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Abstract. Chaudhuri, Doksum and Samarov (1997) have recently stressed the
usefulness of the quantile regression formulation for survival analysis and for trans-
formation models, more generally. In this paper, we explore the use of quantile
regression in survival analysis by reanalysing a large experimental study by Carey,
Liedo, Orozco, and Vaupel (1992), that monitored age-speci�c mortality in a pop-
ulation of roughly 1.2 million Mediterranean fruit 
ies (Ceratitis Capitata). The
quantile regression approach appears useful in re�ning several of the conclusions
drawn from this study including the apparent decline in mortality rates at advanced
ages, and the gender cross-over e�ect in survival functions for med
ies.

1. Introduction

The biology of aging has attained a robust adolescent stage as a scienti�c disci-
pline and seems destined for a prolonged maturity. The enduring human fascination
with \intimations of immortality," nurtured by modern developments in cell biology,
provides a powerful impetus for the �eld. From a statistical vantage point, one of
the most exciting recent developments in this emerging �eld involves large scale de-
mographic experiments on lower animals designed to explore features of the survival
distribution and determinants of longevity. The largest, and most in
uential of these
is the work of Carey, Liedo, Orozco, and Vaupel (1992). The primary experiment de-
scribed there consisted of monitoring age-speci�c mortality in a population of roughly
1.2 million Mediterranean fruit 
ies (Ceratitis Capitata). Several �ndings from this
experiment challenged notions that might be regarded as central to the conventional
wisdom of population biology, and demography more generally:

� Mortality rates actually declined at the oldest observed ages contradicting the
view that aging is an ineluctable, monotone process of senescence. In the most
extreme form of the traditional view the survival distribution is assumed to take
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2 Reappraising Medfly Longevity

the Gompertz form so the mortality rate (hazard) is log linear. This view is
clearly contradicted by the med
y experiments.

� The right tail of the survival distribution was, at least by human standards,
remarkably long. By 33 days 90% of the 
ies had died, by 50 days 99% were
dead, but 120 (0.01%) lived to 86 days and 12 (0.001%) lived to 146 days. This
�nding casts doubt on the common practice of characterizing species-speci�c
maximum life-spans, shifting the focus instead to the analysis of tail behavior
of the survival distribution. See Thatcher (1999) for an extended discussion of
related evidence for human populations.

� The experiment provided, really for the �rst time, strong evidence for a crossover
in gender speci�c mortality rates for a non-human population. In med
ies,
Carey et al (1995) report that females have higher mortality rates than males
up to roughly 20 days, while from 20 to 60 days males have higher rates than
females, and after 60 days the rates are essentially indistinguishable. These
results suggest a considerably more complicated view of adaptability of the sexes
for survival at various stages of the life cycle than is provided by prior literature.

The statistical analyses employed in prior work on the med
y data are based largely
on standard life table methods, as described, for example, in Carey (1993). Life table
methods are well adapted for the study of the e�ects of gender and other discrete
covariates on survival and mortality, however, they are less well suited to investigating
the e�ect of continuous covariates like population density, a variable which has played
a signi�cant role subsequent debate over the interpretation of the experimental results.
In contrast, parametric and semiparametric survival models while accomodating a

broader class of covariates typically impose stringent conditions on how the covariates
are permitted to in
uence survival prospects. For example, in the accelerated failure
time model covariates are assumed to exert a pure location shift e�ect on log survival
times, while in the Cox proportional hazard model the covariates exert a pure location
shift on a transformation of the baseline survival probability evaluated at the random
survival time. In both cases, the underlying assumption that the covariates only
a�ect the location, not the shape of the distribution of transformed survival times,
strongly restricts the nature of their impact. This is particularly unfortunate in the
analysis of the med
y data because interest is focused so strongly on the upper tail
of the survival distribution. It is highly undesirable that inferences about the e�ect
of covariates on upper tail behavior should be unduly in
uenced by global features of
the model speci�cation.
In this paper we describe a uni�ed new approach to the analysis of survival data

of this type using the quantile regression methods introduced in Koenker and Bas-
sett (1978). Quantile regression o�ers a more 
exible semiparametric approach to
survival analysis. Rather than making global assumptions about how covariates in-

uence transformed survival times, quantile regression enables us to focus on the
estimation of particular local features of the conditional survival distribution. Thus,
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we may explore the e�ect of covariates on just the upper tail of the survivals without
risk that we may be unduly prejudicing the results by modeling assumptions about
the rest of the conditional distribution. Chaudhuri, Doksum and Samarov (1997) have
also recently stressed the usefulness of the quantile regression formulation for survival
analysis and transformation models, more generally. Their treatment emphasizes the-
oretical aspects of average-derivative estimation. Here we emphasize other practical
methodological issues as well as some substantive data analytic �ndings revealed by
the new approach. We hope that these results will encourage others to explore these
methods in related applications.
In the next Section we provide a brief, self-contained introduction to quantile re-

gression methods. Section 3 describes the link between the quantile regression model
and some common survival analysis models. Section 4 introduces the data to be an-
alyzed. Section 5 presents the analysis. And some concluding remarks are collected
in Section 6.

2. Introduction to Quantile Regression

Quantile regression is gradually evolving into a comprehensive approach to the
statistical analysis of linear and nonlinear response models for conditional quantile
functions. Just as classical linear regression methods based on minimizing sums of
squared residuals enable one to estimate models for conditional mean functions, quan-
tile regression methods o�er a mechanism for estimating models for the conditional
median function, and the full range of other conditional quantile functions. By sup-
plementing least squares estimation of conditional mean functions with techniques for
estimating an entire family of conditional quantile functions, quantile regression is ca-
pable of providing a more complete statistical analysis of the stochastic relationships
among random variables.

2.1. Quantiles via Optimization. One exceedingly simple idea underlies the ex-
tension of the sample quantiles to the more general contexts of linear, and nonlinear,
regression. This idea is just the observation that we can replace the notions of sort-
ing, ordering, and ranking that appear to be inherent in the de�nition of the ordinary
sample quantiles by an elementary optimization problem. Suppose that we have a
single sample Sn = fy1; :::; yng and we minimize,

R(�) =

nX

i=1

�� (yi � �)

where ��(u) = u(��I(u < 0)) is the piecewise linear \check function" of Koenker and

Bassett (1978), then the solution �̂(� ) is a � th sample quantile of Sn. The median case
where �1=2(u) =

1
2juj is well known, but the general case is easily seen by considering
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the directional derivatives of the function R,

R0(a+) = �#fyi � ag+ (� � 1)#fyi < ag
R0(a�) = �(�#fyi > ag+ (� � 1)#fyi � ag)

and noting that at a minimum R0(a�) � 0 requires that n� lies between #fyi < ag
and #fyi � ag, and this in turn de�nes the � th quantile. Now, just as we can extend
the notion of estimation of the unconditional sample mean de�ned as

�̂ = argmin
X

(yi � �)2

to the estimation of linear conditional mean functions by solving,

�̂ = argmin
X

(yi � x0i�)
2

we can extend the notion of univariate unconditional quantiles to the estimation of
linear conditional quantile functions by solving,

�̂(� ) = argmin
X

��(yi � x0i�):

Again the median version of this problem is well known, and has a long history. The
problem can be easily formulated as a linear program and simplex based methods pro-
vide e�cient algorithms for most applications. See Koenker and d'Orey (1987,1993)
for further details. In large problems, say with n > 100; 000 recent development of
interior point methods for linear programming o�er substantial computational ad-
vantages. Exploiting these new developments and using some new preprocessing
methods, Portnoy and Koenker (1998) demonstrate that quantile regression compu-
tational speed is now comparable to least squares computational speed throughout
the range of problem dimensions observed in applications. Software for the Splus
and R programming environments for quantile regression is available from the URL
http://www.econ.uiuc.edu/ roger/research/rq/rq.html.

2.2. Quantile Regression Treatment E�ects. The simplest formulation of quan-
tile regression is the two-sample treatment-controlmodel, so we begin by reconsidering
a model of two-sample treatment response introduced by Lehmann and Doksum, a
model that provides a natural introduction to the interpretation of quantile regression
models.
Lehmann (1974) proposed the following model of treatment response:

\Suppose the treatment adds the amount �(x) when the response of the
untreated subject would be x. Then the distribution G of the treatment
responses is that of the random variable X +�(X) where X is distributed
according to F ."
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Special cases obviously include the location shift model �(X) = �0, and the scale
shift model �(x) = �X, but the general case is well adapted to the quantile regression
paradigm. If the treatment is bene�cial in the sense that,

�(x) � 0 for all x

then the distribution of treatment responses, G, is stochastically larger than the dis-
tribution of control responses, F . Thus, in the context of survival analysis for clinical
trials, for example, we would be able to say that the treatment was unambiguously
bene�cial, however it is clear that we may encounter crossing of the survival functions
in which case the bene�t of the treatment must be regarded as as ambiguous.
Doksum (1974) provides a thorough axiomatic analysis of this formulation of treat-

ment response, and shows that if we de�ne �(x) as the \horizontal distance" between
F and G at x, so

F (x) = G(x+�(x))

then �(x) is uniquely de�ned and can be expressed as

�(x) = G�1(F (x))� x:(2.1)

Thus, on changing variables so � = F (x) we have the quantile treatment e�ect,

�(� ) = �(F�1(� )) = G�1(� )� F�1(� ):

In the two sample setting this quantity is naturally estimable by

�̂(� ) = Ĝ�1
n (� )� F̂�1

m (� )

where Gn and Fm denote the empirical distribution functions of the treatment and
control observations, based on n and m observations respectively. If we formulate the
quantile regression model for the binary treatment problem as,

QYi
(� jDi) = �(� ) + �(� )Di(2.2)

where Di denotes the treatment indicator, with Di = 1 indicating treatment, Di = 0,
control, then we may estimate the quantile treatment e�ect directly.
In the case of two samples the corresponding optimization problem

(�̂(� )�̂(� ))0 = argmin
(�;�)2jR2

nX

i=1

�� (yi � �)

is separable in the parameters (�; � � �) and thus by the equivariance lemma of

Koenker and Bassett(1978) the solution (�̂(� ); �̂(� ))0 yields �̂(� ) = F̂�1
n (� ), corre-

sponding to the control sample, and

�̂(� ) = Ĝ�1
n (� )� F̂�1

n (� )

as claimed.
It may be noted that the quantile treatment e�ect (2.1), is intimately tied to the

traditional two-sample QQ-plot which has a long history as a graphical diagnostic
device. Note that the function �̂(x) = G�1

n (Fm(x))� x is exactly what is plotted in
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the traditional two sample QQ-plot. The connection between the Lehmann-Doksum
treatment e�ect and the QQ-plot is explored by Doksum and Sievers (1976), and Nair
(1982) for the the p-sample problem. Quantile regression may be seen as a means of
extending the two-sample QQ plot and related methods to general regression settings
with continuous covariates.
When the treatment variable takes more than two values, this interpretation re-

quires only minor adaptation. In the case of p distinct treatments, we can write

QYi
(� jDij) = �(� ) +

pX

j=1

�j(� )Dij

where Dij = 1 if observation i received the jth treatment and Dij = 0 otherwise.
Here �j(� ) constitutes the quantile treatment e�ect connecting the distribution of
control responses to the responses of subjects under treatment j. If the treatment
is continuous as, for example, in dose-response studies, then it is natural to consider
the assumption that the e�ect is linear, and write,

QYi
(� jxi) = �(� ) + �(� )xi:

We assume thereby that the treatment e�ect, �(� ), of changing x from x0 to x0+1 is
the same as the treatment e�ect of an alteration of x from x1 to x1 + 1: Interpreted
in this fashion the quantile treatment e�ect o�ers a natural extension to continuously
varying treatments of the Lehmann-Doksum formulation for the discrete case.

2.3. Transformation Equivariance of Quantile Regression. In the quantile re-
gression model, for any monotone function, h(�), we have,

Qh(T )(� jx) = h(QT (� jx));
which follows immediately from observing that

P (T < tjx) = P (h(T ) < h(t)jx):
This equivariance to monotone transformations of the conditional quantile function is
a crucial feature, allowing us to decouple the potentially con
icting objectives of trans-
formations. This equivariance property is in direct contrast to the inherent con
icts in
estimating transformation models for conditional mean relationships. Since, in gen-
eral, E(h(T )jx) 6= h(E(T jx)) the transformation alters in a fundamental way what is
being estimated in ordinary least squares regression. For least squares methods the
\transform both sides" approach of Carroll and Ruppert (1988) accomplishes a similar
objective. A stronger form of equivariance to monotone transformations is exhibited
by the maximum regression depth estimators recently introduced by Rousseeuw and
Hubert(1999). While o�ering an intriguing new in
uence robust approach to quantile
regression, these estimators currently impose a prohibitive computational burden for
applications of the size of the present undertaking.
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2.4. Robustness. Robustness to distributional assumptions is an important consid-
eration throughout survival analysis, so it is important to emphasize that quantile
regression inherits the robustness of the ordinary sample quantiles. The estimates
and the associated inference apparatus have an inherent distribution-free character
since quantile estimation is in
uenced only by the local behavior of the conditional
distribution of the response near the speci�ed quantile. Other semi-parametric meth-
ods like the Cox model are also distribution free in certain respects. But it is typical
that these models assume that there is some distributional feature like the baseline
hazard function in the Cox model that is common, up to a location/scale shift for all
values of the covariates. In quantile regression there is considerably more 
exibility
in the sense that the shape of the conditional density may change with the covariates.
The robustness of the quantile regression estimates with respect to perturbations

of the response observations may be clari�ed by considering the following thought
experiment. Suppose that we have �tted a plane representing the � th conditional
quantile surface of Y jX, and now consider altering the response observations fyig in
such a way that we don't alter the sign of the residuals. Any of the y observations may
be arbitrary altered, subject to this restriction, without altering the initial solution.
While this may, at �rst thought, appear astonishing, a second thought assures us
that without it we couldn't have a quantile analogue. This is a crucial aspect of
interpreting quantile regression. Only the signs of the residuals matter in determining
the e�ect of the responses on the quantile regression estimates, and thus outlying
responses in
uence the �t only in so far as they are either above or below the �tted
hyperplane, but how far above or below is irrelevant. Other modeling approaches in
which covariates are speci�ed to induce a location shift in some other functional of the
conditional distribution are apt to be considerably more sensitive to contamination
of the model.

2.5. Inference in Quantile Regression. The asymptotic behavior of the quantile
regression process f�̂(� ) : � 2 (0; 1)g closely parallels the theory of ordinary sample
quantiles in the one sample problem. Koenker and Bassett (1978) show that in the
classical linear model,

yi = xi� + ui

with ui iid from dfF; with density f(u) > 0 on its support fuj0 < F (u) < 1g, the
joint distribution of

p
n(�̂n(�i)� �(�i))mi�1 is asymptotically normal with mean 0 and

covariance matrix 
 
 D�1. Here �(� ) = � + F�1
u (� )e1; e1 = (1; 0; : : : ; 0)0; x1i �

1; n�1
P

xix
0
i ! D; a positive de�nite matrix, and


 = (!ij = (�i ^ �j � �i�j)=(f(F
�1(�i))f(F

�1(�j))):

When the response is conditionally independent over i, but not identically dis-
tributed, the asymptotic covariance matrix of �(� ) =

p
n(�̂(� ) � �(� )) is somewhat

more complicated. Let
�i(� ) = xi�(� )
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denote the conditional quantile function of y given xi, and fi(�) the corresponding
conditional density, and de�ne,

Jn(�1; �2) = (�1 ^ �2 � �1�2)n
�1

nX

i=1

xix
0
i;

and

Hn(� ) = n�1
X

xix
0
ifi(�i(� )):

Under mild regularity conditions on the ffig's and fxig's, we have joint asymptotic
normality for vectors (�(�i); : : : ; �(�m)) with mean zero and covariance matrix

Vn = (Hn(�i)
�1Jn(�i; �j)Hn(�j)

�1)mi=1:

This \Huber sandwich" is the quantile regression version of the Eicker-White het-
eroscedasticity consistent covariance matrix for the least squares estimator.
In the present application we will estimate fi(�i(� )) using

f̂i(�̂i(� )) = maxf0; 2hn=(x0i(�̂(� + hn)� �̂(t� hn))� ")

where hn = n�1=3��1(1 � �=2)2=3((3=2�2(0))=(2��1(� )2 + 1))1=3 is a bandwidth se-
lected in accordance with the theory developed in Hall and Sheather (1989). This
is a version of an estimator originally suggested in Hendricks and Koenker (1992).
Note that the Op(n�1=3) bandwidth is chosen to optimize performance of the sparsity
estimate for purposes of Studentization; conventional theory would suggest Op(n�1=5)
if the objective were minimal mean squared error estimation of the sparsity function
itself. There are several alternative schemes for conducting inference in the context
of quantile regression. Rank based methods of inference for quantile regression are
surveyed in Koenker (1996), and various approaches to inference based on resampling
methods are discussed in Parzen, Wei and Ying (1994), Horowitz (1999), Buchinsky
(1998) and Hahn (1995). Koenker and Machado (1999) discuss general goodness of
�t measures and related inference methods based on the entire quantile regression
process.

3. Quantile Regression Models for Survival Analysis

A wide variety of survival analysis models, as noted by Doksum and Gasko (1990),
may be written as

h(Ti) = x0i� + ui

where h is a monotone transformation, Ti is an observed survival time, xi is a vector
of covariates, � is an unknown parameter vector in jRp and fuig are assumed to be iid
with distribution function F: The quantile regression approach to survival analysis
can be seen as a natural extension of the transformation model formulation.
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3.1. Three Examples. We illustrate this transformation model formulation of sur-
vival models with three leading examples.
Example 1. For the Cox (1972) proportional hazard model with

log �(tjx) = log �0(t)� x0�

we can express the conditional survival function in terms of the integrated baseline
hazard �(t) =

R t
0
�0(s)ds as,

log(� log(S(tjx))) = log �0(t)� x0�

and thus write the model as

log �0(T ) = x0� + u

for ui iid with extreme value distribution F (u) = 1 � e�eu .

Example 2. For the Bennett (1983) proportional odds model where the conditional
odds of death �(tjx) = F (tjx)=(1� F (tjx)) are written as,

log �(tjx) = log �0(t)� x0�;

Doksum and Gasko (1990) show that,

log �0(T ) = x0� + u

for u iid logistic with F (u) = (1 + e�u)�1:

Example 3 In the accelerated failure time model we have

log(Ti) = x0i� + ui

with the distribution of ui unspeci�ed. A special case is the Cox model with Weibull
baseline hazard, but in general we have

P (T > t) = P (eu > te�x�)

= 1� F (te�x�)

where F (�) denotes the distribution function of eu, and therefore, in this model,

�(tjx) = �0(te
�x�)e�x�

where �0(�) denotes the hazard function corresponding to F . In e�ect, the covariates
act to rescale time in the baseline hazard.
A common feature of all of the foregoing models is the iid error assumption which

implies that for some appropriate choice of h(�) we can express the transformed sur-
vival times as a pure location shift model. Thus if we were to formulate a family of
conditional quantile models for h(T ) we would have a family of parallel conditional
quantile functions,

Qh(T )(� jx) = x0� + F�1
u (� ):
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for � 2 (0; 1): The covariate e�ect x0� shifts the location of the conditional density
of h(T ), but the covariates have no e�ect on the shape of the conditional density, or
even on its dispersion. This is obviously highly restrictive, and it seems only prudent
to explore alternative models which relax this strict form of the location shift model.

3.2. Transformation Models and Quantile Regression. As in the ordinary lin-
ear regression model, one avenue of exploration is to consider a family of linear models
for the conditional quantile functions of the transformed survival time h(T ),

Qh(T )(� jx) = x0�(� )

where, potentially, all of the parameters composing the vector �(� ) may depend upon
the quantile, � 2 (0; 1); of interest. The prior models constitute special cases in which
all the dependence on � is concentrated in the intercept coe�cient, leaving the slope
parameters independent of �: As emphasized by Chaudhuri, Doksum and Samarov
(1997), the quantile regression vector �(� ) is \a unifying concept that represents the
coe�cient vectors in the standard linear model, the Cox model, the proportional odds
models, the accelerated failure time model and so on."
By allowing the slope coe�cients of �(� ) to depend upon � , we can introduce

various forms of heterogeneity in the conditional distribution of h(T ) over the space of
covariates. A particularly simple, yet important, case is the family of linear location-
scale models

h(Ti) = x0i� + (x0i
)ui

for ui iid from F ; in this model we have the family of quantile regression models,

Qh(T )(� jx) = x0� + x0
F�1
u (� )

= x�(� )

where �(� ) = � + 
F�1(� ): In this case all the coordinates of �(� ) depend upon �
in the same way, up to a location and scale shift. This model captures a variety
of plausible models of heteroscedasticity. More general forms of � -dependence are
obviously possible and re
ect, as we shall see, more complicated notions of how the
covariates in
uence the conditional distribution of the survival times. Particular
applications may suggest reasons for focusing attention on restricted domains for
�(� ). For example, in clinical trials one may be especially interested in treatment
e�ects on long-term survival and thus wish to focus only on the upper tail of �(� ):
The quantile regression framework permits this without worry that some global aspect
of the model speci�cation is unduly prejudicing the results in the region of particular
interest.
An important consideration in the formulation of parametric quantile regression

models is to �nd speci�cations for which the function

QT (� jx) = x0�(� )
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can be assured to be monotone in � over the full support of the design. In the simplest
bivariate case where, x = (1; z)0,

QT (� jx) = �0(� ) + z�1(� );

if z has support on the entire real line, then unless �1(� ) is constant, i.e. independent
of � , we will have crossing of the conditional quantile functions and thus violations of
the monotonicity requirement. Of course, in practice, we have bounded support for
the fxig's so this may be avoidable. At the centroid of the design �x = n�1

P
xi, it

can be shown, see Theorem 2.1 of Bassett and Koenker (1982)), that

Q̂T (� j�x) = �x0�̂(� )

must be monotonic in � , and therefore Q̂T (� jx) must be monotone in � in a neigh-
borhood of x = �x. Thus, even though quantile regression functions are estimated
independently over �/s, incidence of crossing generally occur only in outlying regions
of the observed covariate space.
In cases where crossing of quantile regression curves appears to be a serious prob-

lem, it is often possible to introduce additional covariates to alleviate the problem.
For example, in the simple bivariate setting, it is frequently the case that the con-
ditional distribution is more dispersed for large values of z, and less dispersed for
values of z near zero. However, if z can take negative values one must be careful to
consider the possibility that dispersion is also large when z is very negative. In this
case introducing a quadratic e�ect in z permits the conditional quantile functions
to bend at the origin to accomodate the hypothesized behavior, and thereby avoid
crossing. He (1997) describes an approach that constrains quantile regression curves
not to cross by imposing stronger, location-scale, structure on the underlying model
for the conditional quantile functions.

3.3. Survival and Hazard Functions. Having described how to estimate the pa-
rameters of a entire family of conditional quantile functions of a transformed response
h(T ), we may now brie
y consider how to go about translating these estimates into
estimates of conditional survival and hazard functions. The conditional survival func-
tion,

ST (tjx) = P (T > tjx) = 1 � FT (tjx)
represents the proportion of those with X = x surviving up to time t. In contrast,
quantile regression provides an estimate of the inverse of FT (tjx), i.e.

QT (� jx) = infftjFT(tjx) � �g;
the earliest time by which the proportion � have died. Even for the transformation
model, obtaining the conditional survival function from the conditional quantile func-
tion is absolutely transparent: we have estimated the conditional quantile functions,

Q̂h(T )(� jx) = x0�̂(� )
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and we have seen that

Qh(T )(� jx) = h(QT (� jx))
so we may estimate the conditional quantile functions of the untransformed response
by,

Q̂T (� jx) = h(xi�̂(� )):

Then, for any vector of the covariates, x, instead of plotting conditional quantiles as
� 7! Q̂T (� jx), we may plot the conditional survival function as, Q̂T (� jx) 7! 1 � � .
As we have noted in Section 2.2, we can interpret the quantile regression parameters
as estimates of the horizontal distance between survival curves for subjects di�ering
by one unit in a single covariate and conditional on �xed values for all the other
covariates.
For the conditional hazard function

�T (tjx) = fT (tjx)=ST (tjx) = �d log ST (tjx)=dt:
we need to di�erentiate log Ŝ(tjx), and we may use,

�̂(Q̂(� jx)jx) = ��=�Q̂(� jx)
1 � �

using a grid of evaluations for � : 0 < �1 < ::: < �m < 1. Note that in the unsmoothed
case, since the numerator of the expression for �̂ estimates fT (tjx) between successive
time points ti = Q̂T (�ijx) and ti+1 = Q̂T (�i+1jx) it is advisable to evaluate the denom-
inator at the midpoint 1� (�i+ �i+1)=2, and do the plotting versus, �ti = (ti+ ti+1)=2.
Thus, we propose plotting �ti versus

�̂(�tijx) = ��=�Q̂(� jx)
1 � (�i + �i+1)=2

:

This approach enables us to estimate the conditional hazard function for a fully
general form of the covariate vector, x. Since this derivative is inevitably considerably
rougher than the estimates Q̂ and Ŝ, it may be reasonable to do some additional
smoothing to obtain a �nal estimate, say ~�(tjx).
In contrast to life-table methods that restrict consideration to a few discrete val-

ues of the covariates, or more strongly parametric models like proportional hazard,
quantile regression methods o�er a more 
exible parametric alternative that seeks to
accomodate the best features of both approaches. It is important to emphasize at this
point that the foregoing quantile regression estimates are considerably more 
exible
than the conventional survival models that take the iid error form of the transfor-
mation model. Because the linear predictor x0� appears as a pure location shift of
the transformed response, h(T ), in these models, they are forced to have quantile
treatment e�ects for the various covariates that are all proportional to one another.
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To illustrate this consider the proportional hazard model, where,

S(tjx) = S0(t)

(x)

with 
(x) = e�x0�, and S0(t) denoting the baseline survival function. The quantile
functions for the survival time T in this model is thus,

QT (� jx) = S�1
0 ((1� � )1=
(x))

and therefore,

@QT(� jx)
@xi

=
(1 � � ) log(1� � )
(x)

S0
0(QT (� jx)) �i:

So, in the proportional hazard model the marginal e�ects of the various covariates,
viewed as functions of � , are all identical up to the scalar factors determined by the
components of the vector, �. In particular, since the � -dependent factor multiplying
�i is positive, it is clear that the implicit quantile treatment e�ects for the Cox model
must have the same sign as �i for all � , and thus the model inherently prohibits any
form of quantile treatment e�ect that would entail crossings of the survival functions
for di�erent settings of the covariates.

4. Data

In Carey et al (1992) three distinct experiments are analyzed, two of which in-
volved cohorts of 20,000 med
ies raised in solitary con�nement. Our investigation
is restricted to the largest of the three experiments in which roughly 1.2 million
med
ies were raised in cages each initially containing about 7,200 individuals. The
experiments were conducted in a large rearing facility in Metapa, a city located in the
Chiapas region of Mexico. Technical details on precise experimental conditions are
available in Carey et al (1992) and Vargas (1989). The basic conditions, as described
by Carey et al (1995) were as follows:

\...Pupae were sorted into one of �ve size classes using a pupal sorter.
This enabled size dimorphism to be eliminated as a potential source of sex-
speci�c mortality di�erences. Approximately, 7,200 med
ies (both sexes)
of a given size class were maintained in each of 167 mesh covered, 15 cm
� 60 cm � 90 cm aluminum cages. Adults were given a diet of sugar and
water, ad libitum, and each day dead 
ies were removed, counted and their
sex determined ..."
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be able to explore the e�ects of these several new in
uences on survival prospects as
well as addressing some criticisms of the prior analyses of these data. Table 4.1 o�ers
some basic descriptive statistics about these variables and the experimental design.

Sex: The sex of each 
y was determined and recorded at death.
Size: Pupae were sorted into �ve size classes (4-8mm) using a pupal sorter, en-
abling us to control for size di�erneces as a cause of mortality di�erences. Pupae
size is strongly linked to adult size of the 
ies. Each cage contained 
ies of only
one size.

Density: Initial density of 
ies varied considerably across cages. The e�ect of
density on longevity has proven to be a somewhat controversial aspect of the
interpretation of the experimental results. For a discussion of the e�ect of den-
sity on longevity in the broader context of other med
y experiments, and the
rationale for focusing attention on initial density, see Carey, Liedo, and Vaupel
(1995).

%Males: The initial proportion of males in each cage also varies considerably
across cages and merits investigation.

Batch: Pupae were raised in 8 distinct batches with potentially heterogeneous
composition. As a consequence we have investigated the possibility of a con-
founding \batch e�ect". As with Size, cages were allocated pupae from only
one batch.

Because survival was recorded in days for males and females separately, and all
other covariates were associated with the 167 cages, the data set can be collapsed
to 19072 observations and their associated cell counts. This feature leads to some
gains in e�ciency from a computing standpoint since weighting reduces the e�ective
sample size.
In addition to the statistically almost irresistible attraction of the sheer size of the

Carey et al (1992) med
y survival experiment, it has the uncommon virtue of being
free of censoring. It is thus well suited to classical life table methods of analysis
illustrated above. Such methods are, however, not well suited to modeling the e�ects
of continuously measured covariates, so we turn now to a description of the quantile
regression formulation.

5. A Quantile Regression Survival Analysis

Our basic model for analysing the med
y survival data takes the traditional accel-
erated failure time form,

Qlog(T )(� jx) = x0�(� ):(5.1)

We model the conditional quantile functions of the logarithm of survival times as
linear in the observed covariates, x. The choice of the log transformation is primarily
dictated by ease of interpretability and the desire to achieve linearity in the para-
metric speci�cation. Multiplicative covariate e�ects are widely accepted throughout
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survival analysis, and certainly seem more plausible in the present application than
the assumption of additive linear e�ects. As we have observed in Section 2.1 above,
the conditional quantile functions of other transformations of T can be recovered im-
mediately from the model (5.1). In particular, we may write the family of conditional
quantile functions for the untransformed survival time T as,

QT (� jx) = expfx0�(� )g:
Mortality (hazard) rates may be recovered by numerical di�erentiation as described
above.
We will consider two distinct models. The �rst includes the covariates: sex, size,

density, and %male as additive linear e�ects on log(T ). In our second model we
introduce the batch e�ect to control for possible heterogeneity in the pupae allocated
to cages in the Carey et al experiment. In each case we estimated models for the
44 quantiles: f:01; :05; :10; :::; :95; :96; :::; :99; :991; :::; :999; :9991; :::; :9999g. A variety
of other models were explored, but none o�ered convincing evidence of e�ects not
represented in the two models that we now present.

5.1. Model A: No Batch E�ects. Figure 5.1 provides a concise visual summary
of the results for the �rst model that omits the batch e�ect. There are �ve estimated
coe�cients. The lightly shaded region in each panel represents a 90 percent pointwise
con�dence band for each coe�cient. The intercept panel of the �gure may be inter-
preted as the estimated quantiles of log survival time for male 
ies of mean size when
evaluated at the experimental mean cage density and the mean initial proportion of
males.
The gender e�ect depicted in the second panel represents the estimated di�erence

in the quantiles of log survival times for female versus male 
ies holding the other
factors constant. It is clear that this e�ect is considerably more complicated than a
simple location shift. Unlike human populations in which females generally outlive
males, male med
ies have a distinct advantage over females up to about the 95th
percentile of longevity. For the longest lived �ve percent of the population, females
appear to have a distinct advantage. More explicitly, we see that the disadvantage
of females is maximal near the median, where a coe�cient of -0.2 may be translated
into a multiplicative e�ect on the median quantile of longevity of exp(�0:2) � :82,
implying that the male median lifespan of about 22 days corresponds roughly to a
median lifespan for females of 18 days. At the opposite extreme, the coe�cient of 0.1
in the extreme right tail of the distribution of survival times implies that females have
an exp(0:1) � 1:1, or 10 percent longer life span among the oldest old. This cross-over
in gender survival distributions is a important �nding of the med
y experiments and
we will return to it later in this Section.
The density e�ect illustrated in the third panel of Figure 5.1 is particularly in-

teresting in view of some of the criticism directed at the conclusions of Carey et al

(1992) It has been suggested by Kowald and Kirkwood(1993) as well as Nusbaum et
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Figure 5.1. This �gure illustrates the quantile regression results for
Model A. There are 5 coe�cients estimated. The lightly shaded region
is a 90 percent pointwise con�dence band for the corresponding coe�-
cient. The horizontal line at zero represents the null hypothesis of no
e�ect for each covariate.

al (1993) that the initially high density of 
ies in the Carey experiment may have
contributed to higher mortality rates for younger 
ies and thus distorted the pattern
of mortality rates portrayed by Carey et al. Indeed Nusbaum et al suggest,

\The results of Carey et al may arise from an ecological dependence of

y mortality rate on population density, not because of some undiscovered
property of extremely old 
ies."

The evidence from Figure 5.1 does not seem to support the Nusbaum et al hypothesis.
Over the range of densities observed in the cages of the Carey experiment, initial
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density seems to exert a strongly positive e�ect on longevity. The density e�ect
appears to be quite constant over the entire range of quantiles. This location shift
e�ect in the model for log T implies, of course, a scale shift in T due to density. The
standard deviation of cage density weighted by the cell counts is roughly .127, so the
predicted e�ect of increasing density by one standard deviation is to increase T by a
factor of expf:5 � :127g = 1:065, or 6.5 percent. Note that density has been rescaled by
10,000 to facilitate reporting of the quantile regression results thoughout this Section.
Given the disparity in the sex ratios across cages it seemed interesting and worth-

while to explore whether the initial proportion of males in a cage exerted any e�ect
on survival chances. To our surprise, we found that 
ies in cages with a higher pro-
portion of males tended to live signi�cantly longer. This e�ect is strongest above the
median where the coe�cient is roughly 1.3. Since the standard error of the %male
variable is 0.046, this implies that a one standard deviation increase in the propor-
tion of males increases the third quartile of the survival distribution by roughly 6.2
percent. Clearly, below the median the e�ect is considerably weaker. It is natural
to ask whether this e�ect is shared equally by males and females. Our attempt to
explore this question by adding an interaction e�ect between the sex and %male vari-
ables yielded no signi�cant interaction over the range of quantiles estimated, thus
suggesting that both sexes bene�ted from an excess of males in the initial population.
It is also natural to ask whether there is an \optimal" density level or proportion of
males. To explore this we attempted to �t quadratic terms in these variables, but we
were unable to identify a signi�cant quadratic e�ect in either case. Of course, it is
quite plausible that further experimentation involving a considerably greater range
for density, or the proportion of males, might reveal such e�ects.
Finally, we may consider the e�ect of size on longevity. Recall that there are 5

initial size categories corresponding to pupal sizes 4mm, 5mm, 6mm, 7mm and 8mm.
There does appear to be a slight advantage in being larger in the lower quantiles of
the survival distribution, and perhaps a slight disadvantage in being larger in the
upper quantiles, but neither of these e�ects is statistically very compelling. Observe
that the horizontal line at �(� ) = 0 representing the null e�ect rarely emerges from
the con�dence band for this group of coe�cients.

5.2. Model B: The Batch E�ect. The other variables are exactly as in Model
A. Results, depicted in Figure 5.2, exhibit some important di�erences from those
reported for Model A.
First, we should observe that the shape and signi�cance of the gender e�ect is es-

sentially unchanged by the new speci�cation. Males retain their substantial survival
advantage up to the 95th percentile of the survival distribution, but as in Model A
female survival prospects exceed males' in the upper 5 percent of the distribution.
The e�ect of initial cage density has, however, changed substantially. There is still a
signi�cant positive e�ect of higher density, but only in the lower third of the distribu-
tion. In the upper tail the e�ect is negligible. The proportion-of-males e�ect is also
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Figure 5.2. This �gure illustrates the quantile regression results for
Model B. There are 12 coe�cients estimated. The lightly shaded region
is again a 90 percent pointwise con�dence band for the corresponding
coe�cient. Again, the horizontal line at zero represents the null hyy-
pothesis of no e�ect for each of the covariates.

substantively altered by the introduction of the batch e�ect. While in Model A this
e�ect was weak in the left tail and large, �̂(� ) � 1:3, above the median, in Model B

the e�ect appears roughly constant at about �̂(� ) � 0:5, over the entire distribution.
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We believe that these methods will also eventually prove useful in analyzing clin-
ical trials where researchers may wish to focus, for example, on long-term survival
prospects, without imposing stringent assumptions concerning the nature of short
run treatment e�ects. This point is graphically illustrated in the Doksum's (1974)
discussion of guinea pig experiments where injection of tubercle bacilli had an appar-
ently bene�cial e�ect on short-run survival prospects, but had disastrous long-term
survival consequences. Such �ndings are di�cult to reconcile with many conventional
survival models that implicitly assume that covariate e�ects exert a pure location
shift e�ect on some monotone transformation of survival times. The methods also
have a natural applicability in engineering reliability analysis and quality assurance.
We believe that the Lehmann-Doksum quantile treatment e�ect is a useful way

to view covariate e�ects in a wide range of quantile regression applications. By
highlighting the possibility that covariates can alter not only location and scale, but
may change the entire shape of the conditional distribution as well, this view opens
broadens the scope of empirical analysis. In the two-sample treatment control model,
Doksum suggests that we may interpret control subjects in terms of a latent char-
acteristic: a control subject may be called frail if he is prone to die at an early age,
and robust if he is prone to die at an advanced age. This latent characteristic is
thus implicitly indexed by � , the quantile of the survival distribution at which the
subject would appear if untreated, i.e., (YijDi = 0) = �(� ): And the treatment, under
the Lehmann model, is assumed to alter the subjects control response, �(� ), making
it �(� ) + �(� ) under the treatment. If the latent characteristic, say, propensity for
longevity, were observable ex ante, then we might view the treatment e�ect �(� ) as
an explicit interaction with this observable variable. However, in the absence of such
an observable variable, the quantile treatment e�ect may be regarded as a natural
measure of the treatment response. Of course, there is no way of knowing whether
the treatment actually operates in the manner proscribed by the Lehmann model.
In fact, the treatment may miraculously make weak subject especially robust, and
turn the strong into jello. All we can observe from experimental evidence, however,
is the di�erence in the two marginal survival distributions, and so it is natural to
associate the treatment e�ect with the di�erence in the corresponding quantiles of
the two distributions. This is what the quantile treatment e�ect does.
In economics, a common application of this type involves investigations of the

e�ect of years of schooling on observed wages. In this literature, it is common to
identify unobserved components of wage determination with terms such as \spunk"
or \ability" and thus these terms play the same role as \propensity for longevity"
in survival examples. The quantile treatment e�ect, �(� ), may be interpreted as
an interaction e�ect between unobserved \ability" and the level of education. This
interpretation has been recently explored in work of Arias, Hallock and Sosa (1999)
in a study of the earnings of identical twins.
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It would be highly irregular to conclude a paper on methods of analysis of sur-
vival data without any mention of the word \censoring". In the Carey et al med
y
experiment we have the rare luxury of complete data, but this is obviously atypi-
cal. Fortunately, there is already a rather extensive literature on quantile regression
with censoring. Powell (1986) treats the case of �xed censoring common in many
econometric applications. Buchinsky and Hahn (1998) treat certain forms of random
censoring, as does Lipsitz et al (1998). Fitzenberger (1998) and Buchinsky (1998)
provide recent surveys of this literature.
Finally, we should make some concluding comments about what we have learned

about med
ies. Even a brief exposure to fruit
ies seems to be su�cient to begin to
see them as \little people with wings," so there is an irresistible temptation to o�er
some pithy life lessons: Males are tough, but only until 40. Crowds are salutory,
especially of guys. Life gets safer, but only after 60.
More seriously, the central �ndings of Carey et al (1992) that mortality rates de-

cline at advanced ages, and that female survival prospects are better than males in
the upper tail of the distribution are strongly sustained in estimated models that in-
corporate the e�ects of pupal size, initial cage density, the initial proportion of males,
and pupal batches. We �nd that higher initial cage density, contrary to some early
criticism of the Carey et al �ndings, exerts a positive e�ect on survival at least over
the range of densities observed in the experiment. Rather surprisingly, the initial
proportion of males also has a positive e�ect on survival prospects. The e�ect of size
is rather weak, but there is some evidence, particularly from Model B, that larger

ies have better early survival prospects, but poorer survival prospects at advanced
ages. The most intriguing �nding { that mortality actually declines at advanced age,
survives after conditioning on a larger set of covariates, and thus clearly warrants the
extensive further investigation it is receiving.
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