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Quantile regression is a statistical technique intended to estimate, and conduct inference
about, conditional quantile functions. Just as classical linear regression methods based on
minimizing sums of squared residuals enable one to estimate models for conditional mean
functions, quantile regression methods o�er a mechanism for estimating models for the
conditional median function, and the full range of other conditional quantile functions.
By supplementing the estimation of conditional mean functions with techniques for esti-
mating an entire family of conditional quantile functions, quantile regression is capable
of providing a more complete statistical analysis of the stochastic relationships among
random variables.
Quantile regression has been used in a broad range of application settings. Reference

growth curves for childrens' height and weight have a long history in pediatric medicine;
quantile regression methods may be used to estimate upper and lower quantile reference
curves as a function of age, sex, and other covariates without imposing stringent para-
metric assumptions on the relationships among these curves. Quantile regression methods
have been widely used in economics to study determinents of wages, discrimination e�ects,
and trends in income inequality. Several recent studies have modeled the performance of
public school students on standardized exams as a function of socio-economic characteris-
tics like their parents' income and educational attainment, and policy variables like class
size, school expenditures, and teacher quali�cations. It seems rather implausible that
such covariate e�ects should all act so as to shift the entire distribution of test results
by a �xed amount. It is of obvious interest to know whether policy interventions alter
performance of the strongest students in the same way that weaker students are a�ected.
Such questions are naturally investigated within the quantile regression framework.
In ecology, theory often suggests how observable covariates a�ect limiting sustainable

population sizes, and quantile regression has been used to directly estimate models for
upper quantiles of the conditional distribution rather than inferring such relationships
from models based on conditional central tendency. In survival analysis, and event his-
tory analysis more generally, there is often also a desire to focus attention on particular
segments of the conditional distribution, for example survival prospects of the oldest-old,
without the imposition of global distributional assumptions.

1. Quantiles, Ranks and Optimization

We say that a student scores at the �th quantile of a standardized exam if he performs
better than the proportion � , and worse than the proportion (1��), of the reference group
of students. Thus, half of the students perform better than the median student, and half
perform worse. Similarly, the quartiles divide the population into four segments with
equal proportions of the population in each segment. The quintiles divide the population
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into 5 equal segments; the deciles into 10 equal parts. The quantile, or percentile, refers
to the general case.
More formally, any real valued random variable, Y , may be characterized by its distri-

bution function,

F (y) = Prob(Y � y)

while for any 0 < � < 1,

Q(�) = inffy : F (y) � �g
is called the �th quantile of X. The median, Q(1=2), plays the central role. Like the
distribution function, the quantile function provides a complete characterization of the
random variable, Y.
The quantiles may be formulated as the solution to a simple optimization problem. For

any 0 < � < 1, de�ne the piecewise linear \check function", �� (u) = u(� � I(u < 0))
illustrated in Figure 1.

 ττ−1

ρτ (u)

Figure 1. Quantile Regression � Function

Minimizing the expectation of �� (Y � �) with respect to � yields solutions, �̂(�), the
smallest of which is Q(�) de�ned above.
The sample analogue of Q(�), based on a random sample, fy1; :::; yng, of Y 's, is called

the �th sample quantile, and may be found by solving,

min
�2R

nX

i=1

�� (yi � �);

While it is more common to de�ne the sample quantiles in terms of the order statistics,
y(1) � y(2) � ::: � y(n), constituting a sorted rearrangement of the original sample,
their formulation as a minimization problem has the advantage that it yields a natural
generalization of the quantiles to the regression context.
Just as the idea of estimating the unconditional mean, viewed as the minimizer,

�̂ = argmin
�2jR

X
(yi � �)2
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can be extended to estimation of the linear conditional mean function E(Y jX = x) = x0�
by solving,

�̂ = argmin
�2jRp

X
(yi � x0i�)

2;

the linear conditional quantile function, QY (� jX = x) = x0i�(�), can be estimated by
solving,

�̂(�) = argmin
�2jRp

X
�� (yi � x0�):

The median case, � = 1=2, which is equivalent to minimizing the sum of absolute values of
the residuals has a long history. In the mid-18th century Boscovich proposed estimating
a bivariate linear model for the ellipticity of the earth by minimizing the sum of absolute
values of residuals subject to the condition that the mean residual took the value zero.
Subsequent work by Laplace characterized Boscovich's estimate of the slope parameter
as a weighted median and derived its asymptotic distribution. F.Y. Edgeworth seems
to have been the �rst to suggest a general formulation of median regression involving a
multivariate vector of explanatory variables, a technique he called the \plural median".
The extension to quantiles other than the median was introduced in Koenker and Bassett
(1978).

2. Two Examples

To illustrate the approach we may consider an analysis of a simple �rst order autore-
gressive model for maximum daily temperature in Melbourne, Australia. The data are
taken from Hyndman, Bashtannyk, and Grunwald (1996). In Figure 2 we provide a scat-
ter plot of 10 years of daily temperature data: today's maximum daily temperature is
plotted against yesterday's maximum. Our �rst observation from the plot is that there is
a strong tendency for data to cluster along the (dashed) 45 degree line implying that with
high probability today's maximum is near yesterday's maximum. But closer examination
of the plot reveals that this impression is based primarily on the left side of the plot
where the central tendency of the scatter follows the 45 degree line very closely. On the
right side, however, corresponding to summer conditions, the pattern is more complicated.
There, it appears that either there is another hot day, falling again along the 45 degree
line, or there is a dramatic cooling o�. But a mild cooling o� appears to be more rare.
In the language of conditional densities, if today is hot, tomorrow's temperature appears
to be bimodal with one mode roughly centered at today's maximum, and the other mode
centered at about 20Æ.
Several estimated quantile regression curves have been superimposed on the scatterplot.

Each curve is speci�ed as a linear B-spline. Under winter conditions these curves are
bunched around the 45 degree line, however in the summer it appears that the upper
quantile curves are bunched around the 45 degree line and around 20Æ. In the intermediate
temperatures the spacing of the quantile curves is somewhat greater indicating lower
probability of this temperature range. This impression is strengthened by considering a
sequence of density plots based on the quantile regression estimates. Given a family of
reasonably densely spaced estimated conditional quantile functions, it is straightforward
to estimate the conditional density of the response at various values of the conditioning
covariate. In Figure 3 we illustrate this approach with several density estimates based
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Figure 2. Melbourne Maximum Daily Temperature: The plot illustrates
10 years of daily maximum temperature data (in degrees centigrade) for
Melbourne, Australia as an AR(1) scatterplot. The data is scattered around
the (dashed) 45 degree line suggesting that today is roughly similar to yes-
terday. Superimposed on the scatterplot are estimated conditional quantile
functions for the quantiles � 2 f:05; :10; :::; :95g. Note that when yester-
day's temperature is high the spacing between adjacent quantile curves is
narrower around the 45 degree line and at about 20 degrees Centigrade than
it is in the intermediate region. This suggests bimodality of the conditional
density in the summer.
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Figure 3. Conditional density estimates of today's maximum temperature
for several values of yesterday's maximum temperature based on the Mel-
bourne data: These density estimates are based on a kernel smoothing of
the conditional quantile estimates as illustrated in the previous �gure using
99 distinct quantiles. Note that temperature is bimodal when yesterday
was hot.

on the Melbourne data. Conditioning on a low previous day temperature we see a nice
unimodal conditional density for the following day's maximum temperature, but as the
previous day's temperature increases we see a tendency for the lower tail to lengthen
and eventually we see a clearly bimodal density. In this example, the classical regression
assumption that the covariates a�ect only the location of the response distribution, but
not its scale or shape, is clearly violated.
In our second example we reconsider an investigation by Abreveya(2000) of the im-

pact of various demographic characteristics and maternal behavior on the birthweight of
infants born in the U.S. Low birthweight is known to be associated with a wide range
of subsequent health problems, and has even been linked to educational attainment and
labor market outcomes. Consequently, there has been considerable interest in factors in-

uencing birthweights, and public policy initiatives that might prove e�ective in reducing
the incidence of low birthweight infants.
Although most of the analysis of birthweights has employed conventional least squares

regression methods it has been recognized that the resulting estimates of various e�ects
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on the conditional mean of birthweights were not necessarily indicative of the size and
nature of these e�ects on the lower tail of the birthweight distribution. In an e�ort
to focus attention more directly on the lower tail, several studies have recently explored
binary response (e.g. probit) models for the occurence of low birthweights { conventionally
de�ned to be infants weighing less than 2500 grams. Quantile regression o�ers a natural
complement to these prior modes of analysis. A more complete picture of covariate e�ects
can be provided by estimating a family of conditional quantile functions, as we will now
illustrate.
Our analysis will be based on the June, 1997 Detailed Natality Data published by

the National Center for Health Statistics. Like Abreveya (2000), we limit the sample
to singleton births, with mothers recorded as either black or white, between the ages of
18 and 45, resident in the U.S. Observations with missing data for any of the variables
described below were also dropped from the analysis. This process yielded a sample of
198,377 babies. Education of the mother is divided into four categories: less than high
school, high school, some college, and college graduate. The omitted category is less
than high school so coeÆcients may be interpreted relative to this category. The prenatal
medical care of the mother is also divided into 4 categories: those with no prenatal visit,
those whose �rst prenatal visit was in the �rst trimester of the pregnancy, those with �rst
visit in the second trimester, and those with �rst visit in the last trimester. The omitted
category is the group with a �rst visit in the �rst trimester; they consititute almost 85
percent of the sample. The other variables are, I hope self-explanatory.
In Figure 4 we present a concise summary of the quantile regression results for this

example. Each plot depicts one coeÆcient in the quantile regression model. The solid
line with �lled dots represents the point estimates, f�̂j(�) j = 1; :::; 16g, with the shaded
grey area depicting a 90 percent pointwise con�dence band. Superimposed on the plot
is a dashed line representing the ordinary least squares estimate of the mean e�ect, with
two dotted lines representing again a 90 percent con�dence interval for this coeÆcient.
In the �rst panel of the �gure the intercept of the model may be interpreted as the

estimated conditional quantile function of the birthweight distribution of a girl born to
an unmarried, white mother with less than a high school education, who is 27 years old
and had a weight gain of 30 pounds, didn't smoke, and had her �rst prenatal visit in
the �rst trimester of the pregnancy. The mother's age and weight gain are chosen to
re
ect the means of these variables in the sample. Note that the � = :05 quantile of this
distribution is just at the margin of the conventional de�nition of a low birthweight baby.
[This strongly suggests that it would be desirable to expand the sample and estimate
models for lower quantiles.]
Boys are obviously bigger than girls, about 100 grams bigger according to the OLS

estimates of the mean e�ect, but as is clear from the quantile regression results the
disparity is much smaller in the lower quantiles of the distribution and somewhat large
than 100 grams in the upper tail of the distribution. At any chosen quantile we can ask
how di�erent are the corresponding weights of boys and girls, given a speci�cation of the
other conditioning variables. The second panel answers this question.
Perhaps surprisingly, the marital status of the mother seems to be associated with a

rather large positive e�ect on birthweight especially in the lower tail of the distribution.
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The (re)public(an) health implications of this �nding should, of course, be viewed with
caution, however.
The disparity between birthweights of infants born to black and white mothers is very

large particularly at the left tail of the distribution. The di�erence in birth weight between
a baby born to a black mother and a white mother at the 5th percentile of the conditional
distribution is roughly one third of a kilogram.
Mother's age enters the model as a quadratic. At the lower quantiles the mother's age

tends to be more concave, increasing birthweight from age 18 to about age 30, but tending
to decrease birthweight when the mother's age is beyond 30. At higher quantiles there is
also this optimal age, but it becomes gradually older. At the third quantile it is about
36, and at � = :9 it is almost 40. This is illustrated in Figure 5.
Education beyond high school is associated with a modest increase in birthweights.

High school graduation has a quite uniform e�ect over the whole range of the distribution
of about 15 grams. This is a rare example of an e�ect that really does appear to exert
a pure location shift e�ect on the conditional distribution. Some college education has a
somewhat more positive e�ect in the lower tail than in the upper tail, varying from about
35 grams in the lower tail to 25 grams in the upper tail. A college degree has an even
more substantial positive e�ect, but again much larger in the lower tail and declining to
a negligble e�ect in the upper tail.
The e�ect of prenatal care is of obvious public health policy interest. Since individuals

self-select into prenatal care results must be interpreted with considerable caution. Those
receiving no prenatal care are likely to be at risk in other dimensions as well. Nevertheless,
the e�ects are suÆciently large to warrent considerable further investigation. Babies born
to mothers who received no prenatal care were on average about 150 grams lighter than
those who had a prenatal visit in the �rst trimester. In the lower tail of the distribution
this e�ect is considerably larger { at the 5th percentile it is nearly half a kilogram! In
contrast, mothers who delayed prenatal visits until the second or third trimester have
substantially higher birthweights in the lower tail than mothers who had a visit in the
�rst trimester. This might be interpreted as the self-selection e�ect of mothers con�dent
about favorable outcomes. In the upper 3/4 of the distribution there seems to be no
signi�cant e�ect.
Smoking has a clearly deleterious e�ect. The indicator of whether the mother smoked

during the pregnancy is associated with a decrease of about 175 grams in birthweight. In
addition, there is an e�ect of about 4 to 5 grams per cigarette per day. Thus a mother
smoking a pack per day appears to induce a weight reduction of about 250 to 300 grams
in their babies.
Lest this smoking e�ect be thought to be attributable to some associated reduction

in the mothers weight gain, we should hasten to point out that the weight gain e�ect
is explicitly accounted for with a quadratic speci�cation. Not suprisingly, the mother's
weight gain has a very strong in
uence on birthweight, and this is re
ected in the very
narrow con�dence band for both linear and quadratic coeÆcients. In Figure 6 we illustrate
this marginal e�ect of weight gain by evaluating over the entire range of quantiles for four
di�erent levels of weight gain. At low weight gains by the mother the marginal e�ect of
another pound gained is about 30 grams at the lowest quantiles and declines to only about
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5 grams at the upper quantiles. This pattern of declining marginal e�ects is maintained for
large weight gains until we begin to consider extremely large weight gains at which point
the e�ect is reversed. For example, another pound gained by the mother who has already
gained 50 pounds has only a 7 gram e�ect in the lower tail of the birthweight distribution
and this increases to about 10 grams at the upper quantiles. The quadratic speci�cation
of the e�ect of mother's weight gain o�ers a striking example of how misleading the OLS
estimates can be. Note that the OLS estimates strongly suggest that the e�ect is linear
with an essentially negligible quadratic e�ect. However, the quantile regression estimates
give a very di�erent picture, one in which the quadratic e�ect of the weight gain is very
signi�cant except where it cross the zero axis at about � = :33.
Although much more could be drawn out of the foregoing analysis, it may suÆce to

conclude here with the comment that the quantile regression results o�er a much richer,
more focused view of both of the applications than can be achieved by exclusively looking
at conditional mean models.

3. Interpretation of Quantile Regression

Least squares estimation of mean regression models asks the question, \How does the
conditional mean of Y depend on the covariatesX?" Quantile regression asks this question
at each quantile of the conditional distribution enabling one to obtain a more complete
description of how the conditional distribution of Y given X = x depends on x. Rather
than assuming that covariates shift only the location or scale of the conditional distri-
bution, quantile regression methods enable one to explore potential e�ects on the shape
of the distribution as well. Thus, for example, the e�ect of a job-training program on
the length of participants' current unemployment spell might be to lengthen the shortest
spells while dramatically reducing the probability of very long spells. The mean treatment
e�ect in such circumstances might be small, but the treatment e�ect on the shape of the
distribution of unemployment durations could, nevertheless, be quite signi�cant.

3.1. Quantile Treatment E�ects. The simplest formulation of quantile regression is
the two-sample treatment-control model. In place of the classical Fisherian experimental
design model in which the treatment induces a simple location shift of the response dis-
tribution, Lehmann (1974) proposed the following general model of treatment response:

\Suppose the treatment adds the amount �(x) when the response of the
untreated subject would be x. Then the distribution G of the treatment
responses is that of the random variable X +�(X) where X is distributed
according to F ."

Special cases obviously include the location shift model, �(X) = �0, and the scale shift
model, �(X) = �0X, but the general case is natural within the quantile regression
paradigm.
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Doksum (1974) shows that if �(x) is de�ned as the \horizontal distance" between F
and G at x, so

F (x) = G(x+�(x))

then �(x) is uniquely de�ned and can be expressed as

�(x) = G�1(F (x))� x:

Changing variables so � = F (x) one may de�ne the quantile treatment e�ect,

Æ(�) = �(F�1(�)) = G�1(�)� F�1(�):

In the two sample setting this quantity is naturally estimable by

Æ̂(�) = Ĝ�1
n (�)� F̂�1

m (�)

where Gn and Fm denote the empirical distribution functions of the treatment and control
observations, based on n and m observations respectively.
Formulating the quantile regression model for the binary treatment problem as,

QYi
(� jDi) = �(�) + Æ(�)Di

where Di denotes the treatment indicator, with Di = 1 indicating treatment, Di = 0,
control, then the quantile treatment e�ect can be estimated by solving,

(�̂(�); Æ̂(�))0 = argmin
nX

i=1

�� (yi � �� ÆDi):

The solution (�̂(�); Æ̂(�))0 yields �̂(�) = F̂�1
n (�), corresponding to the control sample,

and

Æ̂(�) = Ĝ�1
n (�)� F̂�1

n (�):

Doksum suggests that one may interpret control subjects in terms of a latent charac-
teristic: for example in survival analysis applications, a control subject may be called
frail if he is prone to die at an early age, and robust if he is prone to die at an advanced
age. This latent characteristic is thus implicitly indexed by � , the quantile of the survival
distribution at which the subject would appear if untreated, i.e., (YijDi = 0) = �(�):
And the treatment, under the Lehmann model, is assumed to alter the subjects control
response, �(�), making it �(�) + Æ(�) under the treatment. If the latent characteristic,
say, the propensity for longevity, were observable ex ante, then one could view the treat-
ment e�ect Æ(�) as an explicit interaction with this observable variable. In the absence of
such an observable variable however, the quantile treatment e�ect may be regarded as a
natural measure of the treatment response.
It may be noted that the quantile treatment e�ect is intimately tied to the two-sample

QQ-plot which has a long history as a graphical diagnostic device. The function �̂(x) =
G�1

n (Fm(x))�x is exactly what is plotted in the traditional two sample QQ-plot. If F and
G are identical then the function G�1

n (Fm(x)) will lie along the 45 degree line; if they di�er
only by a location scale shift, then G�1

n (Fm(x)) will lie along another line with intercept
and slope determined by the location and scale shift, respectively. Quantile regression
may be seen as a means of extending the two-sample QQ plot and related methods to
general regression settings with continuous covariates.
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When the treatment variable takes more than two values, the Lehmann-Doksum quan-
tile treatment e�ect requires only minor reinterpretation. If the treatment variable is
continuous as, for example, in dose-response studies, then it is natural to consider the
assumption that its e�ect is linear, and write,

QYi
(� jxi) = �(�) + �(�)xi:

We assume thereby that the treatment e�ect, �(�), of changing x from x0 to x0+1 is the
same as the treatment e�ect of an alteration of x from x1 to x1+1: Note that this notion
of the quantile treatment e�ect measures, for each � , the change in the response required
to stay on the �th conditional quantile function.

3.2. Transformation Equivariance of Quantile Regression. An important property
of the quantile regression model is that, for any monotone function, h(�),

Qh(T )(� jx) = h(QT (� jx)):
This follows immediately from observing that

Prob(T < tjx) = Prob(h(T ) < h(t)jx):
This equivariance to monotone transformations of the conditional quantile function is a
crucial feature, allowing one to decouple the potentially con
icting objectives of transfor-
mations of the response variable. This equivariance property is in direct contrast to the
inherent con
icts in estimating transformation models for conditional mean relationships.
Since, in general, E(h(T )jx) 6= h(E(T jx)) the transformation alters in a fundamental way
what is being estimated in ordinary least squares regression.
A particularly important application of this equivariance result, and one that has proven

extremely in
uential in the econometric application of quantile regression, involves censor-
ing of the observed response variable. The simplest model of censoring may be formulated
as follows. Let y�i denote a latent (unobservable) response assumed to be generated from
the linear model

y�i = x0i� + ui i = 1; : : : ; n

with fuig iid from distribution function F. Due to censoring, the y�i 's are not observed
directly, but instead one observe

yi = maxf0; y�i g:
Powell (1986) noted that the equivariance of the quantiles to monotone transformations
implied that in this model the conditional quantile functions of the response depended
only on the censoring point, but were independent of F . Formally, the �th conditional
quantile function of the observed response, yi; in this model may be expressed as

Qi(� jxi) = maxf0; x0i� + F�1
u (�)g

The parameters of the conditional quantile functions may now be estimated by solving

min
b

nX

i=1

�� (yi �maxf0; x0ibg)
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where it is assumed that the design vectors xi, contain an intercept to absorb the ad-
ditive e�ect of F�1

u (�): This model is computationally somewhat more demanding than
conventional linear quantile regression because it is non-linear in parameters.

3.3. Robustness. Robustness to distributional assumptions is an important considera-
tion throughout statistics, so it is important to emphasize that quantile regression inherits
certain robustness properties of the ordinary sample quantiles. The estimates and the as-
sociated inference apparatus have an inherent distribution-free character since quantile
estimation is in
uenced only by the local behavior of the conditional distribution of the
response near the speci�ed quantile. Given a solution �̂(�), based on observations, fy;Xg,
as long as one doesn't alter the sign of the residuals, any of the y observations may be ar-
bitrary altered without altering the initial solution. Only the signs of the residuals matter
in determining the quantile regression estimates, and thus outlying responses in
uence
the �t in so far as they are either above or below the �tted hyperplane, but how far above
or below is irrelevant.
While quantile regression estimates are inherently robust to contamination of the re-

sponse observations, they can be quite sensitive to contamination of the design observa-
tions, fxig. Several proposals have been made to ameliorate this e�ect.

4. Computational Aspects of Quantile Regression

Although it was recognized by a number of early authors, including Gauss, that so-
lutions to the median regression problem were characterized by an exact �t through p
sample observations when p linear parameters are estimated, no e�ective algorithm arose
until the development of linear programming in the 1940's. It was then quickly recog-
nized that the median regression problem could be formulated as a linear program, and
the simplex method employed to solve it. The algorithm of Barrodale and Roberts (1973)
provided the �rst eÆcient implementation speci�cally designed for median regression and
is still widely used in statistical software. It can be concisely described as follows. At
each step, we have a trial set of p \basic observations" whose exact �t may constitute a
solution. We compute the directional derivative of the objective function in each of the 2p
directions that correspond to removing one of the current basic observations, and taking
either a positive or negative step. If none of these directional derivatives are negative the
solution has been found, otherwise one chooses the most negative, the direction of steapest
descent, and goes in that direction until the objective function ceases to decrease. This
one dimensional search can be formulated as a problem of �nding the solution to a scalar
weighted quantile problem. Having chosen the step length, we have in e�ect determined
a new observation to enter the basic set, a simplex pivot occurs to update the current
solution, and the iteration continues.
This modi�ed simplex strategy is highly e�ective on problems with a modest number

of observations, achieving speeds comparable to the corresponding least squares solu-
tions. But for larger problems with, say n > 100; 000 observations, the simplex approach
eventually becomes considerably slower than least squares. For large problems recent
development of interior point methods for linear programming problems are highly e�ec-
tive. Portnoy and Koenker (1997) describe an approach that combines some statistical
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preprocessing with interior point methods and achieves comparable performance to least
squares solutions even in very large problems.
An important feature of the linear programming formulation of quantile regression is

that the entire range of solutions for � 2 (0; 1) can be eÆciently computed by parametric

programming. At any solution �̂(�0) there is an interval of � 's over which this solution
remains optimal, it is straightforward to compute the endpoints of this interval, and thus
one can solve iteratively for the entire sample path �̂(�) by making one simplex pivot at
each of the endpoints of these intervals.

5. Statistical Inference for Quantile Regression

The asymptotic behavior of the quantile regression process f�̂(�) : � 2 (0; 1)g closely
parallels the theory of ordinary sample quantiles in the one sample problem. Koenker and
Bassett (1978) show that in the classical linear model,

yi = xi� + ui

with ui iid from dfF; with density f(u) > 0 on its support fuj0 < F (u) < 1g, the joint
distribution of

p
n(�̂n(�i)��(�i))

m
i�1 is asymptotically normal with mean 0 and covariance

matrix 
 
D�1. Here �(�) = � + F�1
u (�)e1; e1 = (1; 0; : : : ; 0)0; x1i � 1; n�1

P
xix

0
i ! D;

a positive de�nite matrix, and


 = (!ij = (minf�i; �jg � �i�j)=(f(F
�1(�i))f(F

�1(�j))):

When the response is conditionally independent over i, but not identically distributed,
the asymptotic covariance matrix of �(�) =

p
n(�̂(�) � �(�)) is somewhat more compli-

cated. Let

�i(�) = xi�(�)

denote the conditional quantile function of y given xi, and fi(�) the corresponding condi-
tional density, and de�ne,

Jn(�1; �2) = (minf�1; �2g � �1�2)n
�1

nX

i=1

xix
0
i;

and

Hn(�) = n�1
X

xix
0
ifi(�i(�)):

Under mild regularity conditions on the ffig's and fxig's, we have joint asymptotic nor-
mality for vectors (�(�i); : : : ; �(�m)) with mean zero and covariance matrix

Vn = (Hn(�i)
�1Jn(�i; �j)Hn(�j)

�1)mi=1:

An important link to the classical theory of rank tests was made by Gutenbrunner and
Jure�ckov�a (1992), who showed that the rankscore functions of H�ajek and �Sid�ak (1967)
could be viewed as a special case of a more general formulation for the linear quantile
regression model. The formal dual of the quantile regression linear programming problem
may be expressed as,

maxfy0ajX 0a = (1� t)X 01; a 2 [0; 1]ng:
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The dual solution â(�) reduces to the H�ajek and �Sid�ak rankscores process when the design
matrix, X, takes the simple form of an n vector of ones. The regression rankscore process
â(�) behaves asymptotically much like the classical univariate rankscore process, and
thus o�ers a way to extend many rank based inference procedures to the more general
regression context.

6. Extensions and Future Developments

There is considerable scope for further development of quantile regression methods.
Applications to survival analysis and time-series modeling seem particularly attractive,
where censoring and recursive estimation pose, respectively, interesting challenges. For
the classical latent variable form of the binary response model where,

yi = I(x0i� + ui � 0)

and the median of ui conditional on xi is assumed to be zero for all i = 1; :::; n, Manski
(1975) proposed an estimator solving,

max
jjbjj=1

X
(yi � 1=2)I(x0ib � 0):

This \maximum score" estimator can be viewed as a median version of the general linear
quantile regression estimator for binary response,

min
jjbjj=1

X
�� (yi � I(x0ib � 0)):

In this formulation it is possible to estimate a family of quantile regression models and
explore, semi-parametrically, a full range of linear conditional quantile functions for the
latent variable form of the binary response model. This has recently been explored in
considerable depth in Kordas (2001).
Koenker and Machado (1999) and Koenker and Xiao (2001) introduce inference meth-

ods closely related to classical goodness of �t statistics based on the full quantile regression
process. There have been several proposals dealing with generalizations of quantile re-
gression to nonparametric response functions involving both local polynomial methods
and splines. Extension of quantile regression methods to multivariate response models is
a particularly important challenge.

7. Conclusion

Classical least squares regression may be viewed as a natural way of extending the idea
of estimating an unconditional mean parameter to the problem of estimating conditional
mean functions; the crucial step is the formulation of an optimization problem that en-
compasses both problems. Likewise, quantile regression o�ers an extension of univariate
quantile estimation to estimation of conditional quantile functions via an optimization of
a piecewise linear objective function in the residuals. Median regression minimizes the
sum of absolute residuals, an idea introduced by Boscovich in the 18th century.
The asymptotic theory of quantile regression closely parallels the theory of the univari-

ate sample quantiles; computation of quantile regression estimators may be formulated
as a linear programming problem and eÆciently solved by simplex or barrier methods. A
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close link to rank based inference has been forged from the theory of the dual regression
quantile process, or regression rankscore process.
Recent non-technical introductions to quantile regression are provided by Buchinsky

(1998) and Koenker and Hallock (2001). Related papers are available on my website
http://www.econ.uiuc.edu/�roger. Most of the major statistical computing languages
now include some capabilities for quantile regression estimation and inference. Quantile
regression packages are available for the related languages R and Splus from the R archives
at http://lib.stat.cmu.edu/R/CRAN and Statlib at http://lib.stat.cmu.edu/S, re-
spectively. Stata also provides some quantile regression estimation and inference func-
tions.
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Figure 4. Quantile Regression for Birthweights
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Figure 5. Mother's Age E�ect on Birthweights: The estimated quadratic
e�ect of mother's age on infant birthweight is illustrated at four di�erent
quantiles of the conditional birthweight distribution. In the lower tail of
the conditional distribution mothers who are roughly 30 years of age have
the largest children, but in the upper tail it is mothers who are 35-40 who
have the largest children.
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Figure 6. Mother's Weight Gain Marginal E�ect: The marginal e�ect of
the mother's weight gain, again parameterized as a quadratic e�ect, tends to
decrease over the entire range of the conditional distibution of birthweights.
Thus incremental weight gain is most in
uential in increasing the weight
of low birthweight infants. But for mothers with unusually large weight
gains, this pattern is reversed and e�ect is largest in the upper tail of the
conditional birthweight distribution.


