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What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of of x's.
We could go further and compute several different regression curves
corresponding to the various percentage points of the distributions
and thus get a more complete picture of the set.
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What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of of x's.
We could go further and compute several different regression curves
corresponding to the various percentage points of the distributions
and thus get a more complete picture of the set. Ordinarily this is
not done, and so regression often gives a rather incomplete picture.
Just as the mean gives an incomplete picture of a single distribution,
so the regression curve gives a correspondingly incomplete picture for
a set of distributions.

Mosteller and Tukey (1977)



Boxplot of CEO Pay by Firm Size
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An Historical Introduction to Regression
What is Quantile Regression?

Beyond Average Treatment Effects
Two Artificial Examples

Three Introductory Empirical Examples

The Classical Engel Curve
A Model of Infant Birthweight
Maximum Daily Temperature in Melbourne



Sample Quantiles via Optimization

pe(u)




The Least Squares Meta-Model




The Least Squares Meta-Model

p(x) = mnibn By |x=z(Y —m(X))~.



The unconditional mean solves
= mniln E(Y —m)?
The conditional mean u(x) = E(Y|X = x) solves
p(z) = min By|x—, (Y — m(X))".

Similarly, the unconditional 7th quantile solves

ar = min Ep- (Y — a)



The unconditional mean solves
= mniln E(Y —m)?
The conditional mean u(x) = E(Y|X = x) solves
p(z) = min By|x—, (Y — m(X))".
Similarly, the unconditional 7th quantile solves
oy = main Ep-(Y —a)
and the conditional 7th quantile solves

7 (@) = min By x—apr (¥ — a(X))



The sample analogue of the foregoing population concepts yields, the
nonparametric quantile regression estimator

G- (x) = argmin,c 4 Z pr(yi — a(z;))
i=1

If we take A = {a: R? — R|a(z) = 2'3, 8 € RP}, then we have the
linear (in parameters) quantile regression problem:

A

B(T) = argmin, _|R ZpT(yi — a:sz)

1=1



Lehmann (1974) proposed the following general model of treatment
response:

“Suppose the treatment adds the amount A(xz) when the response
of the untreated subject would be x. Then the distribution G of the
treatment responses is that of the random variable X + A(X) where
X is distributed according to F'."



Doksum (1974) defines A(x) as the “horizontal distance” between F' and

G at z, i.e.
F(x) = Gz + A(x)).

Then A(x) is uniquely defined as

This is the essence of the conventional QQ-plot. Changing variables so
T = F(x) we have the quantile treatment effect (QTE):



Lehmann-Doksum QTE
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Treatment shifts the distribution from right skewed to left skewed making
the QTE U-shaped.



The Lehmann QTE is naturally estimable by

where G’n and Fm denote the empirical distribution functions of the
treatment and control observations, Consider the quantile regression model

Qy,(T|D;) = a(r) + (1) D;

where D; denotes the treatment indicator, and Y; = h(T;), e.g.
Y, = log T}, which can be estimated by solving,

iy pr(yi — o — 6Dy
1=1
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Primal Formulation as a Linear Program
min{r1 u + (1 — 7)1 "v|y = Xb+u — v, (b,u,v) € R” x R}
Dual Formulation as a Linear Program
max{y'd| X' 'd=(1—-7)X"1,d €[0,1]"}

Solutions are characterized by an exact fit to p observations.
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Equivariance of Regression Quantiles




Equivariance of Regression Quantiles




A

e Scale Equivariance: For any a > 0, B(T; ay, X) = af(r;y,X) and
B(r;—ay, X) = af(l — 73y, X)

e Regression Shift: For any v € IR” B(T;y + Xv,X) = B(T;y,X) +

o Reparameterization of Design: For any |A| # 0, B(r;y, AX) =
AT B(T;yX)
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For any monotone function h, conditional quantile functions Qy (7|x) are
equivariant in the sense that

Qny)x(T]z) = M(Qyx(7]7))
In contrast to conditional mean functions for which
B(h(Y)|X) # h(EY|X)

Examples:
h(y) = min{0, y}, Powell(1985)
h(y) = sgn{y} Rosenblatt(1957) Manski(1975)

18



e Bounded Influence Function in y for fixed x;, decent breakdown behavior
for fixed design.

e Only the signs of the residuals & = y — XB(T, y, X). matter
B(r;y,X) = B(r,y + Da, X)
for any diagonal matrix D with nonnegative elements.

e Robustness with respect to influential x observations is more challenging,
but there are several very interesting proposals.

19



Bivariate linear model with iid Student t errors
Conditional quantile functions are parallel
100 observations indicated in blue

Fitted quantile regression lines in red
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model

[0.275 , 0.288 ]




Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model

[0.595 , 0.603 ]




Quantile Regression in the iid Error Model

[0.675 , 0.689 ]




Quantile Regression in the iid Error Model

[0.754 , 0.775 ]




Quantile Regression in the iid Error Model

[0.924 , 0.943 ]




Bivariate quadratic model with Heteroscedastic 2 errors
Conditional quantile functions drawn
100 observations indicated in blue

Fitted quadratic quantile regression lines in red
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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e Engel's Law: A Classical Economic Example

e Infant Birthweight: A Public Health Example

e Melbourne Daily Temperature: A Time Series Example

44



Engel’'s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the
dependence of households’ food expenditure on household income. Seven estimated quantile regression lines
for - € {.05,.1,.25,.5,.75,.9,.95} are superimposed on the scatterplot. The median 7 = .5 fit is
indicated by the darker solid line; the least squares estimate of the conditional mean function is indicated by

the dashed line.
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Engel Curves for Food: This figure plots data taken from Engel’'s (1857) study of the
dependence of households’ food expenditure on household income. Seven estimated quantile regression lines
for - € {.05,.1,.25,.5,.75,.9,.95} are superimposed on the scatterplot. The median 7 = .5 fit is
indicated by the darker solid line; the least squares estimate of the conditional mean function is indicated by

the dashed line.



Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)

Covariates:

Mother's Education
Mother's Prenatal Care
Mother's Smoking
Mother's Age

Mother's Weight Gain
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Quantile Regression Birthweight Model |1
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Marginal Effect of Mother’s Age
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Marginal Effect of Mother’'s Weight Gain

Mother's Weight Gain 15 Lbs Mother's Weight Gain 22 Lbs
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AR(1) Model of Melbourne Daily Temperature
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The plot illustrates 10 years of daily maximum temperature
data for Melbourne, Australia as an AR(1) scatterplot. Superimposed are
estimated conditional quantile functions for 7 € {.05, .10, ...,.95}.



Conditional Densities of Melbourne Daily Temperature
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Conclusions




e Quantile regression methods complement established mean regression
(least-squares) methods.

e By focusing on local slices of the conditional distribution, they offer a
useful deconstruction of conditional mean models.
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e They provide a more flexible role for covariate effects allowing them to
influence location, scale and shape of the response distribution.
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Quantile regression methods complement established mean regression
(least-squares) methods.

By focusing on local slices of the conditional distribution, they offer a
useful deconstruction of conditional mean models.

They provide a more flexible role for covariate effects allowing them to
influence location, scale and shape of the response distribution.

In applications a variety of unobserved heterogeneity phenomena are
rendered observable.
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