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Abstract. Weak nonparametric restrictions are developed, sufficient to
identify the values of derivatives of structural functions in which latent random
variables are nonseparable. These derivatives can exhibit stochastic variation.
In a micreconometric context this allows the impact of a policy intervention,
as measured by the value of a structural derivative, to vary across people who
are identical as measured by covariates. When the restrictions are satisfied
quantiles of the distribution of a policy impact across people can be identified.
The identification restrictions are local in the sense that they are specific to the
values of the covariates and the specific quantiles of latent variables at which
identification is sought. The conditions do not include the commonly required
independence of latent variables and covariates. They include local versions of
the classical rank and order conditions and local quantile insensitivity condi-
tions. Values of structural derivatives are identified by functionals of quantile
regression functions and can be estimated using the same functionals applied
to estimated quantile regression functions.

1. Introduction

This paper develops weak conditions under which there is nonparametric identifi-
cation of values, at some specified point, of derivatives of structural functions from
which latent variables may not be separable. The conditions are local in the sense
that they are specific to the derivatives and to the point of interest. They point to
analogue estimators built on estimators of conditional quantile regression functions.
Structures in which latent random variables are nonseparable constitute a flexible

construction, sympathetic to the qualitative nature of the information about economic
processes that economic theory provides.

∗I thank the referees and an editor of the journal and Jaap Abbring, Christian Dustmann, Art
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Roger Koenker, Richard Smith, Richard Spady, Elie Tamer, and Tieman Woutersen for helpful
comments. Some of the results of this paper were given in Chesher (2001, 2002a, 2002b) and in an
invited address at the Econometric Society European Meeting, Venice, 2002.
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In nonseparable structures the sensitivity of outcomes to changes in conditioning
and other variables has random variation. In a microeconometric context this admits
the possibility that a policy intervention has effects which vary across individuals
that, measured by covariates, are identical. Policy analysis is enriched if features of
the distribution of a policy impact across people can be identified. Conditions under
which this can be done are provided in this paper.
A primary aim of this paper is to provide minimal restrictions sufficient to identify

local features of structures. Neither semiparametric nor parametric restrictions are
considered, and the local focus allows progress without the strong and unpalatable
restriction requiring latent variates and covariates to be independently distributed, a
restriction commonly invoked when considering identification in nonseparable models.
The quest for weak identifying conditions is motivated by the observation that

any structural interpretation of data is contingent on the veracity of a core set of
untestable just-identifying restrictions. It is good if these conditions can be focussed
on the particular structural features of interest if that results, as it does here, in the
conditions being less demanding than would otherwise be required.
Key among the identifying conditions are restrictions on the covariate related

variation in conditional quantiles of latent variates. Conditional quantile restric-
tions are considered because in nonseparable structures they can have substantive
implications for the information about structural equations that is contained in the
conditional quantiles of outcomes given covariates about which data can be infor-
mative. In contrast, conditional mean and higher order moment restrictions do not
carry such valuable information when structural functions are nonseparable unless
there are strong restrictions on functional form or distributional shape.
The restrictions at the heart of the identifying model proposed in this paper are

now introduced and then the approach taken in demonstrating the identifying power
of the model is described The main results are then introduced in the context of a
two equation model of the sort that arises when considering the returns to schooling.
This first Section concludes with a plan of the rest of the paper.

1.1. The core restrictions. The identification conditions include four funda-
mental types of restriction, as follows.

1. Smoothness and continuous variation. Structural functions are differen-
tiable with respect to outcomes and with respect to certain covariates which
exhibit continuous variation.

2. Triangularity. Structural equations have a triangular form in outcomes and
in latent random variables.

3. No excess variation. In structures which deliver values of M outcomes there
are effectively no more than M latent random variables.

4. Monotonicity. Each structural function is a strictly monotonic function of
one of the latent random variables.
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Under restrictions like these, made precise later, functions of derivatives of struc-
tural functions are identified by derivatives of certain conditional quantile functions
of outcomes. The value of a particular structural derivative is identifiable if it can
be deduced from knowledge of the values of these identifiable functions of structural
derivatives. Additional restrictions, namely local conditional quantile insensitivity
conditions and local rank conditions are shown to be sufficient for this purpose.
This is reminiscent of the development of identification conditions under condi-

tional mean independence in parametric linear simultaneous equations models set
out in Koopmans, Rubin and Leipnik (1950). That analysis echoes here because un-
der the proposed restrictions, local to the point at which knowledge of the values of
structural derivatives is desired, structural equations are approximately linear with
coefficients whose values are the values of the structural derivatives of interest.

1.2. Constructive identification. A constructive approach to demonstrating
the identifying power of restrictions is taken. The definitions of a structure and of
identification of a feature of a structure set out in Hurwicz (1950) and employed in
Koopmans and Reiersøl (1950) are used1.
A structure is:

1. a system of equations delivering unique values of observable outcomes given
values of covariates and latent variates, and,

2. a conditional probability distribution of latent variates given covariates.

Each structure implies a conditional distribution of outcomes given covariates.
The same conditional distribution may be generated by distinct structures. If, among
these observationally equivalent structures, a structural feature takes different values
then its value in the data generating structure cannot be identified.
A feature of a structure is identified if, among any set of observationally equiv-

alent admissible structures, the value of the structural feature does not vary. The
restrictions that define admissible structures constitute a model.
It is shown in Chesher (2002a) that the value of a structural feature f is identified

by a model when f = f∗ if there exists a functional of the conditional distribution
function of outcomes given covariates, G(FY |X) with the property that the functional
returns the value f∗ in all structures admitted by the model in which f = f∗.
When identification can be demonstrated by this means the structural feature f

will be said to be identified by the functional G(FY |X).2 Such a demonstration is
constructive in the sense that it points to analogue estimators of the value of the
structural feature, for example the functional G(·) applied to an estimator of FY |X .

1The definitions are slightly amended to make explicit the role of covariates upon whose marginal
distributions no identifying restrictions will be placed, other than that certain covariates exhibit
continuous variation.

2Strictly speaking, the value of the feature f is identified by the value of the functional G(FY |X).
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The approach to developing identifying restrictions taken in this paper is to con-
struct a model embodying weak restrictions such that a functional with the required
property exists when the structural feature of interest is the value of a structural
derivative at a specified point. The form of the functional is determined. Section
3 does this for an M equation system of nonseparable structural equations. That
necessarily involves some notational complexity so the key ideas are now introduced
in the context of a simple example which will be revisited later in the paper.

1.3. Returns to schooling. Here is an example of a nonseparable model that
arises when considering the returns to schooling3. Let W be the log wage and let
S be a measure of investment in schooling, determined as unique solutions to the
equations:

W = hW (S,Z, F,A) (1)

S = hS(Z,A) (2)

where Z is a list of covariates and hW and hS are differentiable functions. The
equations embody a triangularity restriction and the restriction that, given a value
of Z, random variation in the two observable outcomes, W and S, is generated by
random variation in two latent random variables, F and A, which will be interpreted
as capturing respectively fortune in the labour market and ability.
Of particular interest in this example is the returns to schooling, ∇ShW , the first

partial derivative of the function hW with respect to S. In the structures admitted
by this model the returns to schooling may vary with S and Z because hW may be
a nonlinear function of S and Z, and may vary with F and A because F and A may
not be additively separable from the function hW .
The results given in this paper provide weak nonparametric conditions sufficient

to identify the value of ∇ShW at chosen values of S and Z and of the latent variates
F and A.
Key among these conditions are restrictions on the way in which structural func-

tions can vary with the latent variates. These restrictions are satisfied if the functions
hW and hS are strictly monotonic functions of respectively F and A. This leads nat-
urally to consideration of identification via restrictions on conditional quantiles of the
latent variables. To see why this is so, consider the schooling equation.
Let FA|Z(a|z) ≡ P [A ≤ a|Z = z] denote the distribution function of A given

3Heckman and Vytlacil (1998) study identification in a nonseparable “random coefficients” model
of returns to schooling under parametric restrictions. The model they study draws on Card (1995);
see also Card (2001). Random coefficients specifications for this problem date from the work of
Becker and Chiswick (1966), Chiswick (1974), Chiswick and Mincer (1972) and Mincer (1974).
Equations (1) and (2) can be viewed as a nonparametric “random coefficients” specification of a
returns-to-schooling model.
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Z = z and define the conditional τ -quantile of A given Z = z as follows.4

QA|Z(τ , z) ≡ inf{q : FA|Z(a|z) ≥ τ}
With the function hS(Z,A) restricted to be monotonic in A when Z = z, nor-

malised to be non-decreasing, the conditional τ -quantile of S given Z = z is, because
of the equivariance property of quantiles:

QS|Z(τ , z) = hS(z,QA|Z(τ , z))

and the z-derivative of QS|Z(τ , z), assumed to exist, is as follows.

∇zQS|Z(τ , z) = ∇zhS(z, a)|a=QA|Z(τ,z) +∇ahS(z, a)|a=QA|Z(τ,z) ×∇zQA|Z(τ , z)

Consider the following quantile insensitivity restriction at z = z̄.

∇zQA|Z(τ , z)|z=z̄ = 0 (3)

This implies that the Z-derivative of the conditional τ -quantile of S given Z at Z = z̄
is as follows.

∇zQS|Z(τ , z)|z=z̄ = ∇zhS(z, a)|a=QA|Z(τ,z̄),z=z̄
Under the quantile insensitivity restriction (3) the Z-variation in the conditional τ -
quantile of S given Z at Z = z̄, about which data can be informative, is identical to
the Z-variation in the function hS(Z,A) at Z = z̄ with A fixed at A = QA|Z(τ , z̄).
The τ -quantile insensitivity restriction on the distribution of A given Z at Z = z̄
leads directly to identification of the value of the Z-derivative of hS(Z,A) at Z = z̄
and A = QA|Z(τ , z̄).
In contrast, under the conditional mean restriction, E[A|Z = z] = 0, the way in

which functionals of the distribution of S given Z, for example E[S|Z = z], vary with
z depends on the way in which hS(Z,A) varies with Z and A and can depend upon the
shape of the distribution of A given Z. Identification conditions built on conditional
mean and higher order integer moment conditions require stronger restrictions on
structural functions than identification conditions built on the conditional quantile
restrictions that are used in this paper.5

The functions hW and hS are now restricted to be strictly monotonic in respec-
tively F and A, both normalised to be increasing in these arguments.6

Let z̄, be a chosen value of Z, let ā be the τ̄A-quantile of A given Z = z̄, and let f̄
be the τ̄F -quantile of F given A = ā and Z = z̄. Define Ω̄ ≡ (z̄, τ̄A, τ̄F ), s̄ ≡ hS(z̄, ā),
w̄ ≡ hW (s̄, z̄, f̄ , ā) and Ψ̄ ≡ (s̄, z̄, f̄ , ā).

4This notation is used throughout, QA|B1...,BM
(τ , b1, . . . , bM ) denoting the conditional τ -quantile

of random variable A given conditioning variables B1 = b1, . . . , BM = bM . This definition applies
when A given B has a discrete or continuous distribution.

5See for example Wooldridge (1997) and Card (2001).
6Global strict monotonicity is a stronger condition than is required. A precise statement of the

required conditions is in Section 4.1.
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Consider the value of the returns to schooling at Ψ̄.

∇ShW (Ψ̄) ≡ ∇ShW (S,Z, F,A)|Ψ̄
This is the returns to schooling for a person with Z = z̄, who is at the τ̄A-quantile
of the distribution of ability given Z = z̄, and at the τ̄F -quantile of the distribution
of fortune given Z = z̄ and given ability is equal to the τ̄A-quantile of ability given
Z = z̄.
Further restrict the class of admissible structures so that, at Ψ̄:

(I) the first partial derivative of the function hW with respect to an element, Zi, of
Z is zero and the first partial derivative of the function hS with respect to that
element Zi is nonzero,

(II) the conditional quantiles, QF |AZ(τF , a, z) and QA|Z(τA, z) have zero derivatives
with respect to the element Zi.

Condition (I) is a local-to-Ψ̄ version of the classical rank condition of Koopmans
Rubin and Leipnik (1950). Condition (II) is a local-to-Ψ̄ restriction on the covariation
of the latent variates and the covariate Zi.
Define: s∗ ≡ QS|Z(τ̄A, z̄). Consider the functional of the joint distribution function

of W and S given Z:

πSZi(Ψ̄) ≡ ∇SQW |SZ(τ̄F , s∗, z̄) +
∇ZiQW |SZ(τ̄F , s∗, z̄)
∇ZiQS|Z(τ̄A, z̄)

(4)

where, for example,∇ZiQW |SZ(τ̄F , s∗, z̄) is shorthand for∇ZiQW |SZ(τ̄F , S, Z)|S=QS|Z(τ̄A,z̄),Z=z̄.
The results developed later imply that the returns to schooling, ∇ShW (Ψ̄), is

identified by πSZi(Ψ̄). The following example shows how this result applies in a
particular case.

Example 1. Suppose data are generated by a “random coefficients” linear structure:

W = θ(A)S + γ0Z + F (5)

S = β0Z +A (6)

in which the returns to schooling is θ(A) with first derivative θ0(A). The conditional
τ̄A-quantile of S given Z = z is as follows.

QS|Z(τ̄A, z) = β
0z +QA|Z(τ̄A, z)

Substituting for A in (5) using (6), the conditional τ̄F -quantile of W given S = s and
Z = z is

QW |SZ(τ̄F , s, z) = θ(s− β0z)s+ γ0z +QF |AZ(τ̄F , s− βz, z)
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and the derivatives in (4) are, on imposing the local rank condition (I), here γi = 0
and βi 6= 0, and the local quantile insensitivity condition (II),

∇SQW |SZ(τ̄F , s∗, z̄) = θ(s∗ − β0z̄) + ©θ0(s∗ − β0z̄)s∗ +∇AQF |AZ(τ̄F , s∗ − β0z̄, z̄)
ª

∇ZiQW |SZ(τ̄F , s∗, z̄) = −βi
©
θ0(s∗ − β0z̄)s∗ +∇AQF |AZ(τ̄F , s∗ − β0z̄, z̄)

ª
∇ZiQS|Z(τ̄A, z̄) = βi

which, inserted in (4), yields πSZi(Ψ̄) = θ(s
∗−β0z̄) = θ(ā). This is the required value

of the returns to schooling for a person with A = ā, that is at the τ̄A-quantile of
ability, A, given Z = z̄.

The following remarks will be amplified later in the paper.

1. Overidentification. If more than covariate, Zi, satisfies the local rank condi-
tion (I) and quantile insensitivity condition (II), then the value of the derivative
∇ShW (Ψ̄) is overidentified.

2. Localness. There is the possibility of identification of a structural derivative
evaluated at some quantile probabilities but not at others. Local identification
does not require full statistical independence of A and F relative to Z. It may
be secured at some values of a “local instrument”, that is Zi, even if not at
others.

3. Identification of other structural derivatives. Identification of other struc-
tural derivatives can be achieved in a similar fashion. For example, the value
of the Zj-derivative of the wage function:

∇ZjhW (Ψ̄) ≡ ∇ZjhW (S,Z, F,A)|Ψ̄
is identified by the functional

πZjZi(Ψ̄) ≡ ∇ZjQW |SZ(τ̄F , s∗, z̄) (7)

−∇ZiQW |SZ(τ̄F , s∗, z̄)×
∇ZjQS|Z(τ̄A, z̄)
∇ZiQS|Z(τ̄A, z̄)

where as before, s∗ ≡ QS|Z(τ̄A, z̄). In the returns-to-schooling example∇ZjhW (Ψ̄) =
γj and

∇ZjQW |SZ(τ̄F , s∗, z̄) = γj − βj
©
θ0(s∗ − β0z̄)s∗ +∇AQF |AZ(τ̄F , s∗ − β0z̄, z̄)

ª
∇ZiQW |SZ(τ̄F , s∗, z̄) = −βi

©
θ0(s∗ − β0z̄)s∗ +∇AQF |AZ(τ̄F , s∗ − β0z̄, z̄)

ª
which combined as in (7) with ∇ZjQS|Z(τ̄A, z̄)/∇ZiQS|Z(τ̄A, z̄) = βj/βi delivers
the required parameter: γj.
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4. Average derivatives. Consider a set of quantile probabilities, Tτ , and the
expected value of a function of the structural derivative∇ShW (S,Z, F,A), given
Z = z̄ conditional on A and F lying in the set of values implied by Tτ . If the
identification conditions hold for Z = z̄ for all quantile probabilities, τ ∈ Tτ ,
then the value of the expected derivative is identifiable as the integral of the
function of πSZi(Ψ̄) over τ̄F , τ̄A ∈ Tτ divided by the probability that A and F
lie in the set of values defined by Tτ . This is taken up in Section 8.

5. Estimation. The constructive identification of, for example, ∇ShW (Ψ̄) points
directly to estimation using the analogue principle (Manski (1988b)), applying
the functional πSZi to parametric, semi- or nonparametric estimates of the con-
ditional quantile functions ofW and S given Z. If there is overidentification the
resulting multiplicity of estimates can be reconciled using a minimum distance
procedure. When parametric restrictions specify hW and hS as linear functions
the estimator is an alternative to the Two Stage Least Absolute Deviations
(2SLAD) estimators proposed by Amemiya (1982) with wider applicability. Es-
timation is briefly discussed in Section 7.

In Section 4 expressions like (4) and (7) are developed for the generalM equation
case. To bring the main ideas to the fore, that development is now sketched for this
two equation example.

1.4. Returns to schooling: demonstration of identification. The identifi-
cation of the schooling function and its derivatives is considered first. The value of S
at Ψ̄, s̄, is identified because, as noted earlier,

s̄ ≡ hS(z̄, ā) = QS|Z(τ̄A, z̄). (8)

Since ∇ZiQA|Z(τ̄A, Z) is zero at Z = z̄, the value of the derivative of QS|Z(τ̄A, Z)
with respect to Zi at z̄ identifies the value of the derivative of hS(Z,A) with respect
to Zi at z̄ when A = ā.
Now consider the identification of the value of the wage function and of its S-

derivative at Ψ̄. Substitute in (1) for S using (2) giving

W = hW (hS(Z,A), Z, F,A)

and fix Z, and A at their values at Ψ̄. Considering variation in F , since hW is strictly
increasing in F and f̄ = QF |AZ(τ̄F , ā, z̄):

hW (hS(z̄, ā), z̄, f̄ , ā) = QW |AZ(τ̄F , ā, z̄).

Since hS is strictly monotonic in A, the event {Z = z̄ ∩A = ā} occurs if and only if
the event {Z = z̄ ∩ S = s̄} occurs. This implies that

QW |AZ(τ̄F , ā, z̄) = QW |SZ(τ̄F , s̄, z̄)
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and therefore, on using (8),

hW (s̄, z̄, f̄ , ā) = QW |SZ(τ̄F , QS|Z(τ̄A, z̄), z̄)

which identifies the value of delivered by hW at Ψ̄.
The s- and z-derivatives of QW |SZ(τ̄F , s, z) evaluated at s = QS|Z(τ̄A, z̄), Z = z̄

identify the values of the s- and z-derivatives of hW at Ψ̄, when all s- and z-driven
variation is taken into account. This variation arises from the direct appearance of
S and Z as arguments of hW , indirectly via A which appears in its own right as
an argument of hW and via the conditioning arguments of QF |AZ . These multiple
dependencies are made explicit in the function gW (τ̄F , s, z) defined as:

gW (τ̄F , s, z) ≡ hW (s, z,QF |AZ(τ̄F , h−1S (z, s), z), h−1S (z, s))
where h−1S (z, s) is the inverse schooling function satisfying s = hS(z, h

−1
S (z, s)).

The value of the S-derivative of the wage function at Ψ̄ is identified if it can be
deduced from knowledge of the values at Ψ̄ of the s- and z-derivatives of the function
gW (τ̄F , s, z) and the z-derivatives of the function gS(τ̄A, z) defined as follows.

gS(τ̄A, z) = hS(z,QA|Z(τ̄A, z))

There is at Ψ̄, suppressing arguments,

∇SgW = ∇ShW +
¡∇FhW∇AQF |AZ +∇AhW

¢∇Sh
−1
S

∇ZigW =
¡∇FhW∇AQF |AZ +∇AhW

¢∇Zih
−1
S

∇ZigS = ∇ZihS

where in the second line the local rank condition (I) ensures that ∇ZihW = 0 and
in the second and third lines the quantile insensitivity condition (II) ensures no Zi-
derivatives of quantiles of F and A appear. If ∇Zih

−1
S 6= 0 at Ψ̄, which is assured by

the local rank condition (I), then:

∇ShW = ∇SgW −∇ZigW ×
µ∇Sh

−1
S

∇Zih
−1
S

¶
= ∇SgW +

∇ZigW
∇ZihS

.

Since ∇ZihS = ∇ZigS at Ψ̄, the value of ∇ShW at Ψ̄ can be deduced from knowledge
of the values of the derivatives of the functions gW and gS, as follows.

∇ShW = ∇SgW +
∇ZigW
∇ZigS

(9)

The value of each term on the right hand side of (9) is identified by the value at Ψ̄ of
the appropriate derivative of the conditional quantile functions of W given S and Z
(for gW ) and of S given Z (for gS), and substituting these values gives the result (4).
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1.5. Plan of the paper. Section 2 sets this paper in the context of the litera-
ture on identification. Section 3 defines admissible equation systems and defines the
structural features whose identification is sought.
Section 4 develops the identifying restrictions and states Theorems which assert

their identifying power. A core set of restrictions are introduced in Section 4.1. Sec-
tions 4.2 provides additional restrictions required to identify values of all derivatives.
Section 4.3 deals with “single equation” identification. The conditions are illustrated
in the context of the returns-to-schooling example in Section 5. Proofs of Theorems
are given in Section 6.
Section 7 briefly examines estimation issues. Section 8 addresses the identification

of averages of functions of structural derivatives, for example, their expected values
and variances. Section 9 concludes.

2. Related results

The study of parametric identification dates back to the start of the discipline of
econometrics, with important contributions by Working (1925, 1927), Tinbergen
(1930), Frisch (1934, 1938), Haavelmo (1944), Hurwicz (1950), Koopmans, Rubin
and Leipnik (1950), Koopmans and Reiersøl (1950), Wald (1950), Fisher (1959, 1961,
1966), Wegge (1965) and Rothenberg (1971).
The approach taken in this paper is similar to that of Tinbergen (1930) which

considered conditions under which values of structural form coefficients in linear si-
multaneous equations models could be deduced from knowledge of identifiable values
of reduced form coefficients. The approach produces local versions of the order and
rank conditions for identification set out by Koopmans, Rubin and Leipnik (1950).
Roehrig (1988), extending the work of Brown (1983), considered nonparametric

global identification of structural functions under the restriction that latent variates
are distributed independently of covariates. The main result is for nonseparable mod-
els but much of the elaboration of the result is done for separable models. Newey and
Powell (1988), Newey, Powell and Vella (1999), Pinkse (2000), Darolles, Florens and
Renault (2000) study separable models with additive latent variables which satisfy
mean independence conditions.
Brown and Matzkin (1996) study the nonparametric global identification of prim-

itive functions, for example production or utility functions, associated with non-
separable simultaneous equations systems when latent variables and covariates are
restricted to be independently distributed. Altonji and Matzkin, (2001) study global
identification in nonseparable panel data models with endogeneity under conditional
exchangeability assumptions. Imbens and Newey (2001) propose a nonparametric es-
timator in a model comprising two triangular nonseparable structural equations with
latent variates and covariates restricted to be independently distributed. Their model
satisfies Roehrig’s (1988) conditions and therefore globally identifies the structural
functions.
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Identification is considered from a conditional quantile perspective in Matzkin
(1999) which deals with a model Y = m(X, ε) in which ε and X are independently
distributed and m(·, ·) is strictly monotonic in ε. The value of m(·, ·) at a point (x, e)
is shown, under suitable conditions, to be identifiable as the value of the conditional
τ -quantile of Y given X = x where τ is such that e is the τ -quantile of the marginal
distribution of ε.
In contrast to these papers, which propose restrictions sufficient to obtain global

identification of structural functions, this paper proposes weaker conditions sufficient
to obtain local identification of values of, and derivatives of, structural functions.
When these restrictions hold globally then global structural features may be iden-
tifiable. In semiparametric and parametric models, an object identified locally may
be a global parameter in which case global identification is secured under weak local
restrictions.
The objects whose identification are considered in this paper, derivatives of struc-

tural functions evaluated at quantiles of latent variates, can give valuable information
about the distribution of policy impacts across a population. Recent papers devel-
oping estimators of such distributions include Heckman, Smith and Clements (1997)
which explores non-quantile based approaches in a programme evaluation setting and
Abadie, Angrist and Imbens (2002) which proposes a Quantile Treatment Effect esti-
mator in a study of the impact of subsidised training on the distribution of earnings.
These papers are part of a large literature studying the identifying power of models
of treatment effects.7 Treatment effect models have more latent variates than ob-
servable outcomes which renders the quantile-based attack taken here inapplicable
without further restrictions.
The identification conditions of this paper include local quantile independence

restrictions. Manski’s (1975) maximum score estimator and Koenker and Basset’s
(1978) quantile regression function estimators are built on such restrictions. Manski
(1988a) gives an account of the identifying power of conditional quantile restrictions
in binary response models. Recent papers using quantile independence conditions as
the basis for developing estimators include: Newey and Powell (1990), Chaudhuri,
Doksum and Samarov (1997), Kahn (2001) and Chernozhukov and Hansen (2002).
The next Section specifies the types of structural equation systems considered in

this paper and defines the structural features whose identification is sought.

3. Structural equations and structural derivatives

Admissible structures have equations of the following triangular form, which recur-
sively determines values of M scalar outcomes, Y ≡ {Yi}Mi=1, given values of K

7See for example Heckman (1990), Imbens and Angrist (1994), Das (2000) and Vytlacil (2002).
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covariates, Z ≡ {Zi}Ki=1, and values of latent variates, ε ≡ {εi}Mi=1.

Y1 = h1(Y2, Y3, . . . , YM , Z, ε1, ε2, . . . , εM)
Y2 = h2(Y3, . . . , YM , Z, ε2, . . . , εM)
...

...
YM = hM(Z, εM)

 (10)

Additional restrictions will be developed which are sufficient to identify values of
some or all of the first partial derivatives of the functions h ≡ {hi}Mi=1 at a specified
value of the arguments of the functions.
This value is determined by a value of Z, denoted z̄, and by probabilities, τ̄ ≡

{τ̄ i}Mi=1 which specify values of the elements of ε as values of recursively defined
conditional quantiles of ε given Z = z̄ at the probabilities τ̄ . Define Ω̄ ≡ {τ̄ , z̄}.
For some chosen value, z, of Z define the conditional τ̄ -quantiles8

ei ≡ Qεi|εi+Z(τ̄ i, ei+, z), i ∈ {1, . . . ,M} (11)

and let e ≡ {ei}Mi=1. Here and later an abbreviated notation for lists is employed. For
any list, X ≡ {Xi}Mi=1, Xi+ indicates the list {Xj}Mj=i+1 for i < M and an empty list
for i =M . This abbreviated notation is used when indicating conditioning and when
indicating arguments of functions. Thus equation (11) indicates the following.

eM ≡ QεM |Z(τ̄M , z)

ei ≡ Qεi|εi+1...εMZ(τ̄ i, ei+1, . . . , eM , z), i ∈ {1, . . . ,M − 1}

A set of conditional quantile functions like this, in which each variate εi is conditioned
on εj, j > i, each such εj being evaluated at a similarly defined quantile, is described
as a set of iterated conditional quantile functions.
Denote the value of e when z = z̄ by ē, thus.

ēi ≡ Qεi|εi+Z(τ̄ i, ēi+, z̄), i ∈ {1, . . . ,M} (12)

For a value z define

yi ≡ hi(yi+, z, ei, ei+), i ∈ {1, . . . ,M}

and y ≡ {yi}Mi=1. At Ω̄ the value of Y delivered by the model is9 ȳ, defined as

ȳi ≡ hi(ȳi+, z̄, ēi, ēi+), i ∈ {1, . . . ,M}

where ȳi+ is a sub-list of ȳ = {ȳj}Mj=1. Define Ψ̄ ≡ {ȳ, z̄, ē}.
8Recall that QA|B1...BK (τ , b1, . . . , bM ) denotes the conditional τ -quantile of random variable A

given B1 = b1, . . . , BM = bM .
9Subject to Restriction I below.
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The structural features whose identification is sought are the values at Ψ̄ of some
or all of the derivatives of the structural functions, as follows.

∇yjhi(Ψ̄) ≡ Oyjhi(yi+, z, ei, ei+)
¯̄
Ψ̄

∇zkhi(Ψ̄) ≡ Ozkhi(yi+, z, ei, ei+)|Ψ̄

 ,
 i ∈ {1, . . . ,M}
j ∈ {i+ 1, . . . ,M}
k ∈ {1, . . . ,K)

(13)

It is natural to specify values of ε in terms of quantile probabilities because in this
nonparametric analysis the distribution of ε is at best identifiable up to a monotonic
transformation - the metric in which ε is measured is not identifiable. However,
under the conditions to be described, features of structural functions at values of ε
associated with probabilities defining quantiles can be identified10.

4. Identification

This Section sets out restrictions on admissible structures under which the values
of the structural derivatives in (13) are identified. Section 4.1 introduces five core
restrictions. The first four of these assure:

1. the identifiability of values of structural functions in a neighbourhood of Ψ̄,

2. the identifiability of values of derivatives of certain functions g ≡ {gi}Mi=1at Ψ̄.

Each function gi depends on yi+ and z and is the structural function hi with
εi replaced by Qεi|εi+Z(εi+, z) and with all occurrences of εj, j > i, replaced by
recursively defined inverse functions h−1j which depend on yj+ and z. The functions
g are the functions of a triangular reduced form equation system. These results are
the subject of Theorems 1 and 2. Proofs of all Theorems are in Section 6.
The values at Ψ̄ of the derivatives of the functions g are determined by the values at

Ψ̄ of derivatives of the structural functions and derivatives of the iterated conditional
quantile functions of ε given Z. This relationship is the subject of Theorem 3.
Under Restrictions (I) - (IV) the value of a structural derivative at Ψ̄ is identified

if and only if its value can be deduced from knowledge of the values of the derivatives
of the functions g. A variety of additional restrictions can assure this. In all the cases
considered here a quantile insensitivity condition, Restriction (V), is imposed.
The final restrictions to be proposed restrict the values of derivatives of the struc-

tural functions at Ψ̄. In Section 4.2, the identification of all structural derivatives is
considered. This leads to a full system local rank condition which is necessary and

10One way to think about this is to note that, under the conditions to be stated, the variates u =
{ui}Mi=1, where ui = Fεi|εi+Z(εi|εi+, z), are distributed independently of Z and are independently
uniformly distributed on [0, 1]M . Substituting for ε using εi = Qεi|εi+Z(ui, ui+, z) is merely a
normalisation of the functions h. With that normalisation in place, quantile probabilities for the
variates u are identical to the associated quantile values of u and correspond to quantile probabilities
for the iterated conditional quantiles of the variates ε.
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sufficient for identification of values of all structural derivatives, and a necessary full
system local order condition. This result is expressed in Theorem 4.
In Section 4.3 the identification of values of derivatives of a single structural func-

tion is considered when there are restrictions only on its derivatives at Ψ̄. This leads
to a single equation local rank condition which is necessary and sufficient for identi-
fication, and a single equation local order condition, a result expressed in Theorem
5. Section 4.4 elaborates this last result for the case in which there are solely local
exclusion restrictions, requiring values at Ψ̄ of certain derivatives of the structural
functions to be zero.

4.1. The core restrictions and their implications. The first four of the fol-
lowing five restrictions define a model which identifies values of the structural func-
tions in a neighbourhood of Ψ̄ and values of derivatives of the functions which define
a triangular reduced form equation system at Ψ̄. The fifth restriction places limits
on the covariation of latent variates and covariates.

Restriction I. Completeness: in a neighbourhood of Ψ̄ the equations (10)
determine a unique value of Y .
Restriction II. Differentiability and continuous variation: in a neighbour-

hood of Ψ̄ each function hi is a continuous and once differentiable function of its
arguments and the arguments in Z exhibit continuous variation.
Restriction III. Single crossing: for each i and for (yi, yi+, z, ei+) in a neigh-

bourhood of (ȳi, ȳi+, z̄, ēi+), (a) there is a unique solution for εi to

hi(yi+, z, εi, ei+) = yi

(b) ∇εihi is nonzero in a neighbourhood of Ψ̄, (c) the solution at (yi, yi+, z, ei+) =
(ȳi, ȳi+, z̄, ēi+) is εi = ēi.11 The normalisation: ∇εihi = 1 at Ψ̄ is imposed.
Restriction IV. Continuous distribution: in a neighbourhood of ē the vec-

tor ε is continuously distributed given Z = z̄ with positive density and at Ψ̄ the
conditional distribution function of ε given Z is differentiable with respect to Z.
Restriction V. Quantile insensitivity: the z-derivatives of the iterated con-

ditional quantile functions at Ψ̄, ∇zkQεi|εi+Z(τ̄ i, ēi+, z)|z=z̄, are zero for all i and k.
There may be covariates for which some of these restrictions do not hold. These

are not included in the list of covariates Z and derivatives of structural functions with
respect to these covariates may not be identifiable under the conditions proposed. For
example there may be covariates for which the quantile insensitivity condition does
not hold and there may be covariates which exhibit discrete variation. Continuous
variation in some covariates is necessary for the nonparametric identification of partial

11This is assured to hold if, with all coordinates other than εi fixed at their values at Ψ̄, each
function hi is strictly monotonic in εi. However global strict monotonicity is not required by this
restriction. For example a function hi could oscillate to some degree at extreme values of εi without
breaking the single crossing condition.
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derivatives.12 The analysis of this paper applies at any set of values of any discrete
covariates.
For z in a neighbourhood of z̄ define the iterated conditional τ̄ -quantiles of Yi

given Yi+ and Z:
qi ≡ QYi|Yi+Z(τ̄ i, qi+, z), i ∈ {1, . . . ,M}

and let q ≡ {qi}Mi=1, taking values q̄ ≡ {q̄i}Mi=1 at Ψ̄ where

q̄i ≡ QYi|Yi+Z(τ̄ i, q̄i+, z̄), i ∈ {1, . . . ,M}.

Theorem 1. Under Restrictions (I ) - (IV), in a neighbourhood of Ψ̄, for i ∈
{1, . . . ,M}, yi is identified by qi.
Because there is local-to-Ψ̄ identification of the values, yi, of the structural func-

tions, local variations in the values of the conditional quantiles associated with varia-
tions in their Yi+ and Z arguments identify the local variations in the values delivered
by the structural functions, yi, as yi+ and z vary.
These variations arise from the direct and indirect impacts of yi+ and z on the

functions hi, the indirect impacts coming through the arguments ei and ei+ of the
functions. The yi+- and z-derivatives of the conditional quantile functions identify the
yi+- and z-derivatives of the structural functions that arise when all these sources
of variation are taken into account. This result is expressed in Theorem 2, stated
shortly after the introduction of additional notation.
Define the functions h−1i (yi+, z, yi, h

−1
i+ ), i ∈ {1, . . . ,M}. These are the recursively

defined inverse functions of hi(yi+, z, ei, ei+), with respect to ei, satisfying

hi(yi+, z, h
−1
i (yi+, z, yi, h

−1
i+ ), h

−1
i+ ) = yi, i ∈ {1, . . . ,M}.

Define h−1 ≡ {h−1i }Mi=1.13 Define functions g ≡ {gi}Mi=1 where

gi(yi+, z) ≡ hi(yi+, z,Qεi|εi+Z(τ̄ i, h−1i+ , z), h−1i+ ) i ∈ {1, . . . ,M}

and the functions in the list h−1 are evaluated at y = {yi}Mi=1 and z = {zk}Kk=1. The
functions g constitute a reduced triangular form in which the direct and indirect
impacts of yi+ and z on yi are made explicit.

12Identification of partial differences when covariates exhibit discrete variation is studied in
Chesher (2002a).
13To be clear h−1M (z, yM ) is the solution for eM to

yM = hM (z, eM ),

the function h−1M−1(yM , z, yM−1, h−1M (z, yM )) is the solution for eM−1 to

yM−1 = hM−1(yM , z, eM−1, h−1M (z, yM ))

and so forth.
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Define the following matrices of derivatives of the functions g, evaluated at Ψ̄.

U

M×M
=


0 ∇y2g1 ∇y3g1 . . . ∇yMg1
0 0 ∇y3g2 . . . ∇yMg2
...

...
...

...
0 0 0 ∇yMgM−1
0 0 0 . . . 0

 V

M×K
=

 ∇z1g1 . . . ∇zKg1
...

...
∇z1gM . . . ∇zKgM



Define the matrices of iterated τ̄ -quantile function derivatives evaluated at (y, z) =
(q̄, z̄)

∇Y Q̄

M×M

≡


0 ∇y2QY1|Y1+Z ∇y3QY1|Y1+Z . . . ∇yMQY1|Y1+Z
0 0 ∇y3QY2|Y2+Z . . . ∇yMQY2|Y2+Z
...

...
...

...
0 0 0 ∇yMQYM−1|YMZ
0 0 0 . . . 0



∇ZQ̄

M×K

≡

 ∇z1QY1|Y1+Z . . . ∇zKQY1|Y1+Z
...

...
∇z1QYM |Z . . . ∇zKQYM |Z


where for example the (i, j) element of ∇Y Q̄ is as follows.¡∇Y Q̄

¢
ij
= ∇yiQYj |Yj+Z(τ̄ j, yj+, z)|y=q̄,z=z̄

Theorem 2. Under Restrictions (I ) - (IV), the elements of U and V are
identified by the corresponding elements of respectively ∇Y Q̄ and ∇ZQ̄.

With the values of derivatives of the functions gi(yi+, z) at Ψ̄ identifiable under
Restrictions (I) - (IV), models which identify the value of a structural function deriv-
ative must embody additional restrictions sufficient to permit a value of a derivative
of a structural function to be deduced from knowledge of values of the derivatives of
the functions gi(yi+, z) at Ψ̄.
This is similar to Koopmans, Rubin and Leipnik’s (1950) analysis of identifica-

tion in parametric linear simultaneous equations models under mean independence
conditions but with the difference that proceeding via iterated conditional quantile
functions, leads to the quest for conditions under which structural “parameters” can
be uniquely determined from knowledge of coefficients of a triangular reduced form
rather than a conventional reduced form.
The relationship between the derivatives of the functions g and the derivatives

of the structural functions is expressed in Theorem 3 which makes reference to the
following matrices of derivatives, all evaluated at Ψ̄.14

14Note that G incorporates the normalisation ∇εihi = 1, for all i.
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A

M×M
=


0 ∇y2h1 ∇y3h1 . . . ∇yMh1
0 0 ∇y3h2 . . . ∇yMh2
...

...
...

...
0 0 0 ∇yMhM−1
0 0 0 . . . 0

 G

M×M
=


1 ∇ε2h1 ∇ε3h1 . . . ∇εMh1
0 1 ∇ε3h2 . . . ∇εMh2
...

...
...

...
0 0 0 . . . ∇εMhM−1
0 0 0 . . . 1



B

M×K
=

 ∇z1h1 . . . ∇zKh1
...

...
∇z1hM . . . ∇zKhM

 J

M×K
=

 ∇z1Qε1|ε1+Z . . . ∇zKQε1|ε1+Z
...

...
∇z1QεM |Z . . . ∇zKQεM |Z



H

M×M
=


0 ∇ε2Qε1|ε1+Z ∇ε3Qε1|ε1+Z . . . ∇εMQε1|ε1+Z
0 0 ∇ε3Qε2|ε2+Z . . . ∇εMQε2|ε2+Z
...

...
...

...
0 0 0 ∇εMQεM−1|εMZ
0 0 0 . . . 0


Define the following triangular M ×M matrix.

C ≡ G(IM −H)−1

Theorem 3. Under Restrictions (I ) - (IV) there are the following relationships.

U = IM − C−1 (IM −A) (14)

V = C−1B + J (15)

Theorem 2 states that under Restrictions (I) - (IV) the matrices U and V are
identified by ∇Y Q̄ and ∇ZQ̄. The value of an element of one of the matrices A, B,
C, and J is identified under Restrictions (I) - (IV) if these matrices are restricted to
the extent that the value of the element can be deduced from knowledge of the value
of U and V .
A variety of restrictions can be considered. The final identification conditions will

be developed under Restriction (V), introduced at the start of this Section, which
limits the dependence of ε on Z at Ω̄, restricting the matrix J to be zero. This is
not an essential condition since sufficient conditions elsewhere could compensate for
a lack of restrictions on J , a point taken up when the returns-to-schooling example
is revisited in Section 5.
Restrictions on G and H may arise in parametric models and in other situations

but they are not considered here and attention is focussed on conditions sufficient to
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identify elements of A, B and C.15 This requires further restrictions because (14) and
(15) contain only16 M(M−1)/2+MK informative equations in theM(M−1)+MK
unknown elements of A, B and C.

4.2. Identification of the values of all structural derivatives. Define b ≡
vec(B), a ≡ v(A) and c ≡ v(C) containing the, so far, unrestricted elements of A,
B and C, where the operator v() column stacks the super-diagonal elements of the
square matrix to which it is applied, and define theM2×(M(M − 1)/2) matrix, RM ,
containing ones and zeros such that vec(A) = RM v(A).
Consider the following N restrictions17 on the derivatives of the structural func-

tions which hold at Ψ̄.

WA

N×M(M−1)/2

× a

M(M−1)/2×1
+ WB

N×MK
× b

MK×1
+ WC

N×M(M−1)/2

× c

M(M−1)/2×1
= w

N×1

Define the matrix Γ and vectors γ and θ as follows:

Γ

(N+M(M−1)/2+MK)×(M(M−1)+MK)
≡
 IM(M−1)/2 0 R0M ((IM − U 0)⊗ IM)RM

0 −IMK (V 0 ⊗ IM)RM
WA WB WC



γ

(N+M(M−1)/2+MK)×1

≡
 v(U)
− vec (V )

w

 θ

(M(M−1)+MK)×1
≡
 ab
c


and consider the following restriction.

Restriction VI. Full system rank condition. The values taken by A, B, and
C, imply values of U and V such that, given WA, WB and WC,

rank(Γ) =M(M − 1) +MK.

This restriction is always satisfied when, local-to-Ψ̄, the structural equations are
in “classical” reduced form, that is when, at Ψ̄, ∇yjhi = 0 for j > i. In that case
WA = IM and w = 0, Γ is square and has the rank required by Restriction (VI) if

rank (R0M ((IM − U 0)⊗ IM)RM) =M(M − 1)/2
15If at Ψ̄ the elements of ε were mutually quantile independent given Z then H would be a

zero matrix, C = G, and conditions sufficient to identify C would identify G. Proceeding without
restrictions on G and H is therefore equivalent to normalising the elements of ε to be locally quantile
independent at Ψ̄ given Z. If the equations of the model (10) were restricted so that G = IM , which
would arise if each equation i contained no εj , j 6= i, then C = (IM −H)−1 and conditions sufficient
to identify C would identify H.
16The triangularity restriction implies that all but M(M − 1)/2 elements of U are zero.
17These local linear restrictions could arise from non-local nonlinear restrictions on the structural

functions.
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which always holds.18 Theorem 4 asserts the identifiability of all structural derivatives
under Restrictions (I) - (VI).

Theorem 4. Under Restrictions (I) - (V), (a) Γθ = γ and (b) all elements of A,
B and C are identifiable if and only if Restriction (VI) holds. A necessary condition
is the full system order condition: N ≥M(M − 1)/2.

4.3. Single equation identification. Now consider the identification of the val-
ues at Ψ̄ of partial derivatives of a single structural function, hi, employing restrictions
on the the values at Ψ̄ of derivatives of that function alone.
Some notational refinement is required. First consider U and V , the (identified)

matrices of derivatives of the functions g evaluated at Ψ̄. Let V 0i denote the ith row
of V and let V 0i+ contain the lastM− i rows of V . Let U 0i be the last (M− i) elements
in the ith row of U and let U 0i+ be the lower right (M − i)× (M − i) block of U .
Let b0i be the ith row of B and let c

0
i and a

0
i be the last M − i elements of the ith

rows of respectively C and A - these are the elements of C and A associated with
equation i not constrained by the triangularity restriction.
Consider Ni restrictions which apply to the derivatives of the ith structural equa-

tion evaluated at Ψ̄, as follows

WAi

Ni×(M−i)

× ai

(M−i)×1

+ WBi

Ni×K
× bi

K×1
+ WCi

Ni×(M−i)

× ci

(M−i)×1

= wi

Ni×1

and define the matrix Γi and vectors γi and θi.

Γi

(M−i+K+Ni)×(2(M−i)+K)

≡
 IM−i 0 IM−i − Ui+

0 −IK Vi+
WAi WBi WCi



γi

(M−i+K+Ni)×1

≡
 Ui
−Vi
wi

 θi

(2(M−i)+K)×1

≡
 aibi
ci


Consider the following restriction.

Restriction VII. Single equation rank condition. The values taken by A,
B, and C, imply values of U and V such that, given WAi, WBi and WCi:

rank(Γi) = 2(M − i) +K.
18Because

rank (R0M ((IM − U 0)⊗ IM )RM ) = min (rank(RM ), rank ((IM − U 0)⊗ IM ))
= min(M(M − 1)/2,M2)

= M(M − 1)/2
the second line following because IM − U 0 is lower triangular with unit leading diagonal elements
and therefore has rank M .
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Theorem 5 asserts the identifiability of the derivatives of the ith structural function
under conditions (I) - (V) and (VII).

Theorem 5. Under Restrictions (I) - (V), (a) Γiθi = γi and (b) all elements of
ai, bi and ci are then identifiable if and only if Restriction (VII) holds. A necessary
condition is the single equation local order condition: Ni ≥M − i.
4.4. Single equation identification under “exclusion” restrictions. Of lead-
ing interest is the case in which there are only local “exclusion” restrictions at Ψ̄, that
is, restrictions which require certain structural derivatives to be zero (or take some
other known value) at Ψ̄.
Suppose there are NA

i local exclusion pertaining to elements of Yi+ and N
B
i local

covariate exclusion restrictions. Then the non-zero rows of WAi and WBi are respec-
tively NA

i rows of IM−i and N
B
i rows of IK , WCi = 0 and wi = 0. Further notational

refinement is required.
Order and partition ai so that the NA

i zero elements appear at the end of the
vector, denote the unrestricted M − i − NA

i elements by âi, reorder the rows of Ui
and U∗i+ ≡ (IM−i − Ui+) and partition thus

ui =

·
Ûi
Ǔi

¸
U∗i+ =

·
Û∗i+
Ǔ∗i+

¸
where Û∗i+ is (M − i−NA

i )× (M − i) with rows corresponding to the elements in âi,
Ǔ∗i+ is N

A
i × (M − i) with rows corresponding to the a priori zero elements in ai, and

Ûi and Ǔi are respectively (M − i−NA
i )× 1 and NA

i × 1.
Order and partition bi so that the NB

i a priori zero derivatives appear at the end
of the vector, denote the remaining K −NB

i unrestricted derivatives by b̂i, re-order
rows of Vi and Vi+ and partition accordingly, thus:

Vi =

·
V̂i
V̌i

¸
Vi+ =

·
V̂i+
V̌i+

¸
where V̂i+ is (K −NB

i )× (M − i) with rows corresponding to the elements in b̂i, V̌i+
is NB

i × (M − i) with rows corresponding to the a priori zero elements in bi and V̂i
and V̌i are respectively

¡
K −NB

i

¢× 1 and NB
i × 1.

The equation Γiθi = γi with a priori zero elements of θi excluded is as follows.
IM−i−NA

i
0 Û∗i+

0 0 Ǔ∗i+
0 −IK−NB

i
V̂i+

0 0 V̌i+


(M+K−i)×(2(M−i)+K−NA

i −NB
i )

 âib̂i
ci


(2(M−i)+K−NA

i −NB
i )×1

=


Ûi
Ǔi
−V̂i
−V̌i


(M+K−i)×1

(16)
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The local rank restriction (VII) is satisfied if and only if

rank

·
Ǔ∗i+
V̌i+

¸
=M − i

for which a necessary condition is the local order condition: NB
i ≥M − i−NA

i .
If the local rank condition is satisfied then, for any (M − i)× (NA

i +N
B
i ) matrix

Λ such that the matrix inverse in equation (17) below exists, there is the following
explicit solution, invariant with respect to choice of Λ.

ci =

µ
Λ×

·
Ǔ∗i+
V̌i+

¸¶−1µ
Λ×

·
Ǔi
−V̌i

¸¶ ·
âi
b̂i

¸
=

·
Ûi − Û∗i+ci
V̂i + V̂i+ci

¸
(17)

5. Application to the returns to schooling model

This Section illustrates the application of the preceding results in the returns-to-
schooling model with two covariates, Z1 and Z2.
Omitting arguments there are the following expressions for the matrices of deriv-

atives at a point Ψ̄.

A =

·
0 ∇ShW
0 0

¸
B =

· ∇Z1hW ∇Z2hW
∇Z1hS ∇Z2hS

¸
G =

·
1 ∇AhW
0 1

¸
H =

·
0 ∇AQF |AZ
0 0

¸
Separate restrictions on the derivatives ∇AQF |AZ and ∇AhW are not considered here,
so the analysis proceeds in terms of C ≡ G(I2 −H)−1, as follows.

C =

·
1 ∇AhW +∇AQF |AZ
0 1

¸
≡
·
1 c12
0 1

¸
The matrices on the right hand side of equations (14) and (15), are then, with the

quantile insensitivity restriction (V) which implies J = 0, as follows.

IM − C−1 (IM −A) =
·
0 (∇ShW + c12)
0 0

¸
(18)

C−1B + J =
·
(∇Z1hW − (∇Z1hS) c12) (∇Z2hW − (∇Z2hS) c12)

∇Z1hS ∇Z2hS

¸
(19)

The matrices of derivatives of the functions g evaluated at Ψ̄ are written as

U ≡
·
0 u12
0 0

¸
V ≡

·
v11 v12
v21 v22

¸
(20)

which are respectively identified by the following matrices of quantile derivatives
evaluated at Z = z̄, S = QS|Z(τ̄A, z̄).

∇Y Q̄ ≡
·
0 ∇SQW |SZ
0 0

¸
∇ZQ̄ ≡

· ∇Z1QW |SZ ∇Z2QW |SZ
∇Z1QS|Z ∇Z2QS|Z

¸
(21)
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The values of the structural derivatives of the schooling equation, already in full
“reduced form” are directly identified19 by the values of the corresponding derivatives
of the conditional quantile function QS|Z. But the derivatives of the wage equation
(i = 1) are not, and at least N ≥ M − 1 = 1 restrictions are necessary to achieve
identification.

5.1. Just identification. Suppose there is the local exclusion restriction: ∇Z2hW =
0 at Ψ̄. Then, referring back to (19),

C−1B + J =
·
(∇Z1hW − (∇Z1hS) c12) − (∇Z2hS) c12

∇Z1hS ∇Z2hS

¸
,

the vectors a1, b̂1 and c1 are

a1 =
£ ∇ShW

¤
b̂1 =

£ ∇Z1hW
¤

c1 =
£
c12

¤
and the equivalent of equation (16) is the following. 1 0 1

0 −1 v21
0 0 v22

 ∇ShW
∇Z1hW
c12

 =
 u12
−v11
−v12


The matrix on the left side of this expression has rank 3 if v22 6= 0 at Ψ̄. Under

that local rank condition, which is satisfied if and only if ∇Z2hS 6= 0, there is the
equivalent of (17).

 ∇ShW
∇Z1hW
c12

 =


u12 +

µ
v12
v22

¶
v11 − v21

µ
v12
v22

¶
−
µ
v12
v22

¶

 (22)

Finally, noting that U and V are identified by respectively ∇Y Q̄ and ∇ZQ̄

 ∇ShW
∇Z1hW
c12

 is identified by


∇SQW |SZ +

µ∇Z2QW |SZ
∇Z2QS|Z

¶
∇Z1QW |SZ −∇Z2QW |SZ

µ∇Z1QS|Z
∇Z2QS|Z

¶
−
µ∇Z2QW |SZ
∇Z2QS|Z

¶


evaluated at Z = z̄, S = QS|Z(τ̄A, z̄), which confirms equations (4) and (7) of Section
1.3 on setting i = 2 in that example.

19Compare the second row of C−1B + J in equation (19) with the second rows of V and ∇ZQ̄ in
equations (20) and (21).



Identification in Nonseparable Models 23

5.2. Over identification. Now suppose both ∇Z1hW and ∇Z2hW are restricted
to be zero at Ψ̄. Equation (19) now simplifies as follows

C−1B =
· − (∇Z1hS) c12 − (∇Z2hS) c12

∇Z1hS ∇Z2hS

¸
, (23)

the vectors a1, b̂1 and c1 are

a1 =
£ ∇ShW

¤
b̂1 = ∅ c1 =

£
c12

¤
and the equivalent of equation (16) is the following. 1 1

0 v21
0 v22

 · ∇ShW
c12

¸
=

 u12
−v11
−v12

 (24)

Set Λ =
£
λ1 λ2

¤
in equation (17) chosen so that λ1v21 + λ2v22 6= 0, giving the

following solution

· ∇ShW
c12

¸
=

 u12 +
µ
λ1v11 + λ2v12
λ1v21 + λ2v22

¶
−
µ
λ1v11 + λ2v12
λ1v21 + λ2v22

¶


and so there is overidentification of the values of ∇ShW and c12. For any λ1 and λ2
such that λ1v21 + λ2v22 6= 0:
· ∇ShW

c12

¸
is identified by

 ∇SQW |SZ +
µ
λ1∇Z1QW |SZ + λ2∇Z2QW |SZ
λ1∇Z1QS|Z + λ2∇Z2QS|Z

¶
−
µ
λ1∇Z1QW |SZ + λ2∇Z2QW |SZ
λ1∇Z1QS|Z + λ2∇Z2QS|Z

¶


evaluated at Z = z̄, S = QS|Z(τ̄A, z̄).
The analysis of this returns to schooling example has so far proceeded under

the quantile insensitivity condition (V), but in this overidentified case it is possible
to weaken this condition. For example, suppose that the condition does apply for
variation in Z2 but not for variation in Z1 Then (23) becomes

C−1B + J =
· − (∇Z1hS) c12 + j11 − (∇Z2hS) c12

∇Z1hS + j21 ∇Z2hS

¸
where j11 = ∇Z1QF |AZ, j21 = ∇Z1QA|Z , both evaluated at Ψ̄.
Now ∇Z1hS is no longer identified and the zero restriction at Ψ̄ on ∇Z1hW has no

force, but there remains ·
1 1
0 v22

¸ · ∇ShW
c12

¸
=

·
u12
−v12

¸
which leads to identification of the returns to schooling, ∇ShW , exactly as set out in
equation (22).
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6. Proofs of Theorems

6.1. Proof of Theorem 1. In the ith structural equation recursively substitute
the functions in hi+ for the elements of Yi+ giving

Yi = hi(hi+, Z, εi, εi+)

in which the right hand side depends only on Z, εiand εi+.20

Fix εi+ = ei+ and Z = z in a neighbourhood of Ψ̄. Under the single crossing
condition (III), replacing εi by its iterated conditional τ̄ i-quantile, ei, delivers the
conditional τ̄ i-quantile of Yi given Z = z and εi+ = ei+ as follows.

hi(hi+, z, ei, ei+) = QYi|εi+Z(τ̄ i, ei+, z) (25)

Restrictions (I) - (IV) ensure that the events {εi+ = ei+ ∩ Z = z} and {Yi+ =
yi+ ∩ Z = z} are identical, therefore:

QYi|εi+Z(τ̄ i, ei+, z) = QYi|Yi+Z(τ̄ i, yi+, z). (26)

For each i the left hand side of (25) is yi and so combining (25) and (26),

yi = QYi|Yi+Z(τ̄ i, yi+, z). (27)

Since qM ≡ QYM |Z(τ̄M , z), it follows from (27) that for variations in a neighbourhood
of Ψ̄

yM = y
∗
M ⇒ qM = y

∗
M .

Stepping from i = M − 1 through to i = 1, using (27), replacing yi+ by qi+ at each
step yields, for all i and for variations in a neighbourhood of Ψ̄:

yi = y
∗
i ⇒ qi = y

∗
i

which completes the proof of Theorem 1.

6.2. Proof of Theorem 2. Consider the ith structural equation

Yi = hi(Yi+, Z, εi, εi+)

remove εi+ using the inverse functions h−1i+ , giving

Yi = hi(Yi+, Z, εi, h
−1
i+ )

in which each function in h−1i+ depends upon elements of Yi+ and Z. Fix Yi+ = yi+
and Z = z and replace εi by Qεi|εi+Z(τ̄ i, h

−1
i+ , z) = ei in which the arguments εi+ have

20For example, YM−1 = hM−1(hM (Z, εM ), Z, εM−1, εM ).
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been removed using the inverse functions h−1i+ . The resulting function of yi+ and z
delivers the value yi, that is:

yi = hi(yi+, z,Qεi|εi+Z(τ̄ i, h
−1
i+ , z), h

−1
i+ ) ≡ gi(yi+, z).

Theorem 1 states that for each i, the value of gi(yi+, z) is identified by qi ≡
QYi|Yi+Z(τ̄ i, qi+, z) for (y, z, e) in a neighbourhood of Ψ̄. Therefore, for scalar 4 in
a neighbourhood of zero, and i < M , the value of gi(4ιij + ȳi+, z̄) is identified by
QYi|Yi+Z(τ̄ i,4ιij + q̄i+, z̄) where j > i and ιij is a (i+ 1)-vector with 1 in position j− i
and zeros elsewhere. It follows that, for 4 in a neighbourhood of zero

gi(4ιij + ȳi+, z̄)− gi(ȳi+, z̄)
4 (28)

is identified by

QYi|Yi+Z(τ̄ i,4ιij + q̄i+, z̄)−QYi|Yi+Z(τ̄ i, q̄i+, z̄)
4 . (29)

Restrictions (II) and (IV) ensure that the yj-derivative of gi(yi+, z) at Ψ̄ exists and
is the limit as 4→ 0 of (28) whose limit is therefore identified by the limit as 4→ 0
of (29) this limit being the yj-partial derivative of QYi|Yi+Z(τ̄ i, yi+, z) evaluated at
y = q̄ and z = z̄. A similar argument shows that the zk-partial derivative of gi(yi+, z)
at Ψ̄ is identified by the zk-partial derivative of QYi|Yi+Z(τ̄ i, yi+, z) evaluated at y = q̄
and z = z̄.
Collecting derivatives of the functions g in the matrices U and V and quantile

derivatives in the matrices ∇Y Q̄ and ∇ZQ̄ completes the proof.

6.3. Proof of Theorem 3. Recall the definitions of the functions gi, i ∈ {1, . . . ,M}

gi(yi+, z) ≡ hi(yi+, z, ei, h−1i+ ) ei ≡ Qεi|εi+Z(τ̄ i, h−1i+ , z)

where arguments of the functions h−1i+ and ei are suppressed.
Consider the differential dgi = dhi for which there is the following expression with

the normalisation ∇εihi = 1 applied.

dgi =
MX
j=1

¡∇yjhidyj
¢
+

KX
k=1

(∇zkhidzk) + dei + 1[i<M ]

MX
j=i+1

¡∇εjhidh
−1
j

¢
(30)

Define the column vector of differentials dg ≡ {dgi}Mi=1 and vectors of differentials
dy, dz, dq and dh−1 similarly. Then (30) implies the following.

dg = Ady +Bdz + de+ (G− IM) dh−1
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The differential dei is:

dei =
MX
j=1

∇yjeidyj +
KX
k=1

∇zkeidzk

=
MX
j=1

∇εjQεi|εi+Z

Ã
∇yjh

−1
j dyj +

KX
k=1

∇zkh
−1
j dzk

!
+

KX
k=1

∇zkQεi|εi+Zdzk

and therefore

de = H

µµ
dh−1

dy0

¶
dy +

µ
dh−1

dz0

¶
dz

¶
+ Jdz

where the (s, t) elements of dh
−1
dy0 and

dh−1
dz0 are respectively ∇yth

−1
s and ∇zth

−1
s .

The final step is to obtain expressions for these derivatives of the inverse functions.
Since yi = hi(yi+, z, ei, ei+) there is

dy = Ady +Bdz +Gde

and so
de = G−1 ((IM −A) dy −Bdz) = dh−1

giving the following expressions.

dh−1

dy0
= G−1 (IM −A) dh−1

dz0
= −G−1B

On collecting terms there is

dg =
¡
IM − (IM −H)G−1(IM −A)

¢
dy +

¡
(IM −H)G−1B + J

¢
dz

= Udy + V dz

and thus the result as stated in Theorem 3.

6.4. Proof of Theorem 4. Recall the definitions of a, b, c and RM given in
Section 4.2. Because each column of RM contains zeros except for a single unit
element in a different position in each column

R0MRM = IM(M−1)/2 (31)

and theMoore-Penrose inverse ofRM isR−M = (R
0
MRM)

−1R0M = R0M . SinceR
−
M vec(A) =

R−MRM v(A) it follows that v(A) = R
0
M vec(A).

Since C − IM has the same triangular structure as A and v(IM) = 0,

vec(C − IM) = RM v(C − IM) = RM v(C). (32)

Equation (15), with Restriction (V), J = 0, imposed implies

(C − IM)V + V = B
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and on column stacking,

(V 0 ⊗ IM) vec(C − IM) + vec(V ) = vec(B)
which leads, on using (32), to the following result.

(V 0 ⊗ IM)RMc− b = − vec (V ) (33)

From (14)
C − IM − (C − IM)U +A = U

and on column stacking there is the following.

vec(C − IM)− (U 0 ⊗ IM) vec(C − IM) + vec(A) = vec(U)
Using (32), premultiplying by R0M to extract the relevant super-diagonal elements of
C, noting that R0M vec(IM) = 0 and using (31) gives the following result.

R0M ((IM − U 0)⊗ IM)RMc+ a = v(U) (34)

Combining (33) and (34) with the restrictions WAa+WBb+WCc = w produces
the equation Γθ = γ as stated in Theorem 4. The value of θ is uniquely deducible
from knowledge of Γ and γ if and only if the rank condition, Restriction (VI), holds.
A necessary condition is that the row order of Γ be at least equal to its column order
which leads to the order condition stated in Theorem 4.

6.5. Proof of Theorem 5. The equation Γiθi = γi follows directly on selecting
the appropriate rows and columns from Γ and the required elements from γ and θ.
The values of the 2 (M − i) +K elements of θi can be solved uniquely if and only if
rank(Γi) = 2 (M − i) +K for which a necessary condition is that the row order of Γi
be at least equal to its column order. These are the local rank and order conditions
stated in Theorem 5.

7. Estimation

The values of the derivatives of the structural equations at the point Ψ̄ = (ȳ, z̄, ē) can
be estimated as follows.

1. Conditional τ̄ -quantile functions of Yi given Yi+ and Z, i ∈ {1, . . . ,M} are
estimated using a parametric, semi- or nonparametric method, as desired21 and
an estimate, ŷ = {ŷi}Mi=1, of ȳ, the value of Y at the point Ψ̄, is calculated.

21For parametric estimation, see Koenker and Bassett (1978), Koenker and d’Orey (1987); for
semiparametric estimation see Chaudhuri, Doksum and Samarov (1997), Kahn (2001) and Lee
(2002); for nonparametric estimation, see Chaudhuri (1991). The R software suite, see Ihaka and
Gentleman (1996) and cran.r-project.org, implements a variety of quantile regression estimation
procedures.
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2. Derivatives of the conditional τ̄ -quantile functions at z̄ and ŷ are calculated

producing [∇Y Q̄ and [∇ZQ̄, which are estimates of ∇Y Q̄ and ∇ZQ̄ , and, in
consequence of Theorem 2, of matrices U and V .22

3. The restrictions on A, B and C are assembled with [∇Y Q̄ and [∇ZQ̄ replacing U
and V leading to estimates Γ̂ and γ̂, and if Γ̂ has the required rank the equation
Γ̂θ̂ = γ̂ is solved for an estimate, θ̂, of θ which contains the desired elements of
A, B and C.

At the final step, if there are abundant restrictions then there is overidentification
and there is unlikely to be a solution. Solutions can be obtained by eliminating
restrictions so that the order condition is exactly satisfied, but there will be many
ways of doing this, each leading to a potentially inefficient quantile regression analogue
of a system Indirect Least Squares estimator.
Efficient estimation can be achieved using a minimum distance estimator

θ̂ = argmin
θ

³
Γ̂θ − γ̂

´0
W
³
Γ̂θ − γ̂

´
for a suitable choice of positive definite weighting matrix W where Γ̂ and γ̂ are as
in step 3 above. This produces a quantile regression analogue of a system Three
Stage Least Squares estimator. Of course the sampling properties of θ̂ depend on
restrictions additional to those required to achieve identification.
Single equation estimation proceeds similarly, obtaining θ̂i as

θ̂i = argmin
θi

³
Γ̂iθi − γ̂i

´0
Wi

³
Γ̂iθi − γ̂i

´
where Wi is a positive definite weighting matrix. This produces a quantile regression
analogue of the Two Stage Least Squares estimator.
Identifying restrictions could be imposed during the procedure that results in the

estimates [∇Y Q̄ and [∇ZQ̄. Then if Γ̂ has the required rank there will be a unique
solution to Γ̂θ̂ = γ̂.
The estimation of coefficients of a median regression function derived from a

linear location shift model in the presence of endogenous variables was considered
by Amemiya (1982) who proposed a family of Two Stage Least Absolute Deviations
(2SLAD) estimators for the coefficients of a linear location shift model

Y1 = γ2Y2 + · · ·+ γMYM + Z 0β1 + ε1
Yj = Z 0βj + εj j ∈ {2, . . . ,M}

in which β1 is sufficiently restricted to allow identification of the γ2, . . . , γM and the
unrestricted elements of β1.

22Nonparametric estimation can proceed recursively, derivatives of the conditional τ̄ i-quantile of
Yi given Yi+ and Z being estimated local to z̄ and ŷi+.
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At the first stage of 2SLAD predicted values of {Yj}Mj=2, given values of Z are
produced. OLS and LAD estimation are suggested as possibilities in Amemiya (1982).
In a leading special case of 2SLAD the second stage is an LAD estimation of the
parameters of the equation for Y1 using predicted values of Y2, . . . , YM in place of
their actual values.
The procedure described above is an alternative to 2SLAD with the advantage

that it is applicable for quantile regressions other than the median regression and for
parametric nonlinear, semi-parametric and nonparametric quantile regressions.

8. Average derivatives

So far the focus has been on local nonparametric identification of values of structural
derivatives evaluated at a single point defined by a value, z̄, of a vector of covariates
Z and byM probabilities, τ̄ , defining iterated conditional quantiles of latent variates,
ε.
If identification can be achieved at z̄ for a set of quantile probabilities, τ ∈ Tτ ⊆

[0, 1]M , then it is possible to identify certain conditional expected values (with respect
to the distribution of ε given Z) of structural derivatives and of functions of them.
To see how this is achieved consider a subset of <M , Tε, and the expected value

(assumed to exist), given Z = z̄ and ε ∈ Tε, of a function x(ε, Z) of continuously
distributed ε which has conditional distribution function Fε|Z.

Eε|Z [x(ε, Z)|Z = z̄, ε ∈ Tε] ≡
R ··· R

e∈Tε x(e, z)dFε|Z(e|z̄)R ··· R
e∈Tε dFε|Z(e|z̄)

Let x̃(τ , z̄) ≡ x(ε(τ), z̄) where τ ≡ {τ i}Mi=1, and ε(τ) ≡ {εi(τ)}Mi=1 whose elements
are defined recursively as follows.

εi(τ) ≡ Qεi|εi+Z(τ i|ε(τ)i+, z̄), i ∈ {1, . . . ,M}

The elements of τ satisfy

τ i = Fεi|εi+Z(εi|εi+, z̄), i ∈ {1, . . . ,M},

where Fεi|εi+Z is the conditional distribution function of εi given εi+ and Z. Define

Tτ ≡ {τ : ε(τ) ∈ Tε}.

Since the elements of τ are distributed independently of Z and are mutually inde-
pendently uniformly distributed, each on [0, 1],

Eε|Z [x(ε, Z)|Z = z̄, ε ∈ Tε] = Eτ [x(ε(τ), z̄)|τ ∈ Tτ ] =
R ··· R

t∈Tτ x̃(t, z̄)dt1 . . . dtMR ··· R
t∈Tτ dt1 . . . dtM

.

(35)
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The structural derivatives evaluated at the point Ψ̄ considered in Section 3 are
expressed as functions of probabilities, τ̄ , defining iterated conditional quantiles of the
conditional distribution of ε given Z = z̄, functions like x̃ above. So, equation (35)
implies that conditional expected values of functions of structural derivatives (and
so, for example, average derivatives, variances of derivatives) can be identified if the
local identification conditions hold at Z = z̄ over some set of quantile probabilities.

9. Concluding remarks

Some features of the identifying model are briefly discussed.

9.1. Multiplicity of latent variates. The identifying restrictions proposed here
require that effectively23 there be no more latent variables in the model than observ-
able outcomes. This condition may not be tenable when measurement error distorts
recorded outcomes or covariates, or when there is high dimensional heterogeneity
such as in the mixture models employed widely in the analysis of durations. It may
not be tenable in panel data models and other multilevel models in which there is a
nested error structure. In these sorts of cases, models that secure identification must
embody strong restrictions because one is trying to secure identification of features
of high dimensional distributions from the relatively low dimensional reductions of
them about which data are informative.
In practice one finds strong additivity assumptions imposed in every such case.

Thus, all measurement error models employed in practice require measurement er-
ror to be additive in some metric and with very few exceptions impose parametric
restrictions on model equations. Similarly, panel data models typically require the
latent variables that drive a model to be linear combinations of individual specific
latent variates and latent variates that vary across and within individuals.
Most mixed proportionate hazard (MPH) models restrict an individual specific

latent variate to be additive in the log hazard function. As shown in Chesher (2002b),
under this restriction the individual specific latent variate combines with the latent
variate that produces variation in durations so that the restriction on the multiplicity
of latent variates is satisfied in MPH models.

9.2. Continuous variation. Continuous variation in covariates is essential if val-
ues of partial derivatives of structural functions are to be identified in the absence
of parametric restrictions. However certain partial differences of structural functions
can be nonparametrically identified when there is only discrete variation in covariates.
This is explored in Chesher (2002a).

9.3. Parametric and semiparametric restrictions. Identification in semipara-
metric and parametric nonseparable and separable models can be assessed using the

23Any additional latent variates must combine, for example additively, to produce no more latent
variates than there are observable outcomes.
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results of this paper even though a nonparametric attack has been taken. Because
this was thought to be useful some normalisations which would often be taken in a
study of purely nonparametric identification have not been made in this paper.
Semiparametric and parametric conditions place restrictions on the matrices of

derivatives introduced in Section 4.1. For example index restrictions that lead to
model equations of the form:

Yi = hi(Y
0
i+δi, Z

0βi, εi, εi+)

require the matrices A and B of Section 4.1 to be equal to a diagonal matrices24 times
matrices of constants (containing the parameters δi and βi). Conditions sufficient for
local identification of A and B ensure global identification of ratios of δ parameters
and ratios of β parameters taken within equations. This is explored in the context of
duration models in Chesher (2002b).

9.4. Quantile insensitivity. The quantile insensitivity conditions used here have
the advantage that they have meaning when data are generated by structures in
which integer order moments do not exist, a situation that arises for example in some
of the problems studied in financial econometrics. The quantile regression based
estimators which naturally flow from these restrictions are easy to compute and their
sampling properties are understood. In the context of the nonseparable simultaneous
equations systems studied here they have the potential to improve understanding of
the distribution of the impacts of policy interventions.
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