Inference for Quantile Regression




e Asymptotics of the Sample Quantiles

e QR Asymptotics in iid Error Models

e QR Asymptotics in Heteroscedastic Error Models

e Classical Rank Tests and the Quantile Regression Dual

e Inference on the Quantile Regression Process



Minimizing >, p-(y; — &) consider

By convexity of the objective function,

{& > €} & {gn(6) < 0}
and the DeMoivre-Laplace CLT vyields, expanding F',
V(& — &) ~ N(0,0%(7, F))

where w?(7, F) = 7(1 — 7)/f*(F~1(7)). The Bahadur-Kiefer
representation theory provides further refinement of this result.



Let h € H index the ( ) p-element subsets of {1,2,...,n} and X (h),y(h)
denote corresponding submatrlces and vectors of X and Y.

Lemma: (3 =0b(h) = X(h) ly(h) is the Tth regression quantile iff
&n € C where

gh—Z@bT xzﬁxX( )
1¢h
C=[r—1,7P, and ¥ (u) =7 — I(u < 0).

Theorem: (KB, 1978)  In the linear model with iid errors, {u;} ~ F) f,
the density of G(7) is given by

9(b) = XpewIlien f(@i(b—B(7)) + F7H(7))
P(&n(b) € C)|det(X(h))]



In the classical linear model,

Yi = Tiff + u;

with u; iid from df F, with density f(u) > 0 on its support

{u|0 < F(u) < 1}, the joint distribution of \/n(8,(7;) — B(7:))™, is

asymptotically normal with mean 0 and covariance matrix Q@ ® D~!. Here
B(1) =B+ F; Y 1)er,er = (1,0,...,0), z1; = 1,n~ 1> xxl — D, a
positive definite matrix, and

Q= ((nA7m—7m)/(fE (@) FE ()5



When the response is conditionally independent over ¢, but not identically
distributed, the asymptotic covariance matrix of ((7) = /n(3(1) — 5(1))
is somewhat more complicated. Let &;(7) = x;8(7), fi(:) denote the
corresponding conditional density, and define,

n
Jn(Tl,TQ) = (7’1 VAN Ty — 7'17'2)71,_1 Z$ZCIZ;,
1 =1

Hn(7) n~' Yzl fi&i(r)).

Under mild regularity conditions on the {f;}'s and {x;}'s, we have joint
asymptotic normality for ({(7;),...,((7m)) with covariance matrix

Vio = (Hy () " (75, 75) Ho (7)™ DT

1,7=1"



e Ranks play a fundamental dual role in QR inference.
e Classical rank tests for the p-sample problem extended to regression

e Rank tests play the role of Rao (score) tests for QR.



Xi,...,Xp ~ F(x) “Controls”
Yi,....Y ~ F(x —0) “Treatments”
Hypothesis:
H() 5 =0
Hq: 0>0

The Gaussian Model ' = ®

T =Y, — X,)/v/n ' +m-1

UMP Tests:
critical region {T' > ®~'(1 — a)}



Mann-Whitney Form:

n m

S=>"> I1(Y; > X;)

i=1 j=1

Heuristic: If treatment responses are larger than controls for most pairs
(,7), then Hy should be rejected.

Wilcoxon Form: Set (Ry,...,R,1m) = Rank(Yy,..., Y, X1,... X}),

Proposition: S =W —m(m+ 1)/2 so Wilcoxon and Mann-Whitney tests
are equivalent.



Pros and Cons of the Transformation to Ranks




Thought One:
Gain: Null Distribution is independent of F'.

Loss: Cardinal information about data.

Thought Two:
Gain: Student t-test has quite accurate size provided o%(F) < co.

Loss: Student t-test uses cardinal information badly for long-tailed F'.
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Pitman Alternatives: H,, : 0,, = 0y/\/n
(t-test)” ~ x3(62/0%(F))
(Wilcoxon)? ~ x2(1263(f f2)?)

ARE(W, t, F) = 12¢*(F)[[ f*(=)

F N U | Logistic | DExp | LogN | -

ARE || 1955 | 1.0 1.1 1.5 7.35 | o0

Theorem (Hodges-Lehmann) For all F', ARE(W,t, F) > .864.



Let Y7,...,Y,, be a random sample from an absolutely continuous df F’

with associated ranks Ri,..., R,, Hajek 's rank generating functions are:
1 ift < (R;—1)/n

|

I I I I I I
00 02 04 06 08 1.0

0.0 04 038
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Theorem (H3jek (1965)) Let ¢, = (¢1n,-- -, Cnn) be a triangular array of

real numbers such that

maX Czn - / E Czn - O.

Then

n

Zn(t) = (Z(Cm = En)2)

1=1

—2N {(Cin — @) ()
j=1

converges weakly to a Brownian Bridge.
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The Hajek functions are approximately indicator functions
a;(t) = I(Y; > F~'(t) = [(F(Y;) > t)

Since F(Y;) ~ U|0, 1], linear rank statistics may be represented as

/O :(8)dip(2) = / I(F(Y) > t)de(t) = o(F(Y3)) — (0)

| zatacy = Y wi [aoaew
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Quantiles may be defined as

A

E(r) = argminy  pr(yi — €)

where p-(u) = u(T — I(u < 0)). This can be formulated as a linear
program whose dual solution

a(t) = argmaz{y'all’.a = (1 — 7)n,a € [0,1]"}

generates the Hajek rankscore functions.

Reference: Gutenbrunner and Juretkova (1992).
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an,(T) = arg T {y'a|X'a=(1-7)X"1,}
ac|0,1|™

Estimates Qy (7|z)
Piecewise constant on [0, 1].
1

For X = 1,,, B.(7) = F (7).

Regression rankscore functions
Piecewise linear on [0, 1].
For X =1, a;(7) are the Hajek rank generating functions.
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Y=X08+Zv+u

Hg:~v=0versus H, : v =v/vn
Given the regression rank score process for the restricted model,

an(7) = argmax{Y'a|X'a=(1-7)X'1,}

A test of Hj is based on the linear rank statistics,

Choice of the score function ¢ permits test of location, scale or
(potentially) other effects.
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Theorem: (Gutenbrunner, Jure¢kova , Koenker and Portnoy) Under H,,

and regularlty conditions, the test statistic T,, = S’ Q. 1S,, where
Sn = (Z — Z)bn, 7 = XX'X)"'X'Z, Qn—n_l(Z Z) (Z - 7)

T~ Xg (77)
where

ne = F)Q0

w(p, F) = /f dip (1)
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Regression Rankscores for Stackloss Data

Obs No 1 rank=0.18 Obs No 4 rank= 0.46 Obs No 7 rank=-0.23

Obs No 2 rank=-0.02 Obs No 5 rank=-0.2 Obs No 8 rank=-0.02

Obs No 3 rank=0.35 Obs No 6 rank=-0.33 Obs No 9 rank=-0.44
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For the scalar v case and using the score function

or(t)=7—1I(t <7)

1
b = — / r (t)dbni(t) = Gni(1) — (1 —7)
0
where ¢ = fo @, (t)dt = 0 and A?(yp,) fo ©0-(t) — @)%dt = 7(1 — 7).

Thus, a test of the hypothesis Hy : v = & may be based on a, from
solving,

max{(y — x2£) a|Xja = (1 —7)X11,a € [0,1]"} (1)

and the fact that

Sn(€) = n122hba(€) ~ N(0, A%(pr)q2) (2)
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That is, we may compute

Tn(f) — Sn(g)/(A(SOT)Qn)

where ¢2 = n 12 (I — X1 (X[ X1) 1 X])xs. and reject Hy if
T ()] > 27H(1 — a/2).

Inverting this test, that is finding the interval of £'s such that the test fails
to reject. This is a quite straightforward parametric linear programming
problem and provides a simple and effective way to do inference on

individual quantile regression coefficients. Unlike the Wald type inference
it delivers asymmetric intervals.



Using the quantile score function, ¢, (t) =7 — I(t < 7) we can consider
the quantile rankscore process,

To(7) = Sn(7)' Q@ Su(7)/(7(1 = T)).

where

Sp = n_1/2(X2 = X2)/8n7

Xy = X (X1 X)X Xo,
Qn = (X2 — Xo)' (X2 — Xa)/n,

by = (— / (&) diin (),



Theorem: (Koenker and Machado) Under H,, : v(7) = O(1/+/n) for

7 € (0,1) the process T,,(7) converges to a non-central Bessel process of
order ¢ = dim(~)

Related Wald and LR statistics can be viewed as providing a general
apparatus for testing goodness of fit for quantile regression models. This

approach is closely related to classical p-dimensional goodness of fit tests
introduced by Kiefer (1959).

When the null hypotheses under consideration involve unknown nuisance
parameters things become more interesting. In Koenker and Xiao (2001)
we consider this “Durbin problem” and show that the elegant approach of
Khmaladze (1981) yields practical methods.
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Asymptotic inference for quantile regression poses some statistical chal-
lenges since it involves elements of nonparametric density estimation.

Classical rank statistics and Hdjek 's rankscore process are closely linked
via Gutenbrunner and Jureckova 's regression rankscore process.

Inference on the quantile regression process can be conducted with the
aid of Khmaladze's extension of the Doob-Meyer construction.

Resampling offers many further lines of development for inference in the
quantile regression setting.
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