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The Fundamental Duelity (sic) of Statistics

Parameters versus Distributions

Laplace’s parameters versus Quetelet’s distributions [Stigler (1975]
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The Fundamental Duelity (sic) of Statistics II

Parameters versus Distributions

Pearson’s distributions versus Fisher’s parameters [Stigler (1975]
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The Prototype: Grenander’s Monotone Density Estimator
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Taut String: A Fully Automatic Histogram Estimator
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Two Maximum Likelihood Formulations of Grenander

If you can’t find a string, you can always power up your laptop and solve
the maximum likelihood problem,

max
f

{

∫
log f(x)dFn(x) | f decreasing,

∫
f(x)dx = 1}.

Jumps in f̂ occur at order statistics of the sample and at the origin.

An
alternative formulation also grounded in maximum likelihood involves
writing our target density, f, as a scale mixture of uniforms,

max
G∈G

{

∫
log f(x)dFn(x) | f(x) =

∫
t−1I(0 6 x 6 t)dG(t)},

where G constitutes the set of proper distribution functions. This second
formulation anticipates the nonparametric maximum likelihood estimator of
Robbins (1950) and Kiefer and Wolfowitz (1956) that will be a main theme
of the talk.
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Log-Concave Density Estimation
What if we would like an MLE for unimodal densities?

max
f

{

∫
log f(x)dFn(x) | f log-concave,

∫
f(x)dx = 1}.

This can reformulated as just another convex optimization problem so
computation is again quite easy and solutions are piecewise exponential
as in this estimate of a gamma density.
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Log-Concaves Can’t have Algebraic Tails
Weaker notions of concavity are needed to accommodate heavy tailed
behavior. For example to model annual log income increments for
households in the U.S. it is preferable to impose concavity on −1/

√
f(x).

−4 −2 0 2 4

−
8

−
6

−
4

−
2

0

x ~ log income annual increments

lo
g 

f(
x)

−4 −2 0 2 4

−
12

0
−

80
−

40
0

x ~ log income annual increments
−

1
f(x

)

Guvenen et al (2015) show that U.S. earnings histories exhibit essentially Cauchy
tail behavior.
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Primal and Dual Log Concave Problems

The primal convex optimization problem for log concave densities is:

min
{
n−1

n∑
i=1

g(Xi) +

∫
e−g(x)dx

∣∣∣ g ∈ K(X)
}
, (P1)

where g = − log f and K(X) denotes set of closed convex functions on the
empirical support of the observations with associated dual problem,

max
{∫

−f log fdx
∣∣∣ f = d(Q(X) −G)

dx
, G ∈ K(X)o

}
, (D1)

where Q(X) = n−1
∑n
i=1 δXi is the empirical probability measure, K(X)o

is the polar cone associated with K(X). So the problem becomes one of
maximizing Shannon entropy or minimizing the Kullback-Leibler
divergence to the uniform subject to the concavity constraint.
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Rényi “Likelihoods” and Quasi Concave Densities

Replacing Shannon entropy with a version of Rényi entropy we obtain the
new dual and primal pairings, Koenker and Mizera (2010) consider,

max
{ 1
α

∫
fα(y)dy

∣∣∣ f = d(Q(X) −G)

dy
, G ∈ K(X)o

}
, (Dα)

and

min
{ n∑
i=1

g(Xi) +
|1− α|

α

∫
gβ dx

∣∣∣ g ∈ K(X)
}
. (Pα)

where f is now gβ, g is convex, f is α-concave and α and β are conjugate
in the usual sense that 1/α+ 1/β = 1. As α decreases we allow larger
and larger classes of densities, culminating with α = −∞ by inclusion of
all quasi-concave densities.
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Beyond Shape Constraints – on to Mixtures
As we saw with the Grenander estimator maximum likelihood can be a
vital tool for nonparametric estimation of mixture models. Robbins (1950)
anticipated this and Kiefer and Wolfowitz (1956) filled in many details.
Consider mixtures of the form,

f(x) =

∫
ϕ(x, θ)dG(θ),

where ϕ is a known parametric distribution and G is an unknown mixing
distribution, we have the primal problem

min
G∈G

{−

n∑
i=1

log f(xi) | f(xi) =

∫
ϕ(xi, θ)dG(θ), i = 1, ...,n},

The associated dual problem is, Lindsay (1981),

max{
n∑
i=1

log νi |
n∑
i=1

νiϕ(xi, θ) 6 n for all θ}

Laird (1978) proposed an EM computational method; modern interior point
and gradient descent methods offer efficient alternative methods.
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Compound Decisions and the Gaussian Sequence Model

Following Robbins (1956) and the empirical Bayes approach to compound
decisions, suppose we observe {y1,y2, · · · ,yn} with Yi ∼ N(θi, 1),
i = 1, · · · ,n, and face the quadratic loss function, for nonlinear shrinkage,

L(θ̂, θ) = n−1
n∑
i=1

(θ̂− θ)2.

Adopting the presumption that the θi are drawn iidly from G, the Bayes
rule is given by Tweedie’s formula,

θ̂i = yi + f
′(y)/f(y).

Rather than estimating each of the incidental parameters θi,
independently, thereby entailing a loss of 1, we estimate their distribution,
G, and then “borrow strength from the ensemble” to estimate the Bayes
rule. In the terminology of Efron (2016, 2019) this is called g-modeling.
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A Simple Discrete Mixture Example
Consider the simple model, Yk N(θ, 1), with θ ∈ {1, 3} with probabilities
(0.75, 0.25) respectively. We draw a sample of n = 1000, Y’s, plot their
histogram, and then overplot the Kiefer-Wolfowitz NPMLE in red.
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Tweedie Shrinkage for Posterior Means

Given our Ĝ we can compute a posterior mean estimate for any value of y.
What does this look like?

−2 0 2 4 6

Tweedie shrinkage is quite smart about adapting shrinkage to the form of
the posterior. No longer are we simply shrinking toward one fixed value.
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Minimalist G-Modeling and Alternatives

When ϕ is Gaussian we have a classical deconvolution problem, but
Fourier methods perform poorly, while maximum likelihood in several
forms performs quite brilliantly.

Efron’s logspline approach expresses g = G ′ as a natural spline:

log g(θ) =

p∑
j=1

αjψj(θ),

and estimates the parameters α ∈ Rp by penalized maximum
likelihood.

The Kiefer and Wolfowitz NPMLE yields a discrete G typically with
only a few atoms, and has the advantage that it is tuning parameter
free.

Both approaches share the advantage that they are applicable to the
general class of mixture problems, not only to Gaussian deconvolution.
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Two variants of a simulation setting from Efron (2016)

Yi = θi + ui, ui ∼ N(0, 1), θi ∼ G(θ) =
1
8Φ(θ/6) + 7

8Φ(2θ).

Yi = θi + ui, ui ∼ N(0, 1), θi ∼ G(θ) =
7
8I(θ > 0) + 1

8I(θ > 2)
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Wasserstein (L1) distances between Ĝn and true G in legend
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Two variants of a simulation setting from Efron (2016)

The take-away

Efron is better for smooth G, KW is better for discrete G,

Kernel deconvolution a la Stefanski and Carroll (1990) is awful,

Kernel smoothing of the KW NPMLE is good for smooth G, but
reintroduces a bandwidth choice.

Should we believe any of this based on one realization? A simulation with
n = 1000 and 1000 replications may be more convincing?

Efron Kernel NPMLE NPMLEs
Smooth 0.185 0.591 0.342 0.180
Discrete 0.409 0.718 0.156 0.280

Mean Wasserstein (L1) Error
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Binary Response Modeling with Random Coefficients

There are many other applications of the Kiefer-Wolfowitz NPMLE, to
survival models, longitudinal data, multiple testing, etc. But I would like to
briefly touch upon some recent work on binary response with Jiaying Gu
because it represents an extreme variant of my main theme: the unlikely
likelihood, with distribution as parameter.

The model: we observe (yi, xi,wi) : i = 1, · · ·n where yi ∈ {0, 1},
xi ∈ Rd+1, wi ∈ Rp and suppose,

yi = 1(x>i βi +wiθ0 > 0).

The random coefficients βi are drawn independently of xi and wi and iidly
from a distribution G0. We will need to normalize βi since it is only
identified up to scale. Our objective is to estimate the pair (θ0,G0), I will
(almost entirely) ignore the role of θ.
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The Current Status (Cosslett) Model
The simplest setting has xi = (1,−vi)

>, with no wi, and normalized so
that βi = (ηi, 1)

>,

P(y = 1|v) =

∫
1(η > v)dGη(η).

Given a sample {(yi, vi) i = 1, · · · ,n}, Each point defines a half line: if
yi = 0 then the interval is Ri = (−∞, vi), while if yi = 1 the interval is
Ri = [vi,∞). The Ri’s form a partition of n+ 1 intervals of R, that we
denote by Ij, for j = 1, · · · ,n+ 1. Counts are defined for each interval.
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Only (Some) Locally Maximal Intervals Really Count

The NPMLE for the mixing distribution solves

min
g∈Sm

{−

n∑
i=1

log fi | Ag = f},

where A = (aij) = 1(ηj > vi, yi = 1) + 1(ηj 6 vi, yi = 0), Sm denotes
the unit simplex and gj denotes the mass associated with interval with
endpoint ηj.
The non-negativity requirement on the elements of g ∈ Sm assures that
only a few of the remaining locally maximal intervals receive postive mass
at a NPMLE solution. No further regularization is required. For Gaussian
data the number of strictly possitive mass points is roughly of order,
O(
√
n). Intervals may be prescreened since only intervals that have

locally maximal counts can receive positive mass for the NPMLE.
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NPMLE for Bivariate Gη

When the random parameter η is bivariate things get more interesting. We
have half spaces instead of half lines and polygons instead of intervals so
computation become more complicated. Our binary response is generated
as,

P(yi = 1|zi, vi) = P(η1i + ziη2i > vi).

Each pair, (zi, vi), defines a plane that divides R2 into two halfspaces, an
“upper” one corresponding to realizations of yi = 1, and a “lower” one for
yi = 0. Let Ri denote these halfspaces and Fη{Ri} be the probability
assigned to each Ri by the distribution Gη, so the log likelihood is,

`(Gη) =

n∑
i=1

log Fη{Ri}.

Theorem The NPMLE assigns positive mass only to polygons with locally
maximal counts of the number of their intersecting halfspaces.
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“Facing Up to Arrangements”

Over the last 50 years or so there has been considerable progress in
algebraic and computational geometry on what is called “hyperplane
arrangements”. Given n hyperplanes Hi : i = 1, · · · ,n in Rd, a first
question might be: How many polytopes do they form? When the
hyperplanes are in “general position” then the question has the following
elegant answer:

M(n,d) =
d∑
k=0

(
n

k

)
This was apparently first proven by Buck (1943) and greatly elaborated in
a MIT thesis by Zaslavsky (1975), titled “Facing up to Arrangements”.
These results and subsequent work of others greatly facilitates the
bookkeeping required to implement the NPMLE for this problem.
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A (Pathological) Toy Example
Five observations and 16 polygons, of which six are locally maximal.
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The NPMLE: Three Equivalent Versions
Fix θ and let F(z, v, θ) = {η|z>η− v+w>θ > 0}. The NPMLE solves,

max
G∈G

n∑
i=1

yi log[PG(F(zi, vi, θ))] + (1− yi) log[1− PG(F(zi, vi, θ))].

Given locally maximal cells, {Ci, · · · ,CM∗}, define a n by M∗ matrix A
with Aij = 1{Cj ⊂ F(zi, vi, θ)} if yi = 1 and 1− 1{Cj ⊂ F(zi, vi, θ)} if
yi = 0,

min
{
−

1

n

n∑
i=1

log gi | gi =
∑
j

aijpj,
∑
j

pj = 1,pj > 0
}

The dual problem is preferable since M∗ is typically much larger than n,

max
{ n∑
i=1

logπi |
n∑
i=1

aijπi 6 n for all j
}

The NPMLE assigns mass pi = πi to cell Ci for i = 1, · · · ,M∗. This
convex optimization problem can be solved efficiently with Mosek, for
example. Profile likelihood can then be optimized to obtain θ̂n.
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Identification and Asymptotics
Returning to our original model with profiled parameters θ0 as well as F0 to
be estimated,

yi = 1(x>i βi +wiθ0 > 0).

Theorem
Under the following assumptions:

A1 The random vectors (xi,wi) and βi are independent and [X
...W] has full

column rank.

A2 The parameter space Θ is a compact subset of a Euclidean space and
θ0 ∈ Θ. The space F of probability distributions for βi is supported on the
d-dimensional unit sphere, and there exists a vector c 6= 0 such that
PF(c>βi > 0) = 1 for all F ∈ F.

A3 The distribution of (z>i , vi) is absolutely continuous on Rd and w>i θ0 is
absolutely continuous both possessing an everywhere positive density.

the parameter (θ0, F0) is identified, and the NPMLE is strongly consistent.

The proof is very Wald-ish, as in Kiefer and Wolfowitz (1956).
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Journey to work in Washington DC

Either by automobile, y = 1, or public transit, y = 0,
There are two relevant covariates:

I difference in commuting time, z, in minutes, and
I difference in commuting cost, v, in dollars per trip.

The coefficient on v is normalized to equal 1

There are no other covariates, w, with fixed coefficients.

Observations are stratefied by the number of cars, k, owned by the
household, and analysis is conditional on k.

Cars 0 1 2 >2
n 79 355 316 92
% Transit 78 14 4 0
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Subsample of Commuters Owning One Car
Grey contours are estimated density of Gautier and Kitamura’s (2013)
deconvolution estimator, pink circles depict mass points of NPMLE.
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The Unlikelihood of Quantile Regression

To conclude, I should say a few words about quantile regression. It is a
ridiculously simple idea, instead of minimizing sums of squared errors
from a linear predictor, why not minimize sums of absolute errors, or
asymmetrically weighted absolute errors,

β̂(1/2) = argminb∈Rp
n∑
i=1

|yi − x
>
i b|

β̂(τ) = argminb∈Rp
n∑
i=1

ρτ(yi − x
>
i b),

where ρτ(u) = u(τ− I(u < 0)). Rather than a global conditional mean
model we have a local conditional quantile model.
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A QRious likelihood
While viewing the usual quantile regression objective for a single quantile
as a global model seems like a very bad idea, there has also been
increasing interest in treating an ensemble of QR models as something
that could function more like a likelihood. When we write,

β̂(τ) = argminb∈Rp
n∑
i=1

ρτ(yi − x
>
i b),

it is tempting to see it as a estimate of the entire conditional quantile
function. Indeed if we were to consider the weighted version,

β̂(τ) = argminb∈Rp
n∑
i=1

wiρτ(yi − x
>
i b),

and let wi = fi(yi|xi), the conditional density of the response, we have
an efficient parametric model for each conditional quantile function.
Imposing some smoothness on the resulting quantile regression process
makes it look a lot like penalized likelihood.

Roger Koenker (UCL) Unlikely Likelihoods Philadelphia*: 6.8.2020 28 / 33



The Unlikelihood of Quantile Regression
Again, we have unlikely likelihoods for distributional objects without making
distributional assumptions:

Weights can be estimated via the relation ∂Q(τ|x)/∂τ = 1/f(Q(τ|x)),
Wei and Carroll (2009), Yang and He (2012), Feng, Chen and He
(2015), Arellano, Blundell and Bonhomme (2017), Yang, Narisetty
and He (2018), . . .

Simulation from the model is easy, via Q(Ui|xi), suggesting a
possible connections to approximate Bayesian computation,

Linearity (in parameters) assumptions and the data magically
produce a likelihood-like object,

Extensions to multivariate response via optimal transport, Wei (2009),
Chernozhukov, Galichon, Hallin and Henry (2017), Carlier,
Chernozhukov and Galichon (2016)

Local likelihood variants enable one to focus exclusively on tail
behavior when desirable: Wang, Li and He (2012)
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Some Concluding Slogans

Think globally, estimate locally.

“Every parameter would like to grow up to be a distribution.”

Mixtures aren’t “like tequila” [Wasserman] and shouldn’t be avoided.

There is never “an effect,” there is always a distribution of effects.

Virtual T-shirts available in the virtual lobby.
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