REAPPRAISING MEDFLY LONGEVITY:
A QUANTILE REGRESSION SURVIVAL ANALYSIS

ROGER KOENKER
AND
OLGA GELING

ABsTRACT. Chaudhuri, Doksum and Samarov (1997) have recently stressed the
usefulness of the quantile regression formulation for survival analysis and for trans-
formation models, more generally. In this paper, we explore the use of quantile
regression in survival analysis by reanalysing a large experimental study by Carey,
Liedo, Orozco, and Vaupel (1992), that monitored age-specific mortality in a pop-
ulation of roughly 1.2 million Mediterranean fruit flies (Ceratitis Capitata). The
quantile regression approach appears useful in refining several of the conclusions
drawn from this study including the apparent decline in mortality rates at advanced
ages, and the gender cross-over effect in survival functions for medflies.

1. INTRODUCTION

The biology of aging has attained a robust adolescent stage as a scientific disci-
pline and seems destined for a prolonged maturity. The enduring human fascination
with “intimations of immortality,” nurtured by modern developments in cell biology,
provides a powerful impetus for the field. From a statistical vantage point, one of
the most exciting recent developments in this emerging field involves large scale de-
mographic experiments on lower animals designed to explore features of the survival
distribution and determinants of longevity. The largest, and most influential of these
is the work of Carey, Liedo, Orozco, and Vaupel (1992). The primary experiment de-
scribed there consisted of monitoring age-specific mortality in a population of roughly
1.2 million Mediterranean fruit flies (Ceratitis Capitata). Several findings from this
experiment challenged notions that might be regarded as central to the conventional
wisdom of population biology, and demography more generally:

o Mortality rates actually declined at the oldest observed ages contradicting the
view that aging is an ineluctable, monotone process of senescence. In the most
extreme form of the traditional view the survival distribution is assumed to take
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2 REAPPRAISING MEDFLY LONGEVITY

the Gompertz form so the mortality rate (hazard) is log linear. This view is
clearly contradicted by the medfly experiments.

o The right tail of the survival distribution was, at least by human standards,
remarkably long. By 33 days 90% of the flies had died, by 50 days 99% were
dead, but 120 (0.01%) lived to 86 days and 12 (0.001%) lived to 146 days. This
finding casts doubt on the common practice of characterizing species-specific
maximum life-spans, shifting the focus instead to the analysis of tail behavior
of the survival distribution. See Thatcher (1999) for an extended discussion of
related evidence for human populations.

o The experiment provided, really for the first time, strong evidence for a crossover
in gender specific mortality rates for a non-human population. In medflies,
Carey et al (1995) report that females have higher mortality rates than males
up to roughly 20 days, while from 20 to 60 days males have higher rates than
females, and after 60 days the rates are essentially indistinguishable. These
results suggest a considerably more complicated view of adaptability of the sexes
for survival at various stages of the life cycle than is provided by prior literature.

The statistical analyses employed in prior work on the medfly data are based largely
on standard life table methods, as described, for example, in Carey (1993). Life table
methods are well adapted for the study of the effects of gender and other discrete
covariates on survival and mortality, however, they are less well suited to investigating
the effect of continuous covariates like population density, a variable which has played
a significant role subsequent debate over the interpretation of the experimental results.

In contrast, parametric and semiparametric survival models while accomodating a
broader class of covariates typically impose stringent conditions on how the covariates
are permitted to influence survival prospects. For example, in the accelerated failure
time model covariates are assumed to exert a pure location shift effect on log survival
times, while in the Cox proportional hazard model the covariates exert a pure location
shift on a transformation of the baseline survival probability evaluated at the random
survival time. In both cases, the underlying assumption that the covariates only
affect the location, not the shape of the distribution of transformed survival times,
strongly restricts the nature of their impact. This is particularly unfortunate in the
analysis of the medfly data because interest is focused so strongly on the upper tail
of the survival distribution. It is highly undesirable that inferences about the effect
of covariates on upper tail behavior should be unduly influenced by global features of
the model specification.

In this paper we describe a unified new approach to the analysis of survival data
of this type using the quantile regression methods introduced in Koenker and Bas-
sett (1978). Quantile regression offers a more flexible semiparametric approach to
survival analysis. Rather than making global assumptions about how covariates in-
fluence transformed survival times, quantile regression enables us to focus on the
estimation of particular local features of the conditional survival distribution. Thus,
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we may explore the effect of covariates on just the upper tail of the survivals without
risk that we may be unduly prejudicing the results by modeling assumptions about
the rest of the conditional distribution. Chaudhuri, Doksum and Samarov (1997) have
also recently stressed the usefulness of the quantile regression formulation for survival
analysis and transformation models, more generally. Their treatment emphasizes the-
oretical aspects of average-derivative estimation. Here we emphasize other practical
methodological issues as well as some substantive data analytic findings revealed by
the new approach. We hope that these results will encourage others to explore these
methods in related applications.

In the next Section we provide a brief, self-contained introduction to quantile re-
gression methods. Section 3 describes the link between the quantile regression model
and some common survival analysis models. Section 4 introduces the data to be an-
alyzed. Section 5 presents the analysis. And some concluding remarks are collected
in Section 6.

2. INTRODUCTION TO QUANTILE REGRESSION

Quantile regression is gradually evolving into a comprehensive approach to the
statistical analysis of linear and nonlinear response models for conditional quantile
functions. Just as classical linear regression methods based on minimizing sums of
squared residuals enable one to estimate models for conditional mean functions, quan-
tile regression methods offer a mechanism for estimating models for the conditional
median function, and the full range of other conditional quantile functions. By sup-
plementing least squares estimation of conditional mean functions with techniques for
estimating an entire family of conditional quantile functions, quantile regression is ca-
pable of providing a more complete statistical analysis of the stochastic relationships
among random variables.

2.1. Quantiles via Optimization. One exceedingly simple idea underlies the ex-
tension of the sample quantiles to the more general contexts of linear, and nonlinear,
regression. This idea is just the observation that we can replace the notions of sort-
ing, ordering, and ranking that appear to be inherent in the definition of the ordinary
sample quantiles by an elementary optimization problem. Suppose that we have a
single sample S,, = {y1, ..., ¥, } and we minimize,

RO =3 prlys =€)

where p;(u) = u(7—I(u < 0)) is the piecewise linear “check function” of Koenker and

Bassett (1978), then the solution £(7) is a 7th sample quantile of S,,. The median case

where py/2(u) = 1|u] is well known, but the general case is easily seen by considering
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the directional derivatives of the function R,

Rat) = t#{y; > a} + (1 — D)#{y: < a}
R(a—=) = —(t#{y: > a} + (1 — D#{yi < a})

and noting that at a minimum R'(a4) > 0 requires that n7 lies between #{y; < a}

and #{y; < a}, and this in turn defines the 7th quantile. Now, just as we can extend
the notion of estimation of the unconditional sample mean defined as

ji = argmin Y (y; — p)’

to the estimation of linear conditional mean functions by solving,

B = argmin ¥ (y; - 219)”

we can extend the notion of univariate unconditional quantiles to the estimation of
linear conditional quantile functions by solving,

B(r) = argmin Y _ p,(yi — «}3).

Again the median version of this problem is well known, and has a long history. The
problem can be easily formulated as a linear program and simplex based methods pro-
vide efficient algorithms for most applications. See Koenker and d’Orey (1987,1993)
for further details. In large problems, say with n > 100,000 recent development of
interior point methods for linear programming offer substantial computational ad-
vantages. Exploiting these new developments and using some new preprocessing
methods, Portnoy and Koenker (1998) demonstrate that quantile regression compu-
tational speed is now comparable to least squares computational speed throughout
the range of problem dimensions observed in applications. Software for the Splus
and R programming environments for quantile regression is available from the URL
http://www.econ.uiuc.edu/ roger/research/rq/rq.html.

2.2. Quantile Regression Treatment Effects. The simplest formulation of quan-
tile regression is the two-sample treatment-control model, so we begin by reconsidering
a model of two-sample treatment response introduced by Lehmann and Doksum, a
model that provides a natural introduction to the interpretation of quantile regression
models.

Lehmann (1974) proposed the following model of treatment response:

“Suppose the treatment adds the amount A(x) when the response of the
untreated subject would be x. Then the distribution GG of the treatment
responses is that of the random variable X + A(X) where X is distributed
according to F.”
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Special cases obviously include the location shift model A(X) = Ag, and the scale
shift model A(x) = 0 X, but the general case is well adapted to the quantile regression
paradigm. If the treatment is beneficial in the sense that,

A(z) >0 for all x

then the distribution of treatment responses, (7, is stochastically larger than the dis-
tribution of control responses, F'. Thus, in the context of survival analysis for clinical
trials, for example, we would be able to say that the treatment was unambiguously
beneficial, however it is clear that we may encounter crossing of the survival functions
in which case the benefit of the treatment must be regarded as as ambiguous.
Doksum (1974) provides a thorough axiomatic analysis of this formulation of treat-
ment response, and shows that if we define A(x) as the “horizontal distance” between

F and G at z, so
Fz) = Gle + A(z))
then A(x) is uniquely defined and can be expressed as
(2.1) Alz) = G Y F(z)) — .
Thus, on changing variables so 7 = F/(x) we have the quantile treatment effect,
8(r) = A(F7Hr)) = G (1) = F(7).

In the two sample setting this quantity is naturally estimable by

o(r) = G () = £ (7)

where (7, and F,, denote the empirical distribution functions of the treatment and
control observations, based on n and m observations respectively. If we formulate the
quantile regression model for the binary treatment problem as,

(2.2) Qv.(T|D;) = a(r) 4+ 6(7)D;
where D; denotes the treatment indicator, with D; = 1 indicating treatment, D; = 0,

control, then we may estimate the quantile treatment effect directly.
In the case of two samples the corresponding optimization problem

(4(r)é(7)) = argmin s > ey 6

is separable in the parameters (a,6 — «) and thus by the equivariance lemma of
Koenker and Bassett(1978) the solution (&(7), 6(7)) yields &(r) = F'(7), corre-

sponding to the control sample, and

o(r) = G (r) = F7(7)
as claimed.

It may be noted that the quantile treatment effect (2.1), is intimately tied to the
traditional two-sample QQ-plot which has a long history as a graphical diagnostic
device. Note that the function é(x) = G (F,,(z)) —  is exactly what is plotted in
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the traditional two sample QQ-plot. The connection between the Lehmann-Doksum
treatment effect and the QQ-plot is explored by Doksum and Sievers (1976), and Nair
(1982) for the the p-sample problem. Quantile regression may be seen as a means of
extending the two-sample QQ plot and related methods to general regression settings
with continuous covariates.

When the treatment variable takes more than two values, this interpretation re-
quires only minor adaptation. In the case of p distinct treatments, we can write

Qv (7| Dij) = a(7) + Z@(T)Dz’j

where D;; = 1 if observation ¢ received the jth treatment and D;; = 0 otherwise.
Here 6;(7) constitutes the quantile treatment effect connecting the distribution of
control responses to the responses of subjects under treatment j. If the treatment
is continuous as, for example, in dose-response studies, then it is natural to consider
the assumption that the effect is linear, and write,

Qy,(T|zi) = a(7) + B(7):.

We assume thereby that the treatment effect, 5(7), of changing x from xg to 29+ 1 is
the same as the treatment effect of an alteration of x from z; to x; 4+ 1. Interpreted
in this fashion the quantile treatment effect offers a natural extension to continuously
varying treatments of the Lehmann-Doksum formulation for the discrete case.

2.3. Transformation Equivariance of Quantile Regression. In the quantile re-
gression model, for any monotone function, h(-), we have,

Qnery(7l2) = M(Qr(r]2)),
which follows immediately from observing that
P(T <tlx) = P(h(T) < h(t)|x).

This equivariance to monotone transformations of the conditional quantile function is
a crucial feature, allowing us to decouple the potentially conflicting objectives of trans-
formations. This equivariance property is in direct contrast to the inherent conflicts in
estimating transformation models for conditional mean relationships. Since, in gen-
eral, E(h(T)|x) # h(E(T|z)) the transformation alters in a fundamental way what is
being estimated in ordinary least squares regression. For least squares methods the
“transform both sides” approach of Carroll and Ruppert (1988) accomplishes a similar
objective. A stronger form of equivariance to monotone transformations is exhibited
by the maximum regression depth estimators recently introduced by Rousseeuw and
Hubert(1999). While offering an intriguing new influence robust approach to quantile
regression, these estimators currently impose a prohibitive computational burden for
applications of the size of the present undertaking.
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2.4. Robustness. Robustness to distributional assumptions is an important consid-
eration throughout survival analysis, so it is important to emphasize that quantile
regression inherits the robustness of the ordinary sample quantiles. The estimates
and the associated inference apparatus have an inherent distribution-free character
since quantile estimation is influenced only by the local behavior of the conditional
distribution of the response near the specified quantile. Other semi-parametric meth-
ods like the Cox model are also distribution free in certain respects. But it is typical
that these models assume that there is some distributional feature like the baseline
hazard function in the Cox model that is common, up to a location/scale shift for all
values of the covariates. In quantile regression there is considerably more flexibility
in the sense that the shape of the conditional density may change with the covariates.

The robustness of the quantile regression estimates with respect to perturbations
of the response observations may be clarified by considering the following thought
experiment. Suppose that we have fitted a plane representing the 7th conditional
quantile surface of Y| X, and now consider altering the response observations {y;} in
such a way that we don’t alter the sign of the residuals. Any of the y observations may
be arbitrary altered, subject to this restriction, without altering the initial solution.
While this may, at first thought, appear astonishing, a second thought assures us
that without it we couldn’t have a quantile analogue. This is a crucial aspect of
interpreting quantile regression. Only the signs of the residuals matter in determining
the effect of the responses on the quantile regression estimates, and thus outlying
responses influence the fit only in so far as they are either above or below the fitted
hyperplane, but how far above or below is irrelevant. Other modeling approaches in
which covariates are specified to induce a location shift in some other functional of the
conditional distribution are apt to be considerably more sensitive to contamination
of the model.

2.5. Inference in Quantile Regression. The asymptotic behavior of the quantile
regression process {B(T) : 7 € (0,1)} closely parallels the theory of ordinary sample
quantiles in the one sample problem. Koenker and Bassett (1978) show that in the
classical linear model,
yi = i+ u;

with u; iid from df F, with density f(u) > 0 on its support {u|0 < F'(u) < 1}, the
joint distribution of \/E(BH(TZ) — (7)), is asymptotically normal with mean 0 and
covariance matrix Q @ D™'. Here 3(7) = g+ F ' (7)er, e = (1,0,...,0),2y; =

L,n™' > a2l — D, a positive definite matrix, and
Q= (wij = (r A7y = 7)) [(JETH () (7))
When the response is conditionally independent over i, but not identically dis-

tributed, the asymptotic covariance matrix of £(7) = ﬁ(B(T) — B(7)) is somewhat
more complicated. Let

i) = a:8(7)
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denote the conditional quantile function of y given x;, and f;(-) the corresponding
conditional density, and define,

n
Jo(m1,m) = (M AT —mma)n™! Z i),
=1

and
Hy(r)=n"" Z wiw fi(&(T)).

Under mild regularity conditions on the {f;}’s and {z;}’s, we have joint asymptotic
normality for vectors (£(7;),... ,&(7x)) with mean zero and covariance matrix

Voo = (Ho (7)™ (i, 7 ) Ho (7)1

This “Huber sandwich” is the quantile regression version of the Eicker-White het-
eroscedasticity consistent covariance matrix for the least squares estimator.
In the present application we will estimate f;(&;(7)) using

N N

Fi&(r)) = max{0,2h, /(¢ B(r + hy) — B(t — hy)) — 2)

where h, = n=/2®71(1 — a/2)2/3((3/24%(0)) /(207" (7)? 4+ 1))'/3 is a bandwidth se-
lected in accordance with the theory developed in Hall and Sheather (1989). This
is a version of an estimator originally suggested in Hendricks and Koenker (1992).
Note that the O,(n~'/%) bandwidth is chosen to optimize performance of the sparsity
estimate for purposes of Studentization; conventional theory would suggest O,(n='/%)
if the objective were minimal mean squared error estimation of the sparsity function
itself. There are several alternative schemes for conducting inference in the context
of quantile regression. Rank based methods of inference for quantile regression are
surveyed in Koenker (1996), and various approaches to inference based on resampling
methods are discussed in Parzen, Wei and Ying (1994), Horowitz (1999), Buchinsky
(1998) and Hahn (1995). Koenker and Machado (1999) discuss general goodness of
fit measures and related inference methods based on the entire quantile regression
process.

3. QUANTILE REGRESSION MODELS FOR SURVIVAL ANALYSIS

A wide variety of survival analysis models, as noted by Doksum and Gasko (1990),
may be written as

where h is a monotone transformation, 7; is an observed survival time, x; is a vector
of covariates, 3 is an unknown parameter vector in R” and {u;} are assumed to be iid
with distribution function F. The quantile regression approach to survival analysis
can be seen as a natural extension of the transformation model formulation.
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3.1. Three Examples. We illustrate this transformation model formulation of sur-
vival models with three leading examples.
Fxample 1. For the Cox (1972) proportional hazard model with

log A(t|z) = log Ao(t) — 2’3

we can express the conditional survival function in terms of the integrated baseline

hazard A(t) = fg Ao(s)ds as,
log(— log(S(1[¢))) = log Ao(t) — ¢'f
and thus write the model as
log Ao(T) =2/ +u

for u; iid with extreme value distribution F(u) =1 —e™¢"

Fxample 2. For the Bennett (1983) proportional odds model where the conditional
odds of death , (t|x) = F(t|x)/(1 — F(t|z)) are written as,
log . (1]2) = los, 1) — 2/,
Doksum and Gasko (1990) show that,
log, o(T) =28+ u
for w iid logistic with F(u) = (1 4+ e™*)~'.

Example 3 In the accelerated failure time model we have
log(T};) = '3 + u;

with the distribution of u; unspecified. A special case is the Cox model with Weibull
baseline hazard, but in general we have

P(T >1t) = P(e* > te™*P)
= 1— F(te ™)
where F(-) denotes the distribution function of e*, and therefore, in this model,
Atz) = Ao(te™)e ™

where Ao(-) denotes the hazard function corresponding to F. In effect, the covariates
act to rescale time in the baseline hazard.

A common feature of all of the foregoing models is the iid error assumption which
implies that for some appropriate choice of h(-) we can express the transformed sur-
vival times as a pure location shift model. Thus if we were to formulate a family of
conditional quantile models for h(7T") we would have a family of parallel conditional
quantile functions,

Qnin(7lz) = 2'B+ F7N(7).
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for 7 € (0,1). The covariate effect 2/ shifts the location of the conditional density
of h(T), but the covariates have no effect on the shape of the conditional density, or
even on its dispersion. This is obviously highly restrictive, and it seems only prudent
to explore alternative models which relax this strict form of the location shift model.

3.2. Transformation Models and Quantile Regression. As in the ordinary lin-
ear regression model, one avenue of exploration is to consider a family of linear models
for the conditional quantile functions of the transformed survival time A(T'),

Quir(7|z) = 2'5(7)

where, potentially, all of the parameters composing the vector 3(7) may depend upon
the quantile, 7 € (0, 1), of interest. The prior models constitute special cases in which
all the dependence on 7 is concentrated in the intercept coefficient, leaving the slope
parameters independent of 7. As emphasized by Chaudhuri, Doksum and Samarov
(1997), the quantile regression vector 3(7) is “a unifying concept that represents the
coefficient vectors in the standard linear model, the Cox model, the proportional odds
models, the accelerated failure time model and so on.”

By allowing the slope coefficients of 3(7) to depend upon 7, we can introduce
various forms of heterogeneity in the conditional distribution of A(7T') over the space of
covariates. A particularly simple, yet important, case is the family of linear location-
scale models

WT;) = @B + (xly)ui

for u; 1id from F'; in this model we have the family of quantile regression models,

Query(Tlz) = o' 4 'y F(7)
= af(r)

where 3(1) = B + vF (7). In this case all the coordinates of 3(7) depend upon 7
in the same way, up to a location and scale shift. This model captures a variety
of plausible models of heteroscedasticity. More general forms of 7-dependence are
obviously possible and reflect, as we shall see, more complicated notions of how the
covariates influence the conditional distribution of the survival times. Particular
applications may suggest reasons for focusing attention on restricted domains for
B(7). For example, in clinical trials one may be especially interested in treatment
effects on long-term survival and thus wish to focus only on the upper tail of 3(7).
The quantile regression framework permits this without worry that some global aspect
of the model specification is unduly prejudicing the results in the region of particular
interest.

An important consideration in the formulation of parametric quantile regression
models is to find specifications for which the function

Qr(rlz) = 2'5(7)
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can be assured to be monotone in 7 over the full support of the design. In the simplest
bivariate case where, x = (1, z)’,

Qr(rlz) = Fo(T) + 2/1(7),
if z has support on the entire real line, then unless #1(7) is constant, i.e. independent
of 7, we will have crossing of the conditional quantile functions and thus violations of
the monotonicity requirement. Of course, in practice, we have bounded support for
the {x;}’s so this may be avoidable. At the centroid of the design z = n™' Yz, it
can be shown, see Theorem 2.1 of Bassett and Koenker (1982)), that
Qr(7|z) = 2'(7)

must be monotonic in 7, and therefore QT(T|:1;) must be monotone in 7 in a neigh-
borhood of # = z. Thus, even though quantile regression functions are estimated
independently over 7 /s, incidence of crossing generally occur only in outlying regions
of the observed covariate space.

In cases where crossing of quantile regression curves appears to be a serious prob-
lem, it is often possible to introduce additional covariates to alleviate the problem.
For example, in the simple bivariate setting, it is frequently the case that the con-
ditional distribution is more dispersed for large values of z, and less dispersed for
values of z near zero. However, if z can take negative values one must be careful to
consider the possibility that dispersion is also large when z is very negative. In this
case introducing a quadratic effect in z permits the conditional quantile functions
to bend at the origin to accomodate the hypothesized behavior, and thereby avoid
crossing. He (1997) describes an approach that constrains quantile regression curves
not to cross by imposing stronger, location-scale, structure on the underlying model
for the conditional quantile functions.

3.3. Survival and Hazard Functions. Having described how to estimate the pa-
rameters of a entire family of conditional quantile functions of a transformed response
h(T), we may now briefly consider how to go about translating these estimates into
estimates of conditional survival and hazard functions. The conditional survival funec-
tion,

Sr(tlr) = P(T' > t|a) = 1 — Fr(t|z)

represents the proportion of those with X = z surviving up to time ¢. In contrast,
quantile regression provides an estimate of the inverse of Fp(t|x), i.e.

Qr(r|z) = inf{t|Fr(tlx) > 7},

the earliest time by which the proportion 7 have died. Even for the transformation
model, obtaining the conditional survival function from the conditional quantile funec-
tion is absolutely transparent: we have estimated the conditional quantile functions,

Quiny(7lw) = @' (7)



12 REAPPRAISING MEDFLY LONGEVITY

and we have seen that

Qnery(7le) = MQr(r|e))

so we may estimate the conditional quantile functions of the untransformed response

by,
Qr(r]z) = h(z:3(r)).

Then, for any vector of the covariates, x, instead of plotting conditional quantiles as
T QT(T|:1;), we may plot the conditional survival function as, QT(T|:1;) — 1 —T.
As we have noted in Section 2.2, we can interpret the quantile regression parameters
as estimates of the horizontal distance between survival curves for subjects differing
by one unit in a single covariate and conditional on fixed values for all the other
covariates.

For the conditional hazard function

Ar(tle) = fr(t|a)/Sr(t|x) = —dlog St (t|x)/dt.
we need to differentiate log S(t|:1;), and we may use,

Qe ) = STLRTHD)

using a grid of evaluations for 7: 0 < 7y < ... < 7, < 1. Note that in the unsmoothed

1 —7

case, since the numerator of the expression for ) estimates fr(t|x) between successive
time points ¢; = QT(TZ|$) and t;1q = QT(TZ'_H |z) it is advisable to evaluate the denom-
inator at the midpoint 1 — (7; + 7,41)/2, and do the plotting versus, t; = (t; + t;11)/2.
Thus, we propose plotting #; versus

o B AT/AQ(T|x)
A(ti]z) = L— (7 +7i41)/2

This approach enables us to estimate the conditional hazard function for a fully
general form of the covariate vector, x. Since this derivative is inevitably considerably

rougher than the estimates Q and S it may be reasonable to do some additional
smoothing to obtain a final estimate, say )\(t| ).

In contrast to life-table methods that restrict consideration to a few discrete val-
ues of the covariates, or more strongly parametric models like proportional hazard,
quantile regression methods offer a more flexible parametric alternative that seeks to
accomodate the best features of both approaches. It is important to emphasize at this
point that the foregoing quantile regression estimates are considerably more flexible
than the conventional survival models that take the iid error form of the transfor-
mation model. Because the linear predictor 2’3 appears as a pure location shift of
the transformed response, h(T'), in these models, they are forced to have quantile
treatment effects for the various covariates that are all proportional to one another.
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To illustrate this consider the proportional hazard model, where,
S(t|z) = Se(t)"®

with v(z) = e, and Sy(t) denoting the baseline survival function. The quantile
functions for the survival time 7" in this model is thus,

Qr(rle) = SgH((1 — 7))
and therefore,

IQr(rle) (1 —7)log(l — T)V(l‘)ﬂ

Jz; So(Qr(7lr)) )
So, in the proportional hazard model the marginal effects of the various covariates,
viewed as functions of 7, are all identical up to the scalar factors determined by the
components of the vector, 3. In particular, since the 7-dependent factor multiplying
B; is positive, it is clear that the implicit quantile treatment effects for the Cox model
must have the same sign as [3; for all 7, and thus the model inherently prohibits any
form of quantile treatment effect that would entail crossings of the survival functions

for different settings of the covariates.

4. DATA

In Carey et al (1992) three distinct experiments are analyzed, two of which in-
volved cohorts of 20,000 medflies raised in solitary confinement. Our investigation
is restricted to the largest of the three experiments in which roughly 1.2 million
medflies were raised in cages each initially containing about 7,200 individuals. The
experiments were conducted in a large rearing facility in Metapa, a city located in the
Chiapas region of Mexico. Technical details on precise experimental conditions are
available in Carey et al (1992) and Vargas (1989). The basic conditions, as described
by Carey et al (1995) were as follows:

“...Pupae were sorted into one of five size classes using a pupal sorter.
This enabled size dimorphism to be eliminated as a potential source of sex-
specific mortality differences. Approximately, 7,200 medflies (both sexes)
of a given size class were maintained in each of 167 mesh covered, 15 cm
x 60 cm x 90 cm aluminum cages. Adults were given a diet of sugar and
water, ad libitum, and each day dead flies were removed, counted and their
sex determined ...”
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FIGURE 4.1. This figure illustrates the raw mortality rate data for the
full sample with a smoothed estimate of the hazard as in Carey and
Liedo (1995) superimposed as the dotted line. The smooth is a 7-day
geometric moving average.

A total of 1,203,646 medflies were studied with survival times recorded in days.
Some descriptive statistics on the full sample are provided in Table 4.1. Figure
4.1 displays raw and smoothed mortality (hazard) rates for the entire sample, and
illustrates one of the principle findings — the decline in the mortality rate at advanced
age. After 50 days only one percent of the original population survives, but mortality
declines dramatically from a peak of about 15% to less than 5% at 100 days. Let y,
denote the number alive (“at risk”) at day ¢, then the raw mortality rate, m, is given
by

my=1— $+H\$.
Following Carey and Liedo (1995) the smoothed rate is computed as the two sided,
seven-day, geometric moving average,

143

me=1—( [] @=m))".

s=t—3
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FIGURE 4.2. This figure illustrates the smoothed mortality rates for
males and females. The female mortality exceeds that of males up to
about 20 days, then male mortality is higher than the female rate until
about day 60, after which the rates are difficult to distinguish. The
smoothing employs the same 7-day geometric moving average approach
as the previous figure.

Figure 4.2 contrasts the smoothed mortality rates for males and females illustrating
the finding of Carey et al (1995) that female mortality exceeds males up to about 20
days, after which the male mortality rate exceeds the female rate until about day 60,
and rates are indistinguishable thereafter.

The remarkably long right tail of the medfly survival distribution is already ap-
parent in the foregoing plots. By human standards it may appear implausible that
individuals could live to age 172 when 99.9% of the population is dead by age 64 (see
Carey et al (1992), Table 1). So it may be worth remarking at this point that in
the smaller experiments in which flies were raised in solitary confinement there were
individuals that survived even beyond 200 days.

Prior analysis has focused primarily on the age specific pattern of mortality rates,
especially at advanced ages, and on gender differences in these rates. We will consider
a more extensive catalogue of potential covariates defined below. In doing so, we will
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be able to explore the effects of these several new influences on survival prospects as
well as addressing some criticisms of the prior analyses of these data. Table 4.1 offers
some basic descriptive statistics about these variables and the experimental design.

Sex: The sex of each fly was determined and recorded at death.

Size: Pupae were sorted into five size classes (4-8mm) using a pupal sorter, en-
abling us to control for size differneces as a cause of mortality differences. Pupae
size is strongly linked to adult size of the flies. Fach cage contained flies of only
one size.

Density: Initial density of flies varied considerably across cages. The effect of
density on longevity has proven to be a somewhat controversial aspect of the
interpretation of the experimental results. For a discussion of the effect of den-
sity on longevity in the broader context of other medfly experiments, and the
rationale for focusing attention on initial density, see Carey, Liedo, and Vaupel
(1995).

%Males: The initial proportion of males in each cage also varies considerably
across cages and merits investigation.

Batch: Pupae were raised in 8 distinct batches with potentially heterogeneous
composition. As a consequence we have investigated the possibility of a con-
founding “batch effect”. As with Size, cages were allocated pupae from only
one batch.

Because survival was recorded in days for males and females separately, and all
other covariates were associated with the 167 cages, the data set can be collapsed
to 19072 observations and their associated cell counts. This feature leads to some
gains in efficiency from a computing standpoint since weighting reduces the effective
sample size.

In addition to the statistically almost irresistible attraction of the sheer size of the
Carey et al (1992) medfly survival experiment, it has the uncommon virtue of being
free of censoring. It is thus well suited to classical life table methods of analysis
illustrated above. Such methods are, however, not well suited to modeling the effects
of continuously measured covariates, so we turn now to a description of the quantile
regression formulation.

5. A QUANTILE REGRESSION SURVIVAL ANALYSIS

Our basic model for analysing the medfly survival data takes the traditional accel-
erated failure time form,

(5.1) Quog(r(T]7) = 2'B(7).

We model the conditional quantile functions of the logarithm of survival times as
linear in the observed covariates, . The choice of the log transformation is primarily
dictated by ease of interpretability and the desire to achieve linearity in the para-
metric specification. Multiplicative covariate effects are widely accepted throughout
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survival analysis, and certainly seem more plausible in the present application than
the assumption of additive linear effects. As we have observed in Section 2.1 above,
the conditional quantile functions of other transformations of 7' can be recovered im-
mediately from the model (5.1). In particular, we may write the family of conditional
quantile functions for the untransformed survival time T' as,

Qr(7|x) = exp{a’'B(7)}.

Mortality (hazard) rates may be recovered by numerical differentiation as described
above.

We will consider two distinct models. The first includes the covariates: sex, size,
density, and %male as additive linear effects on log(7T). In our second model we
introduce the batch effect to control for possible heterogeneity in the pupae allocated
to cages in the Carey et al experiment. In each case we estimated models for the
44 quantiles: {.01,.05,.10,...,.95,.96,...,.99,.991, ...,.999,.9991, ...,.9999}. A variety
of other models were explored, but none offered convincing evidence of effects not
represented in the two models that we now present.

5.1. Model A: No Batch Effects. Figure 5.1 provides a concise visual summary
of the results for the first model that omits the batch effect. There are five estimated
coefficients. The lightly shaded region in each panel represents a 90 percent pointwise
confidence band for each coefficient. The intercept panel of the figure may be inter-
preted as the estimated quantiles of log survival time for male flies of mean size when
evaluated at the experimental mean cage density and the mean initial proportion of
males.

The gender effect depicted in the second panel represents the estimated difference
in the quantiles of log survival times for female versus male flies holding the other
factors constant. It is clear that this effect is considerably more complicated than a
simple location shift. Unlike human populations in which females generally outlive
males, male medflies have a distinct advantage over females up to about the 95th
percentile of longevity. For the longest lived five percent of the population, females
appear to have a distinct advantage. More explicitly, we see that the disadvantage
of females is maximal near the median, where a coefficient of -0.2 may be translated
into a multiplicative effect on the median quantile of longevity of exp(—0.2) ~ .82,
implying that the male median lifespan of about 22 days corresponds roughly to a
median lifespan for females of 18 days. At the opposite extreme, the coefficient of 0.1
in the extreme right tail of the distribution of survival times implies that females have
an exp(0.1) = 1.1, or 10 percent longer life span among the oldest old. This cross-over
in gender survival distributions is a important finding of the medfly experiments and
we will return to it later in this Section.

The density effect illustrated in the third panel of Figure 5.1 is particularly in-
teresting in view of some of the criticism directed at the conclusions of Carey et al

(1992) It has been suggested by Kowald and Kirkwood(1993) as well as Nusbaum et



RoGER KOENKER AND OLGA GELING

o ~
)
n o
o -
. ©
o 3 = 0
a o g 3 2
[ w = o
o =~ o p}
g v g © o
£ o g ®
[0} <
o - o W
o &
) 3
— o S
s :
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Quantile Quantile Quantile
n
ri ™
< o~
@ i
2 [} ]
8 ° S
o
=
o
i
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Quantile Quantile

FIGURE 5.1. This figure illustrates the quantile regression results for
Model A. There are 5 coefficients estimated. The lightly shaded region
is a 90 percent pointwise confidence band for the corresponding coeffi-
cient. The horizontal line at zero represents the null hypothesis of no
effect for each covariate.
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al (1993) that the initially high density of flies in the Carey experiment may have
contributed to higher mortality rates for younger flies and thus distorted the pattern

of mortality rates portrayed by Carey et al. Indeed Nusbaum et al suggest,

“The results of Carey et al may arise from an ecological dependence of
fly mortality rate on population density, not because of some undiscovered
property of extremely old flies.”

The evidence from Figure 5.1 does not seem to support the Nusbaum et al hypothesis.
Over the range of densities observed in the cages of the Carey experiment, initial
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density seems to exert a strongly positive effect on longevity. The density effect
appears to be quite constant over the entire range of quantiles. This location shift
effect in the model for log T" implies, of course, a scale shift in T" due to density. The
standard deviation of cage density weighted by the cell counts is roughly .127, so the
predicted effect of increasing density by one standard deviation is to increase T' by a
factor of exp{.5-.127} = 1.065, or 6.5 percent. Note that density has been rescaled by
10,000 to facilitate reporting of the quantile regression results thoughout this Section.

Given the disparity in the sex ratios across cages it seemed interesting and worth-
while to explore whether the initial proportion of males in a cage exerted any effect
on survival chances. To our surprise, we found that flies in cages with a higher pro-
portion of males tended to live significantly longer. This effect is strongest above the
median where the coeflicient is roughly 1.3. Since the standard error of the %male
variable is 0.046, this implies that a one standard deviation increase in the propor-
tion of males increases the third quartile of the survival distribution by roughly 6.2
percent. Clearly, below the median the effect is considerably weaker. It is natural
to ask whether this effect is shared equally by males and females. Our attempt to
explore this question by adding an interaction effect between the sex and %male vari-
ables yielded no significant interaction over the range of quantiles estimated, thus
suggesting that both sexes benefited from an excess of males in the initial population.
It is also natural to ask whether there is an “optimal” density level or proportion of
males. To explore this we attempted to fit quadratic terms in these variables, but we
were unable to identify a significant quadratic effect in either case. Of course, it is
quite plausible that further experimentation involving a considerably greater range
for density, or the proportion of males, might reveal such effects.

Finally, we may consider the effect of size on longevity. Recall that there are 5
initial size categories corresponding to pupal sizes 4mm, Smm, 6mm, 7mm and 8mm.
There does appear to be a slight advantage in being larger in the lower quantiles of
the survival distribution, and perhaps a slight disadvantage in being larger in the
upper quantiles, but neither of these effects is statistically very compelling. Observe
that the horizontal line at (1) = 0 representing the null effect rarely emerges from
the confidence band for this group of coefficients.

5.2. Model B: The Batch Effect. The other variables are exactly as in Model
A. Results, depicted in Figure 5.2, exhibit some important differences from those
reported for Model A.

First, we should observe that the shape and significance of the gender effect is es-
sentially unchanged by the new specification. Males retain their substantial survival
advantage up to the 95th percentile of the survival distribution, but as in Model A
female survival prospects exceed males’ in the upper 5 percent of the distribution.
The effect of initial cage density has, however, changed substantially. There is still a
significant positive effect of higher density, but only in the lower third of the distribu-
tion. In the upper tail the effect is negligible. The proportion-of-males effect is also
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FIGURE 5.2. This figure illustrates the quantile regression results for
Model B. There are 12 coefficients estimated. The lightly shaded region
is again a 90 percent pointwise confidence band for the corresponding

coefficient. Again, the horizontal line at zero represents the null hyy-
pothesis of no effect for each of the covariates.

substantively altered by the introduction of the batch effect. While in Model A this
effect was weak in the left tail and large, 5(7) &~ 1.3, above the median, in Model B
the effect appears roughly constant at about 5(7) & 0.5, over the entire distribution.
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FIGURE 5.3. This figure illustrates the estimated survival and hazard
functions for Model A. Survival and hazard functions are illustrated
males (solid line) and females (dotted line) with the other covariates
evaluated at the experimental sample means.

The confidence band is slightly wider in Model B, rendering the effect marginally
significant throughout. The effect of size in Model B is qualitatively similar to the
results of Model A. Larger size seems advantageous for survival for younger flies, up
to about the 40th percentile, but is disadvantageous thereafter. But note that in this
case the introduction of the batch effect seems to have improved the precision of the
size effect estimates. Since we have no information on the nature of the experimental
batches, it is difficult to interpret the coefficients on the batch effects. It is clear that
the batches do constitute a significant factor in assessing survival prospects in the
Carey et al experiment. Because the batch factor is cage specific, like density, size,
and proportion-of-males it is not surprising to encounter some confounding of effects.

5.3. Survival and Hazard Curves. To explore the gender cross-over effect a bit
further we plot in Figures 5.3 and 5.4 the implied survival and hazard functions
for Models A and B. Male survival is indicated by the solid line, female survival in
the dotted line. The cross-over in the survival curves at 7 = .95 is indicated by
the horizontal line. In the right tail female flies have a rather substantial survival
advantage. This is also clear in the hazard plots of the mortality rates for males and
females. No attempt was made to smooth the hazard plots based on the quantile
After about day 25 female mortality falls below male mortality and remains below
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FIGURE 5.4. This figure illustrates the estimated survival and hazard
functions for Model B. Survival and hazard functions are illustrated
males (solid line) and females (dotted line) with the other covariates
evaluated at the experimental sample means.

until roughly age 60, after which as we have already noted in Section 4, using the life
table methods of Carey et al, the rates are difficult to distinguish.

In Figure 5.5 we plot estimated conditional hazard functions, for Model A, for two
representative values of initial cage density, viz. mean density plus and minus one
standard deviation. The plot illustrates the flexibility of the model, since we are able
to estimate conditional survival and hazard (mortality) curves for any setting of the
covariate vector without imposing stringent conditions on the relationships among
these curves.

We should emphasize that in contrast to the smoothed life-table plots presented
earlier, the present plots reflect the conditioning of the respective quantile regression
models on size, density, percentage males and the batch effect. The crucial finding
of Carey et al (1992) that mortality rates decline in the right tail is confirmed, thus
dispelling suggestions that it may have arisen from inadequate control of confounding
factors such as cage density. Of course, it must be recognized that the estimation
of the extreme quantiles of the survival distribution is inherently difficult. By age
70 less than .01 percent of the sample remains: 127 males and 374 females. We are
reluctant to push the analysis too much further out into the tail, but given these
sample sizes we can be reasonably confident that the finding of declining mortality
rate at advanced ages is not an artifact of density, size, or batch effects. We would
like to unerscore that, in contrast to the life table methods employed in Carey et
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FIGURE 5.5. This figure illustrates estimated survival and hazard func-
tions for male medfies based on Model A for two different settings of
the initial cage density. Low initial density defined as mean density
minus one standard deviation is indicated by the dotted line, and high
initial density defined as mean density plus one standard deviation by
the sold line. Other covariates are set at sample means.

al (1992), quantile regression methods permit us to compute estimated survival and
hazard functions for any settings of our covariate vectors including contrasts in the
continuous covariates like density and the proportion of males.

5.4. A Proportional Hazard Model Comparison. The proportional hazard model
of Cox(1972) also offers natural extension of life table methods to regression-type
models for survival data. To contrast our quantile regression results with the Cox
model we estimated the following proportional hazard (PH) model corresponding to
model A.
log A(t|a) = log Ao(t) + 0.2165SEX + 0.0124SIZE —1.021 DENSITY —2.625 %MALE.
(0.0018) (0.00084) (0.00072) (0.0203)

All four effects are obviously highly significant. Females, and flies from larger pupae,
have higher hazard, while higher cage density and a larger percentage of males reduce
the hazard. These results are roughly as anticipated from the prior analysis. How-
ever, the PH specification imposes a severe restriction on the nature of these effects.
By requiring that the covariates act as a scale shift of the baseline hazard, Ao(t), sev-
eral of the most interesting observations we have made about the quantile regression
results are effectively assumed away. Since, Ag(¢) > 0, the sign of the coefficient in
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FIGURE 5.6. This figure illustrates estimated survival and hazard func-
tions for males and females based on the reported Cox proportional
hazard model. Note that in contrast to the prior plots, the PH model
prohibits the survival and hazard functions from crossing.

the PH model determines the sign of the effect over the entire distribution. In the
quantile regression results both size and gender had ambiguous effects. The coefficient
on the indicator variable for gender was significant and negative throughout most of
the distribution, but turned significant and positive in the upper tail of the distribu-
tion. Similarly, pupal size appears, particularly in Model B, to exert a significantly
beneficial effect on survival in the lower tail, but was significantly disadvantageous in
the upper tail. Cross-overs of this type are potentially very important. But they are
rendered invisible in the conventional PH analysis.

In Figure 4.5 we plot the estimated survival hazard functions for males and females
based on the estimated Cox model, evaluating the other covariates at their means.
The baseline hazard function estimation is complicated slightly by the weighted na-
ture of the observations and we have used the methods described by Kalbfleisch and
Prentice (1980, p. 85) for this purpose. The hazard curves have the same character-
istic shape as those presented earlier with mortality rates declining after age 60. In
the other panel of the Figure, we plot the common shape of the covariate effects in
the estimated PH model. Thus, as we have noted above, the effect of each covariate
on the quantiles of the survival distribution is exactly the same up to the rescaling
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FIGURE 5.7. This figure illustrates the quantile treatment effect im-
plicit in the estimated Cox model. As described in the text all of the
covariate effects in the Cox model may be represented by a rescaling of
this function.

accomplished by the appearance of the final coefficient. In the present case this means
that all the covariates must conform to the pattern illustrated in the first panel of Fig-
ure 5.6, so the effect is monotone decreasing over the range of the distribution, with
the effects strictly positive and decreasing for covariates for which @ > 0 and strictly
negative and increasing for those with @ < 0. The consequence for the survival and
hazard plots in Figures 5.4-5 is that contrary to our earlier quantile regression findings
it appears that females have poorer survival prospects throughout the distribution.

6. DISCUSSION

Large scale experiments on lower animals will continue to yield important insights
into population biology and the nature of the aging process. To fully exploit the evi-
dence offered by such experiments, we have argued that quantile regression methods
provide a useful complement to the existing toolkit of survival analysis. By permit-
ting the researcher to focus attention on covariate effects at particular quantiles of
the survival distribution a more complete picture of the varied effects on survival may
emerge.
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We believe that these methods will also eventually prove useful in analyzing clin-
ical trials where researchers may wish to focus, for example, on long-term survival
prospects, without imposing stringent assumptions concerning the nature of short
run treatment effects. This point is graphically illustrated in the Doksum’s (1974)
discussion of guinea pig experiments where injection of tubercle bacilli had an appar-
ently beneficial effect on short-run survival prospects, but had disastrous long-term
survival consequences. Such findings are difficult to reconcile with many conventional
survival models that implicitly assume that covariate effects exert a pure location
shift effect on some monotone transformation of survival times. The methods also
have a natural applicability in engineering reliability analysis and quality assurance.

We believe that the Lehmann-Doksum quantile treatment effect is a useful way
to view covariate effects in a wide range of quantile regression applications. By
highlighting the possibility that covariates can alter not only location and scale, but
may change the entire shape of the conditional distribution as well, this view opens
broadens the scope of empirical analysis. In the two-sample treatment control model,
Doksum suggests that we may interpret control subjects in terms of a latent char-
acteristic: a control subject may be called frail if he is prone to die at an early age,
and robust if he is prone to die at an advanced age. This latent characteristic is
thus implicitly indexed by 7, the quantile of the survival distribution at which the
subject would appear if untreated, i.e., (Y;|D; = 0) = a(7). And the treatment, under
the Lehmann model, is assumed to alter the subjects control response, a(7), making
it a(7) 4+ 6(7) under the treatment. If the latent characteristic, say, propensity for
longevity, were observable ex ante, then we might view the treatment effect 6(7) as
an explicit interaction with this observable variable. However, in the absence of such
an observable variable, the quantile treatment effect may be regarded as a natural
measure of the treatment response. Of course, there is no way of knowing whether
the treatment actually operates in the manner proscribed by the Lehmann model.
In fact, the treatment may miraculously make weak subject especially robust, and
turn the strong into jello. All we can observe from experimental evidence, however,
is the difference in the two marginal survival distributions, and so it is natural to
associate the treatment effect with the difference in the corresponding quantiles of
the two distributions. This is what the quantile treatment effect does.

In economics, a common application of this type involves investigations of the
effect of years of schooling on observed wages. In this literature, it is common to
identify unobserved components of wage determination with terms such as “spunk”
or “ability” and thus these terms play the same role as “propensity for longevity”
in survival examples. The quantile treatment effect, #(7), may be interpreted as
an interaction effect between unobserved “ability” and the level of education. This
interpretation has been recently explored in work of Arias, Hallock and Sosa (1999)
in a study of the earnings of identical twins.
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It would be highly irregular to conclude a paper on methods of analysis of sur-
vival data without any mention of the word “censoring”. In the Carey et al medfly
experiment we have the rare luxury of complete data, but this is obviously atypi-
cal. Fortunately, there is already a rather extensive literature on quantile regression
with censoring. Powell (1986) treats the case of fixed censoring common in many
econometric applications. Buchinsky and Hahn (1998) treat certain forms of random
censoring, as does Lipsitz et al (1998). Fitzenberger (1998) and Buchinsky (1998)
provide recent surveys of this literature.

Finally, we should make some concluding comments about what we have learned
about medflies. Even a brief exposure to fruitflies seems to be sufficient to begin to
see them as “little people with wings,” so there is an irresistible temptation to offer
some pithy life lessons: Males are tough, but only until 40. Crowds are salutory,
especially of guys. Life gets safer, but only after 60.

More seriously, the central findings of Carey et al (1992) that mortality rates de-
cline at advanced ages, and that female survival prospects are better than males in
the upper tail of the distribution are strongly sustained in estimated models that in-
corporate the effects of pupal size, initial cage density, the initial proportion of males,
and pupal batches. We find that higher initial cage density, contrary to some early
criticism of the Carey et al findings, exerts a positive effect on survival at least over
the range of densities observed in the experiment. Rather surprisingly, the initial
proportion of males also has a positive effect on survival prospects. The effect of size
is rather weak, but there is some evidence, particularly from Model B, that larger
flies have better early survival prospects, but poorer survival prospects at advanced
ages. The most intriguing finding — that mortality actually declines at advanced age,
survives after conditioning on a larger set of covariates, and thus clearly warrants the
extensive further investigation it is receiving.

References

ARrias, O., K. HALLOCK, AND Sosa W. (1999) Individual heterogeneity in the returns to
schooling: Instrumental variables quantile regression using twins data, preprint, Department of
Economics, University of Illinois.

BasseTT, G. AND KOENKER R. (1982) An empirical quantile function for the linear model with
1id errors, Journal of the American Statistical Society, 77, 407-415.

BENNETT, S., (1983), Analysis of Survival Data By the Proportional Odds Model, Stat. Medicine,
2, 273-277.

BIJERKEDAL, T. (1960) Acquisition of reesistance in guinea pigs infected with different doses of
virulent tubercle bacilli, Am. J. Hygiene, 72, 130-48.

BUcHINSKY, M. (1994) Changes in the U.S. wage structure 1963-1987: Application of quantile
regression, Fconometrica, 62, 405-458.

BucHINSKY, M. (1995) Quantile regression Box-Cox transformation model, and the U.S. wage
structure, 1963-1987, Journal of Econometrics, 65, 109-154.

BucHINSKY, M. (1998) Recent advances in quantile regression models — A practical guideline for
empirical research, J. Human Resources, 33, 88-126.



RoGER KOENKER AND OLGA GELING 29

BUcHINSKY, M. AND J.Y. HaHN, (1998) An alternative estimator for censored quantile regres-
sion, Fconometrica, 66, 653-71.

CaAREY, J.R. (1997) What demographers can learn from fruit fly actuarial models and biology,
Demography 34, 17-30.

CaAREY, J.R., CURTSINGER, J.W. aAND VAUPEL, J.W. (1993a) Explaining fruit fly longevity.
Response to technical comments, Science 260, 1665-66.

CarEY, J.R., CURTSINGER, J.W. AND VAUPEL, J.W. (1993b) Fruit fly aging and mortality.
Response to letters to the Editor, Science, 260, 1567-69.

CaAREY, J.R. aND LIEDO, P. (1995a) Sex-specific life table aging rates in large Medfly cohorts,
Ezperimental Gerontology, 30, 315-25.

CarEY, J.R. aND LIEDO, P. (1995b) Sex mortality differentials and selective survival in large
Medfly cohorts, The Gerontologist, 35, 588-96.

CarrY, J.R., LiEDO, P., OROZCO, D. AND VAUPEL, J.W. (1992) Slowing of mortality rates at
older ages in large Medfly cohorts, Science, 258, 457-61.

CarEY, J.R., LiIEDO, P. AND VAUPEL, J.W. (1995) Mortality dynamics of density in the
Mediterranean fruit fly, Fzperimental Gerontology, 30, 605-29.

CARROLL, R.J. AND D. RUPPERT (1988) Transformation and Weighting in Regression, Chapman
and Hall: London.

CHAUDHURI, P., K. DoKsUM, AND A. SAMAROV (1997) On average derivative quantile regres-
sion, Annals of Statisitics, 25, 715-44.

Cox, D.R. (1972) Regression Models and Life Tables (with discussion), J. Royal Stat. Soc (B),
34, 187-220.

DoksumM, K. aAND G.L. SIEVERS (1976) Plotting with confidence: Graphical comparisons of two
populations, Biometrika, 63, 421-34.

Doxksum, K. (1974) Empirical probability plots and statistical inference for nonlinear models in
the two sample case, Annals of Statistics, 2, 267-77.

Doksum, K. aND M. Gasko (1990) On a correspondance between models in binary regression
and survival analysis, Intl. Stat. Rev., 58, 243-52.

FITZENBERGER, B. (1998) The moving block bootstrap and robust inference for linear least
squares and quantile regression, J. of Econometrics, 82, 235-87.

GRrAVEs, J.L. AND MUELLER, L.D. (1993) Population density effects on longevity, Genetica, 91,
99-109.

GUTENBRUNNER, C. AND JURECKOVA , J. (1991) Regression quantile and regression rank score
process in the linear model and derived statistics, Annals of Statistics, 20, 305-330.

GUTENBRUNNER, C., JURECKOVA , J., KOENKER, R., AND PORTNOY, S. (1993) Tests of linear
hypotheses based on regression rank scores, Journal of Nonparametric Statistics, 2, 307-331.

HannN, J. (1995) Bootstrapping quantile regression estimators, Fconometric Theory, 11, 105-121.

HALL, P., AND S. SHEATHER (1988): On the distribution of a studentized quantile, J. of Royal
Stat Society. (B), 50, 381-391.

HEe, X. (1997) Quantile Curves Without Crossing, Am.Statistician, 51, 186-192.

HENDRICKS, W. AND KOENKER, R. (1992) Hierarchical spline models for conditional quantiles
and the demand for electricity, Journal of the American Statistical Association, 87, 58-68.

HorowiTz, J.L. AND NEUMANN, G.R. (1987) Semiparametric estimation of employment dura-
tion models, Econometric Reviews, 6, 5-40.

KALBFLEIsCH, J.D. AND PRENTICE, R.L. (1980) The Statistical Analysis of Failure Time Data,
Wiley, New York.

KOENKER, R. (1994) Confidence intervals for regression quantiles, Mandl, P. and Huskova, M.
(Eds.), Asymptotic Statistics, Springer-Verlag, New York.



30 REAPPRAISING MEDFLY LONGEVITY

KOENKER, R. AND BasseTT, G. (1978) Regression quantiles, Econometrica, 46, 33-50.

KOENKER, R. aAND D’OREY, V. (1987) Computing regression quantiles, Journal of the Royal
Statistical Society, Applied Statistics, 36, 383-393.

KOENKER, R. AND D’OREY, V. (1994) Remark on Alg. AS 229: Computing dual regression
quantiles and regression rank scores, Applied Statistics, 43, 410-414.

KoENKER, R. AND J. MacHADO (1998) Goodness of Fit and Related Inference Processes for
Quantile Regression, J. Am. Stat. Assoc., forthcoming.

KoENKER, R. (1997): Rank Tests for Linear Models, in Handbook of Statistics, ed. by G. Mad-
dala, and C. Rao, vol. 15. North Holland.

Kowarp, A. aND KiRkwooD, T.B.L. (1993) Explaining fruit fly longevity. Technical comments,
Science, 260, 1664-1665.

LEHMANN, E. (1974) Nonparametrics: Statistical Methods Based on Ranks, Holden-Day: San
Francisco.

LipsiTZ, S.R., G.M FITZMAURICE, G. MOLENBERGHS, AND L.P. ZHAO (1997), Quantile re-
gression methods for longitudinal data with drop-outs: Application to CD4 cell counts of patients
infected with HIV, Applied Statistics, 46, 463-76.

MOSTELLER, F. AND TUKEY, J.W. (1977) Data Analysis and Regression, Addison-Wesle, Read-
ing, Massachusetts.

NaIr, V. N., (1982), Q-Q Plots With Confidence Bands for Comparing Several Populations,
Scand.J. Stat.; 9, 193-200.

NusBaum, T.J., GrRavEs, J.L., MUELLER, L.D.; AND Rosg, M.R. (1993) Fruit fly aging and
mortality. Letters to the Editor, Science, 260, 1567.

ParzeEN, M. I. WEI, L.J., AND YING, Z. (1994) A resampling method based on pivotal esti-
mating functions, Biometrika, 81, 341-350.

PorTNOY, S. AND R. KOENKER (1997). The Gaussian Hare and the Laplacian Tortoise: Com-
putability of Squared-error vs. Absolute-error Estimators, with discussion, Statistical Science, 12,
279-300.

PowEgLL, J.L. (1986) Censored regression quantiles, J. of Econometrics, 32, 143-55.

RousseEEUw, P. AND M. HUBERT, (1998), Regression Depth, J. Am. Stat. Assoc., 94, 388-433.

RoBINE, J.M. aND RiTcHIE, K. (1993) Explaining fruit fly longevity. Technical comments,
Science, 260 1665.

RUPPERT, D. AND CARROLL, R. (1980) Trimmed least squares estimation in the linear model,
Journal of the American Statistical Association, 75, 828-838.

THATCHER, A.R. (1999) The long term pattern of adult mortality and the highest attained age,
with discussion. J. of the Royal Stat. Soc. (A), 162, 5-43.

Varaas, R.I. (1989) Mass production of tephritid fruit flies, in World Crop Pests: Fruit Flies:
Their Biology, Natural Enemies and Control, 2B, A.S. Robinson and G. Hooper, (eds.), Elsevier:
Amsterdam.

VAUPEL, J.W. (1997) Trajectories of mortality at advanced ages, Wachter, K.W. and Finch, C.E.
(Eds.), Between Zeus and the Salmon. The Biodemography of Longevity, National Academy Press,
Washington, D.C.

VAUPEL, J.W. (1998) A letter to the Editor, Science, 280, 983.

VAUPEL, J.W. anD CaRrEY, J.R. (1998) Compositional interpretations of Medfly mortality.
response to technical comments, Science, 260, 1666-1667.

VAuPEL, J.W., CAREY, J.R., CHRISTENSEN, K., JouNsoN, T.E., YasHIN, A.I. ET AL. (1998)
Biodemographic trajectories of longevity, Science, 280(5365), 855-860.



