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There is more to statistical life than is dreamt of in the conventional
regression philosophies of location-scale shift models.
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Reemployment Bonus Experiments

Can the durations of insured unemployment spells be shortened by offering cash bonuses

to recipients for early reemployment?

• 1988-89 Experiment in Pennsylvania

• 6 Treatments + Control Group

? Two levels of bonus payment

? Two settings of the qualification period

• Randomized Assignment to Groups

• 13,913 Participants
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Some Post-Modern Econometrics
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The mean treatment effect deconstructed into the quantile treatment effect:

δ = µ(G)− µ(F ) =

Z 1

0

(G
−1

(t)− F
−1

(t))dt

The regression mean effect deconstructed into regression quantiles:

E(Y |x) =

Z 1

0

QY (τ |x)dτ
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Regression is Demeaning

’De mean is ’de meaning.
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Transformation Models for Durations

Suppose

G
−1

(S(t|x)) = h(t)− x
>
β

where S(t|x) is the conditional survival function. For h monotone,

P (h(T ) > t|x) = P (T > h
−1

(t)|x)

= S(h
−1

(t)|x)

= G(t− x
>
β).

We have the transformation model

h(T ) = x
>
β + u

where u is iid from G.
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Example: Cox Proportional Hazard Model

For the Cox model

log Λ0(T ) = x
>
β + u

with G(u) = 1− exp(− exp(u)). For Λ0 Weibull,

log Λ0(t) = γ log t− α,

we obtain the accelerated failure time model,

log T = x
>
β + u.

with iid u distributed as Weibull.
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Quantile Regression Transformation Models

Given the transformation model the conditional quantile functions of h(T ), for

0 < τ < 1, are

Qh(T )(τ |x) = x
>
β + F

−1
u (τ)

Since P (h(T ) ≤ t) = P (T ≤ h−1(t)), (monotone equivariance!)

QT (τ |x) = h
−1

(x
>
β + F

−1
u (τ)).

Instead, we will consider,

Qh(T )(τ |x) = x
>
β(τ),

for example, consider the location-scale shift model,

h(Ti) = x
>
i α + (xiγ)ui

with ui iid from F . In this model we have a linear family of conditional quantile functions

Qh(T )(τ |x) = x
>
α + (x

>
γ)F

−1
u (τ) = x

>
β(τ)

This is considerably more flexible.
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An Inference Problem

We would like to test whether covariates have a pure location shift effect on the response,

a location-scale shift effect, or if they have some more general effect on the response

distribution:

• Location Shift Hypothesis:

H0 : βi(τ) = αi i = 2, ..., p.

• Location-Scale Shift Hypothesis:

H0 : βi(τ) = αi + γiβ1(τ) i = 2, ..., p.

Tests of the Kolmogorov-Smirnov type based on the whole quantile regression process will

be considered.
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The Kolmogorov-Smirnov Test

Suppose {Y1, . . . , Yn} are iid from df F . We would like to test,

H0 : F = F0.

We want to consider the K-S statistic,

Kn = sup
x∈|R

√
n|Fn(x)− F0(x)|

where Fn(x) = n−1 P
I(Yi ≤ x).
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KS Test is ADF

Classically, from Doob (1949), we know

Un(x) =
√

n(Fn(x)− F0(x))

or, changing variables x → F−1
n (τ),

un(τ) =
√

n(τ − F0(F
−1
n (τ)))

converges weakly under H0 to a Brownian Bridge process, i.e., a Gaussian process, u0,

with mean zero and covariance function Cov(u0(τ1), u0(τ2)) = τ1 ∧ τ2 − τ1τ2. so the

test is asymptotically distribution free (ADF).
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The Durbin Problem

Now suppose F0 is known only up to parameters, e.g., F0(x, θ0) = Φ((x− µ0)/σ0),

but θ0 = (µ0, σ0) is unknown. We are tempted to consider the process,

Ûn(x) =
√

n(Fn(x)− F0(x, θ̂n))

and again changing variables, so τ = F0(x, θ0), setting G(τ, θ0) = τ ,

ûn(τ) =
√

n(Gn(τ)−G(τ, θ̂n))
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The Durbin Problem

Now suppose F0 is known only up to parameters, e.g., F0(x, θ0) = Φ((x− µ0)/σ0),

but θ0 = (µ0, σ0) is unknown. We are tempted to consider the process,

Ûn(x) =
√

n(Fn(x)− F0(x, θ̂n))

and again changing variables, so τ = F0(x, θ0), setting G(τ, θ0) = τ ,

ûn(τ) =
√

n(Gn(τ)−G(τ, θ̂n))

Like un(τ), ûn(τ) converges weakly to zero mean Gaussian process, say,

ûn(τ) ⇒ û0(τ), but now for the mle θ̂n,

E(û0(τ1)û0(τ2)) = τ1 ∧ τ2 − τ1τ2 − g0(τ1)
>J−1

g0(τ2)

where g0(τ) = ∂F0(y, θ0)/∂θ|
y=F−1

0 (τ,θ0)
, and J is the Fisher information about θ in

model F0. Now K̂n = sup |ûn(τ)| depends on F0; this is the Durbin Problem.
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The Doob-Meyer Decomposition

The process Gn(τ) = F0(F
−1
n (τ)) is Markov:

n∆Gn(τ) = n[Gn(τ + ∆τ)−Gn(τ)] ∼ Bin(n(1−Gn(τ)), ∆τ/(1− τ)).

So,

E[∆Gn(τ)|FGn
τ ] =

1−Gn(τ)

1− τ
∆τ

and this suggests the representation,

Gn(t) =

Z t

0

1−Gn(s)

1− s
ds + mn(t)

where mn(t) is a martingale. Now substituting from un(t) =
√

n(Gn(t)− t) we have

wn(t) = un(t) +

Z t

0

un(s)

1− s
ds

where wn(t) =
√

nmn(t) ⇒ w0(τ), is standard Brownian motion.
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“Marmalade” in a Martingale

Etymology: a. Fr. martingale of obscure etymology. [ First found in Rabelais in chausses
a la martingale, men’s socks that fastened at the back of the leg. This is commonly

supposed to mean literally ‘hose after the fashion of Martigues’ (in Provence).
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Doob-Meyer as Recursive OLS

Let g(t) = (t, g1(t), . . . , gp(t))
> be a (p + 1)-vector of real-valued functions on

[0, 1]. Suppose ġ(t) = dg(t)/dt are linearly independent, so

C(t) =

Z 1

t

ġ(s)ġ(s)
>
ds

is nonsingular, and consider the transformation,

wn(t) = vn(t)−
Z t

0

ġ(s)
>
C
−1

(s)

Z 1

s

ġ(r)dvn(r)ds

In the Doob-Meyer case, we set g(t) = t so ġ(t) = 1, C(s) = 1− s, and noting that,Z 1

s

ġ(r)dvn(r) = vn(1)− vn(s) = −vn(s)

we obtain the Doob-Meyer decomposition.
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Khmaladze’s Martingalization

Ingredients:
G(τ, θ̂n) = τ + (θ̂ − θ0)

>
g(τ, θ

∗
)

√
n(θ̂ − θ0) =

Z 1

0

h(s, θ0)dun(s) + op(1)

ûn(τ) =
√

n(Gn(τ)− τ + τ −G(τ, θ̂n))

Combine and stir:

ûn(τ) = un(τ)− g(τ, θ0)
> R 1

0
h(s, θ0)dun(s) + op(1) (1)

⇒ u0(τ)− g(τ, θ0)
> R 1

0
h(s, θ0)du0(s) (2)

but,

ũn(τ) = ûn(τ)−
R τ

0
ġ(s)>C−1(s)

R 1

s
ġ(r)dûn(r)ds (3)

⇒ w0(τ) (4)

Martingalization annihilates the g(τ, θ0) term and restores ADF property of KS-test!
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Khmaladze for the Quantile Process

Let

α̂(τ) = argmin
a∈|R

X
ρτ(yi − a)

where {yi} are iid from F0((y − µ)/σ). Consider

H0 : α(τ) = F
−1
y (τ) = µ + σF

−1
0 (τ)

under H0,

vn(τ) =
√

nϕ0(τ)(α̂(τ)− α(τ))/σ ⇒ v0(τ)

where ϕ0(τ) = f0(F
−1
0 (τ)) and v0(τ) is the Brownian Bridge process.

To test H0, set α̃(τ) = ξ(τ)>θ̃ = (1, F−1
0 (τ))θ̃, then

v̂n(t) =
√

nϕ0(t)(α̂(t)− α̃(t))/σ (5)

=
√

nϕ0(t)(α̂(t)− α(t)− (α̃(t)− α(t)))/σ (6)

= vn(t)−
√

nϕ0(τ)(θ̃ − θ0)
>ξ(t)/σ (7)

Now we apply martingalization as before.
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Testing for Normality

In the typical case that θ0 consists of a location and scale parameter we have,

g(τ) = (τ, ϕ0(τ)ξ(τ)
>
)
>

so,

ġ(τ) = (1, ḟ/f, 1− F
−1
0 (τ)ḟ/f)

>

where ḟ/f is evaluated at F−1(τ). In the Gaussian case, F0 = Φ, we have

ġ(τ) = (1,−Φ
−1

(τ), 1− Φ
−1

(τ)
2
)
>
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Inference for Quantile Regression

Now consider the quantile regression process,

β̂(τ) = argmin
b∈|Rp

X
ρτ(yi − x

>
i b)

The analogue of the location scale model is

yi = x
>
i α + (x

>
i γ)ui

with {ui} iid from F0. This implies the null hypothesis,

H0 : βi(τ) = αi + γiF
−1
0 (τ) i = 1, ..., p.

We would like to test, H0, versus a general alternative. Note that, H0 implies that all p

coordinates of β(·) are affine functions of a single univariate function.
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Simple Nulls

When α, γ, F0 are all known we have, subject to some regularity conditions,

vn(τ) =
√

nJ
−1/2
n Hn(β̂(τ)− β(τ)) ⇒ v0

where v0 is now a p-variate Brownian Bridge, Jn = n−1X>X, Hn = n−1X>Γ−1X,

and Γ = diag(x>i γ).

This leads to Wald, LR and LM/rankscore tests as in Koenker and Machado (JASA,

1999), employing Bessel processes as in Kiefer(1959). But when (α, γ) are unknown, the

Durbin problem arises again.
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A General Linear Hypothesis

Consider the hypothesis,

Rβ(τ)− r = Ψ(τ) τ ∈ T (8)

where R denotes a q × p matrix, q ≤ p, r ∈ |Rq, and Ψ(τ) denotes a known function

Ψ : T → |Rq. and the local alternative,

Rβn(τ)− r −Ψ(τ) = ζ(τ)/
√

n.

Test based on:

vn(τ) =
√

nϕ0(τ)(RΩR
>
)
−1/2

(Rβ̂(τ)− r −Ψ(τ))

where Ω = H−1
0 J0H

−1
0 with J0 = lim n−1 P

xix
>
i , and

H0 = lim n−1 P
xix

>
i /γ>xi.
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Regularity Conditions

Assumption 1. The distribution function F0, has a continuous Lebesgue density, f0,

with f0(u) > 0 on {u : 0 < F0(u) < 1}.

Assumption 2. The sequence of design matrices {Xn} = {(xi)
n
i=1} satisfy:

(i) xi1 ≡ 1 i = 1, 2, . . .

(ii) Jn = n−1X>
n Xn → J0, a positive definite matrix.

(iii) Hn = n−1X>
n Γ−1

n Xn → H0, a positive definite matrix where Γn = diag(γ>xi).

Assumption 3. There exists a fixed, continuous function ζ(τ) : [0, 1] → |Rq such that

for samples of size n,

Rβn(τ)− r −Ψ(τ) = ζ(τ)/
√

n.
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More Regularity Conditions

Assumption 4. There exist estimators ϕn(τ) and Ωn satisfying

i. supτ∈T |ϕn(τ)− ϕ0(τ)| = op(1),

ii. ||Ωn − Ω|| = op(1).

Assumption 5. The function g(t) satisfies:

i
R
‖ ġ(t) ‖2 dt < ∞,

ii {ġi(t) : i = 1, . . . , m} are linearly independent in a neighborhood of 1.
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Theorem 1. Let T denote the closed interval [ε, 1− ε], for some ε ∈ (0, 1/2). Under

conditions A.1-3

vn(τ) =
√

nϕ0(τ)(RΩR>)−1/2(Rβ̂(τ)− r −Ψ(τ)) (9)

⇒ v0(τ) + η(τ) for τ ∈ T (10)

where v0(τ) denotes a q-variate standard Brownian bridge process and η(τ) =

ϕ0(τ)(RΩR>)−1/2ζ(τ). Under the null hypothesis, ζ(τ) = 0, the test statistic

sup
τ∈T

‖ vn(τ) ‖⇒ sup
τ∈T

‖ v0(τ) ‖ .

Theorem 2. Under conditions A.1-5, we have

v̂n(τ) =
√

nϕ0(τ)[RnΩR>
n ]−1/2(Rnβ̂(τ)− rn −Ψ(τ)) (11)

⇒ Z>
n ξ(τ) + v0(τ) + η(τ) for τ ∈ T (12)

where ξ(τ) = ϕ0(τ)(1, F−1
0 (τ))>, and Zn = Op(1), with v0(τ) and η(τ) as specified

in Theorem 1.
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Theorem 3. Under conditions A.1 - 6, we have

ṽn(τ)
>

= v̂n(τ)> −
R τ

0
ġ(s)>C−1(s)

R 1

s
ġ(r)dv̂n(r)

>ds (13)

⇒ w0(τ) + η̃(τ) for τ ∈ T (14)

where w0(τ) denotes a q-variate standard Brownian motion, and under the null hypothesis,

ζ(τ) = 0,

sup
τ∈T

‖ ṽn(τ) ‖⇒ sup
τ∈T

‖ w0(τ) ‖ .
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Pennsylvania Bonus Experiment

Table 1: Treatment Groups
Group Bonus Qualification Workshop

Amount Period Offer

Controls 0 0 No

Treatment 1 Low Short Yes

Treatment 2 Low Long Yes

Treatment 3 High Short Yes

Treatment 4 High Long Yes

Treatment 5 Declining Long Yes

Treatment 6 High Long No

Note: The low benefit was 3 times UI weekly benefit amount, the high benefit was 6

times this amount. The declining bonus declined from 6 times the weekly benefit to zero,

over a 12 week period. The short qualification period was 6 weeks, and the long period

was 12 weeks.
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Sample Sizes

Groups Target n Collected n Analysis n

Control 3,000 3,392 3,354

Treatment 1 1,030 1,395 1,385

Treatment 2 2,240 2,456 2,428

Treatment 3 1,740 1,910 1,885

Treatment 4 1,590 1,771 1,745

Treatment 5 1,740 1,860 1,831

Treatment 6 1,780 1,302 1,285

Total 13,120 14,086 13,913
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Duration Histograms
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Figure 1: Duration (in weeks) of UI benefits by treatment.
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Quantile Regression Process
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Fitted Quantile Regression Process
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Standardized Residual Quantile Regression Process
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Khmaladzized Quantile Regression Process
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Test Results

Variable Location Scale Shift Location Shift

Treatment 5.41 5.48

Female 4.47 4.42

Black 5.77 22.00

Hispanic 2.74 2.00

N-Dependents 2.47 2.83

Recall Effect 4.45 16.84

Young Effect 3.42 3.90

Old Effect 6.81 7.52

Durable Effect 3.07 2.83

Lusd Effect 3.09 3.05

Joint Effect 112.23 449.83

Table 2: Tests of the Location-Scale and Location Shift Hypotheses: Critical
values for the univariate tests are 1.92 at .05 and 2.42 at .01. For the joint
tests the .01 critical value is 16.0.
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Conclusions

• Quantile regression methods complement established survival analysis methods.

• By focusing on local slices of the conditional distribution, they offer a useful decon-

struction of conditional mean models.

• They offer a more flexible role for covariate effects allowing them to influence location,

scale and shape of the response distribution.

• The Khmaladze transformation approach offers a flexible way to handle nuisance

parameter problems in semi-parametric inference for quantile regression.


