, consider the location-scale shift model,
h(T;) = ZUZTCV + (ziy)u;
with u; iid from F'. In this model we have a linear family of conditional quantile functions
Qury(rlz) =z ' a+ (z' v)F,'(r) =z B(7)

This is considerably more flexible.



An Inference Problem

We would like to test whether covariates have a pure location shift effect on the response,
a location-scale shift effect, or if they have some more general effect on the response
distribution:

e Location Shift Hypothesis:
H()ZBZ'(T):OAZ' ’L:2,,p
e Location-Scale Shift Hypothesis:

Hoiﬁi(T):Oéi—i—’yiﬁl(T) 7,:2,,]?

Tests of the Kolmogorov-Smirnov type based on the whole quantile regression process will
be considered.



The Kolmogorov-Smirnov Test

Suppose {Y1, ..., Y,} are iid from df F. We would like to test,

HQZF:F().

We want to consider the K-S statistic,

K, = sup V| Fy(z) — Fo(z)]
J:ER

where Fy,(2) = n 'S I(Y; < ).
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KS Test is ADF

Classically, from Doob (1949), we know

Un(z) = vVn(Fn(z) — Fo(z))
or, changing variables z — F. (1),

un(7) = V(T = Fo(F, (1))

converges weakly under H to a Brownian Bridge process, i.e., a Gaussian process, u,
with mean zero and covariance function C'ov(ug(71), uo(72)) = 71 A T2 — T172. so the
test is asymptotically distribution free (ADF).
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The Durbin Problem

Now suppose Fj is known only up to parameters, e.g., Fo(x, 0p) = ®((x — po)/00),
but 6y = (o, o) is unknown. We are tempted to consider the process,

U,(z) = vn(Fu(z) — Fo(z, 6,))

and again changing variables, so 7 = Fy(x, 0y), setting G(7, 6y) = T,

fn (1) = V/1(Gn(7) — G(1, 6,))

12
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The Durbin Problem

Now suppose Fj is known only up to parameters, e.g., Fo(x, 0p) = ®((x — po)/00),
but 6y = (o, o) is unknown. We are tempted to consider the process,

Un(x) = vVn(Fu(z) — Fo(z, 60,))
and again changing variables, so 7 = Fy(x, 0y), setting G(7, 6y) = T,
Un(7) = Vn(Gn(1) — G(7, 6,))

Like w,(7), Gy(7) converges weakly to zero mean Gaussian process, say,
Un(T) = Go(7), but now for the mle 6,

E(do(T1)ti0(12)) = 71 AT — 7172 — go(T1) ' T~ go(72)

where go(7) = OFp(y, 90)/89|y:
model Fy. Now K,, = sup |4, (7)| depends on Fy; this is the Durbin Problem.

el , and J is the Fisher information about € in
0 (7700)



The Doob-Meyer Decomposition
The process G,,(7) = Fyo(F (7)) is Markov:
nAG,(7) = n[Gr (T + AT) — G, (7)] ~ Bin(n(1 — G,(7)), AT7/(1 — 7)).

So,

_'(;n(T)Z&

EIAGW ()| 7" = ——

and this suggests the representation,

G (1) = /Ot - = GnlS) s+ (1)

where m,,(t) is a martingale. Now substituting from w,(t) = /n(G,(t) — t) we have

n(s)

wa(t) = un(t) + /

where w,,(t) = v/nm,(t) = we(7), is standard Brownian motion.



“Marmalade” in a Martingale

Etymology: a. Fr. martingale of obscure etymology. [ First found in Rabelais in chausses
a la martingale, men’s socks that fastened at the back of the leg. This is commonly
supposed to mean literally ‘hose after the fashion of Martigues’ (in Provence).
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Doob-Meyer as Recursive OLS

Let g(t) = (t, g1(t), ..., gp(t))" bea (p 4 1)-vector of real-valued functions on
[0, 1]. Suppose g(t) = dg(t)/dt are linearly independent, so

C(t) = / §(s)5(s)Tds

is nonsingular, and consider the transformation,

wn(t) = vn(t) — / §(s)TCY(s) / §(r)dvn(r)ds

In the Doob-Meyer case, we set g(t) =t so g(t) = 1, C(s) = 1 — s, and noting that,

/ §(F)dvn(r) = va(1) — va(s) = —va(s)

we obtain the Doob-Meyer decomposition.



Khmaladze’s Martingalization
Ingredients:
G(,0,) =7+ (60 — 0y g(r,0%)
1
V(0 — 0y) = / h(s, 00)dun(s) + o,(1)
0

n (1) = Vn(Gu(7) — 7+ 7 — G(7,0,))
Combine and stir:

(1) = un(r) = 9(7,00)" [y h(s, 00)dun(s) + 0p(1)
= uo(T) — g(7,60)" [ h(s, 6o)duo(s)

but,

Un(T) = an(r) — [y 9(s)TC7(s) [, g(r)di,(r)ds
= ”(U()(T)

Martingalization annihilates the g(7, 6y) term and restores ADF property of KS-test!

(1)
(2)

(3)
(4)
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Khmaladze for the Quantile Process

Let
&(t) = argmin, g > pr(yi — a)
where {y;} are iid from Fy((y — p) /o). Consider

Hy: o) = Fy_l(T) = pu+oF, (1)

under Hy,
vn(7) = Vnwo(T)(&(7) — (7)) /o = vo(T)
where o(7) = fo(F; (7)) and vo(7) is the Brownian Bridge process.
To test Hy, set &(7) = £(7)'0 = (1, F; '(7))0, then
On (1) = Vnpo(t)(a(t) — a(t))/o
= Vnpo(t)(a(t) — a(t) — (a(t) — a(t)))/o
= v (t) — Vno(7)(0 — 60) "£(t) /o

Now we apply martingalization as before.

(5)
(6)
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Testing for Normality

In the typical case that 6 consists of a location and scale parameter we have,

g(t) = (1, po(T)E(T) ) T

' g(r) = (1, f/£,1 = By "(0)F /1)

where f/f is evaluated at F~!(7). In the Gaussian case, Fy = ®, we have

g(r) =1, —@ ' (1),1 =@ ()"
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Inference for Quantile Regression

Now consider the quantile regression process,
B(T) — argminb€|Rp Z pr(yi — m:b)
The analogue of the location scale model is
Y; = CU;I_Oé 4+ (a:j*y)ul
with {u;} iid from Fy. This implies the null hypothesis,
Ho: Bi(1)=ai+vFE (1) i=1,..,p.

We would like to test, Hy, versus a general alternative. Note that, Hg implies that all p
coordinates of 3(-) are affine functions of a single univariate function.

19



Simple Nulls

When «, 7, Fy are all known we have, subject to some regularity conditions,
(1) = VnJ P HL(B(7) — B(7)) = v

where vg is now a p-variate Brownian Bridge, J,, = n_lXTX, H, = n_lXTF_lX,
and T' = diag(z, 7).

This leads to Wald, LR and LM /rankscore tests as in Koenker and Machado (JASA,

1999), employing Bessel processes as in Kiefer(1959). But when («, «y) are unknown, the
Durbin problem arises again.
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A General Linear Hypothesis

Consider the hypothesis,
RB(T) —r = ¥(1) TeT (8)

where R denotes a ¢ X p matrix, ¢ < p,r € IR?, and ¥(7) denotes a known function
V¥ : 7 — IR?. and the local alternative,

RB, (1) —r — ¥(1) = ((7)/Vn.
Test based on:
va(T) = Vnwo(T)(RQR") 7 *(RB(T) — 7 — (7))

where Q2 = HO_lJOHO_1 with Jo = limn ! > a:z-a:iT, and
Hy=limn 'Y ZUisz/’)/Ta?i.
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Regularity Conditions

Assumption 1. The distribution function Fy, has a continuous Lebesgue density, fo,
with fo(u) > 0 on{u:0 < Fy(u) < 1}.

Assumption 2. The sequence of design matrices { X,,} = {(x;);_,} satisfy:

(l) ri1 =1 1 =1,2,...
(i) J, =n"'X] X, — Jo, a positive definite matrix.
(iii) H, =n"'X'T 'X, — Hy, a positive definite matrix where T, = diag(~y ' x;).

Assumption 3. There exists a fixed, continuous function {(7) : [0, 1] — IR? such that
for samples of size n,

RB (1) — 1 = ¥(1) = ((7)/V/n.



More Regularity Conditions

Assumption 4. There exist estimators ., (7) and §,, satisfying

i, sup,er |on(r) — wo(r)| = 0p(1),
i 192, — Q11 = 0p(1).

Assumption 5. The function g(t) satisfies:

i1l g() 17 dt < oo,

i {9:(t)

: 1= 1,...,m} are linearly independent in a neighborhood of 1.
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Theorem 1. Let T denote the closed interval [e, 1 — €], for some e € (0,1/2). Under
conditions A.1-3

ua(T) = VRpo(T)(RQR ) TA(RB(T) — r — (7)) (9)
= vo(T) +n(7) forT € T (10)

where vo(7T) denotes a q-variate standard Brownian bridge process and n(T) =
©0o(T)(RQR")™Y2¢ (7). Under the null hypothesis, ((7) = 0, the test statistic

sup || vn(7) [[= sup || vo(7) || -
Te€T Te€T

Theorem 2. Under conditions A.1-5, we have

on(T) = Vnpo(T)[RaQR,1™2(RuB(7) — 1 — ¥ (7)) (11)
= ZJ.‘;’(T) + vo(7) + n(7) forT € T (12)

where £(7) = o(T)(1, Fy; '(7)) ", and Z,, = O,(1), with vo(7) and n(T) as specified
in Theorem 1.



Theorem 3. Under conditions A.1 - 6, we have

Oo(T) = u ()T = [T a(s)TCT(s) [ g(r)do,(r) ds (13)
= wo(T) + 71(7) for T € T (14)

where wq(T) denotes a q-variate standard Brownian motion, and under the null hypothesis,

¢(r) =0,
sup || 9,(7) ||= sup || wo(7) || -
T€T T€T
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Pennsylvania Bonus Experiment

Table 1: Treatment Groups

Group Bonus Qualification Workshop
Amount Period Offer
Controls 0 0 No
Treatment 1  Low Short Yes
Treatment 2 Low Long Yes
Treatment 3 High Short Yes
Treatment 4  High Long Yes
Treatment 5 Declining  Long Yes
Treatment 6  High Long No

Note: The low benefit was 3 times Ul weekly benefit amount, the high benefit was 6
times this amount. The declining bonus declined from 6 times the weekly benefit to zero,
over a 12 week period. The short qualification period was 6 weeks, and the long period
was 12 weeks.



Sample Sizes

Groups Target n Collected = Analysis n
Control 3,000 3,392 3,354
Treatment 1 1,030 1,395 1,385
Treatment 2 2,240 2,456 2,428
Treatment 3 1,740 1,910 1,885
Treatment 4 1,590 1,771 1,745
Treatment 5 1,740 1,860 1,831
Treatment 6 1,780 1,302 1,285
Total 13,120 14,086 13,913
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Figure 1: Duration (in weeks) of Ul benefits by treatment.
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Quantile Regression Process

T TTTTT
S0'0- G¢'0-

InyLuswiean

(1daauau)

1.0

0.6

0.4

0.2

0.0

T TTTT
00 90- <C'1-

3oelq

a[ews)

1.0

0.6

0.0

T
0T

00

TEREN]




31

0.7

0.4

0.2

T T
0T'0 000 0T S0 00 G20 ST0 S00

a[ewsy |fedau plo

0.7
0.7

0.4
0.4

0.2
0.2

T T T L T T T T T
S0'0— ST'0- ¢0- 90- O071- G0'0- 0¢0- S€0-

Fitted Quantile Regression Process

JNY1uswieal oe|q BunoA



black treatmentTRUE

young

50

0

-100

150

0 50

0 2 4 6 8

female

recall

old

60

20

-60 -20

10

-10

-30

-4

Standardized Residual Quantile Regression Process

Ay

J\‘lln

A "‘“‘“

- T
0.2

0.6 0.7

0.2

0.6 0.7

0.2

0.6 0.7

32



Khmaladzized
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Test Results

Variable Location Scale Shift | Location Shift
Treatment 541 5.48
Female 4.47 4.42
Black 5.77 22.00
Hispanic 2.74 2.00
N-Dependents 2.47 2.83
Recall Effect 4.45 16.84
Young Effect 3.42 3.90
Old Effect 6.81 7.52
Durable Effect 3.07 2.83
Lusd Effect 3.09 3.05
Joint Effect 112.23 449 .83

Table 2: Tests of the Location-Scale and Location Shift Hypotheses: Critical
values for the univariate tests are 1.92 at .05 and 2.42 at .01. For the joint
tests the .01 critical value is 16.0.



35

Conclusions

Quantile regression methods complement established survival analysis methods.

By focusing on local slices of the conditional distribution, they offer a useful decon-
struction of conditional mean models.

They offer a more flexible role for covariate effects allowing them to influence location,
scale and shape of the response distribution.

The Khmaladze transformation approach offers a flexible way to handle nuisance
parameter problems in semi-parametric inference for quantile regression.



