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Abstract

In this paper, I study a semiparametric Bayesian method for over-identified mo-
ment condition models. A mixture of parametric distributions with random weights
is used to flexibly model an unknown data generating process. The random mixture
weights are defined by the exponential tilting projection method to ensure that the joint
distribution of the data distribution and the structural parameters are internally con-
sistent with the moment restrictions. In this framework, I make several contributions
to Bayesian estimation and inference, as well as model specification. First, I develop
simulation-based posterior sampling algorithms based on Markov chain Monte Carlo
(MCMC) and sequential Monte Carlo (SMC) methods. Second, I provide a method
to compute the marginal likelihood and use it for Bayesian model selection (moment
selection) and model averaging. Lastly, I extend the scope of Bayesian analysis for
moment condition models. These generalizations include dynamic moment condition
models with time-dependent data and moment condition models with exogenous dy-
namic latent variables.
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1 Introduction

The estimation and testing of econometric models through moment restrictions have been

the focus of considerable attention in the literature since the seminal paper by Hansen

(1982). These types of models and associated tools have become a major tool for empirical

economists due to its generality and flexibility. Many econometric problems, such as instru-

mental variable regression and quantile regression, can be cast in a moment condition model

framework. Moreover, one can perform estimation and testing without fully specifying a

model. This is especially important for empirical economists since economic theory does not

always fully dictate the probabilistic structure of data.

Despite the popularity and importance of moment condition modeling, existing Bayesian

methods have received relatively little attention vis-à-vis the treatment in the frequentist

literature. One of the difficulties in Bayesian analysis of moment conditions is that the

information contained in moment condition models is insufficient to construct a likelihood

function of the model because the moment restrictions characterize only part of the econo-

metric model. Various Bayesian procedures have been proposed to overcome this difficulty,

but there are still many gaps in the literature. First, most papers have focused on the prob-

lem of parameter inference, omitting other meaningful issues such as model selection and

model averaging. Second, most extant Bayesian procedures for moment condition models

either assume i.i.d. (independently and identically distributed) data, or concentrate out the

unknown distribution function of the data generating process and justify their approaches

using asymptotic approximations.

As a step toward filling this gap, I develop a semiparametric Bayesian econometric method

for moment condition models building on the semiparametric prior proposed by Kitamura

and Otsu (2011), and make several contributions to Bayesian estimation and inference, as well

as model specification. First, I develop simulation-based algorithms to perform finite-sample

posterior analysis based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo

(SMC) methods. Second, I provide a method to compute the marginal likelihood and use it

for Bayesian model selection (moment selection) and model averaging. Lastly, I extend the

scope of Bayesian analysis for moment condition models to a wider class of data generating

processes, such as dynamic moment condition models with time-dependent data as well as

moment condition models with exogenous dynamic latent variables.

I flexibly model the unknown data generating process using mixtures of parametric den-

sities. Then, the random mixture weights are restricted so that the data generating process

satisfies the relevant moment conditions. Specifically, restricted random mixture weights
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are obtained by applying exponential tilting projections to distributions over the space of

unrestricted random mixing distributions and parameters in the moment functions. As a

result, unknown parameters in the moment functions are embedded in the random mixture

weights, and the likelihood function can be obtained based on the mixture representation

with restricted mixture weights. After specifying suitable prior distributions on model pa-

rameters, Bayes’ theorem leads to the posterior distribution of the parameters in the moment

functions, as well as the probability distribution of the data generating process.

I go on to develop simulation-based approaches that allow me to perform posterior analy-

sis. The algorithms are based on Markov chain Monte Carlo (MCMC) and sequential Monte

Carlo (SMC) methods. I also provide a method to compute the marginal likelihood, which

is typically challenging for Bayesian semiparametric models. Then, the computed marginal

likelihood, in conjunction with the model prior probability, offers a decision-theoretic ap-

proach to the moment selection problem (Bayesian model selection). Moreover, it can be

used to average a quantity of interest across models rather than analyzing a single selected

model (Bayesian model averaging).

I extend the modeling framework and the associated posterior sampling algorithms to

cover more complicated data generating processes. Time-dependency in the data is captured

by modeling the joint distribution of current and past histories of the data as a mixture of

parametric distributions under the assumption that the data generating process follows a

p-th order time-homogeneous Markov process. It is also possible to extend the method to

models with exogenous dynamic latent variables when its transition law is known up to finite

dimensional parameters by modeling the conditional distribution of observables conditioned

on latent variables as a mixture of parametric distribution. Then, a similar exponential

tilting procedure is applied to the random weights in these mixture models to ensure that

the resulting random unknown densities are internally consistent with the moment condition

models.

I compare the performance of all three posterior samplers developed in this paper using

simulated data. All posterior samplers produce almost identical posterior moment estimates.

However, there are differences in their performance in terms of efficiency. Among MCMC-

based samplers, the data-augmented version of the sampler improves the plain vanilla version

of the sampler (basic sampler). The basic sampler is applicable to all modeling frameworks,

while the use of the data-augmentation technique is limited to i.i.d. models, as it exploits

the particular structure of the likelihood function. Under the simulation design considered,

the current version of the SMC algorithm turns out to be less efficient than MCMC-based

samplers. However, the SMC algorithm provides an approximation to the marginal likeli-
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hood, which is a valuable quantity for posterior analysis, although it is not obvious how to

compute it based on the output from MCMC-based samplers, so it may be worth sacrificing

some efficiency to achieve this end.

I next illustrate how one can use the marginal likelihood to select a model using simulated

data. In the context of moment condition models, different model specifications are defined

by different sets of moment conditions on the same dataset. Marginal likelihood computed

based on the proposed SMC sampler correctly distinguishes models with invalid moment

conditions from the correctly specified moment condition model.

In the empirical section, I use the proposed posterior sampling methods to estimate a

risk aversion parameter based on an Euler equation allowing for demographic heterogeneity.

Specifically, I use household-level annual food consumption and demographic characteristic

data (the number of children) taken from the Panel Study of Income Dynamics (PSID). I

impose the proposed modeling framework and apply the SMC sampler to perform posterior

analysis. Preliminary results indicate that the risk aversion parameter is around 4.5∼5.6.

Marginal likelihood comparison reveals that Euler equation restrictions are favored by the

data, as the marginal likelihoods based on the moment conditions models are higher than

those of an unrestricted nonparametric Bayesian model (the Dirichlet mixture model). How-

ever, not all Euler equation-based moment restrictions are equally useful. It turns out that

the moment restrictions that include the number of children as a set of instruments deteri-

orate the marginal likelihood compared to other Euler equation models.

Related literature. This paper contributes to first and foremost to the literature on

Bayesian approaches to moment condition models. It is most closely related to the work

of Kitamura and Otsu (2011), who develop a generic method to construct semiparametric

priors using exponential tilting projection and study its frequentist asymptotic properties.

However, their actual implementation is limited to i.i.d. data. My paper complements theirs

by providing a series of posterior samplers that allow one to perform a complete poste-

rior analysis, including model selection and model averaging, for a more general class of

models– moment condition models with serially dependent data and these with latent vari-

ables. Moreover, I provide conditions under which the proposed posterior samplers converge

to the true posterior distribution. Other authors have proposed Bayesian approaches to mo-

ment condition models– one of the first attempts to obtain a posterior distribution based on

moment conditions without the use of an assumed parametric likelihood function is Zellner’s

Bayesian method of moments (Zellner and Tobias, 2001, and references therein). However,

Zellner’s method usually restricts the moment conditions to those restricting first two mo-
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ments (mean and variance), and the analysis is restricted to linear models, such as linear

regression models and simultaneous equations models. More recently, Kim (2002) proposes a

limited information likelihood that can be used to construct the posterior distribution based

on moment conditions. Chamberlain and Imbens (2003) extend the Bayesian bootstrap to

(exactly identified) moment condition models. Lazar (2003) studies posterior distributions

based on the empirical likelihood. Schennach (2005) proposes a maximum entropy non-

parametric Bayesian procedure. Florens and Simoni (2012) develop a Bayesian approach

to GMM based on Gaussian process priors. However, these analyses are all restricted to

the i.i.d. case except for the limited information likelihood approach of Kim (2002). Kim’s

pseudo-likelihood is used by Gallant et al. (2014) to estimate moment condition models

with latent variables. While Kim’s likelihood based method abstracts away from i.i.d. envi-

ronments, his approach is based on asymptotics and does not allow finite sample posterior

analysis, as the present work does.

This paper is also related to the literature on Bayesian density estimation and prediction

with moment restrictions. The method considered in this paper estimates an unknown dis-

tribution in conjunction with moment conditions.1 Similarly, Choi (2013) considers Bayesian

density estimation with moment restrictions where the prior information about the param-

eters of interest is only available in the form of moment conditions. His focus is on density

estimation; this paper considers estimation of both the parametric and nonparametric un-

knowns. A method to incorporate moment restrictions derived from economic theory into

predictive distributions is also proposed in the literature. Robertson et al. (2005) use ex-

ponential tilting projection to obtain a refined predictive distribution of macroeconomic

variables subject to Taylor rule restrictions. Giacomini and Ragusa (2014) provide formal

justification of the method and show that when the moment restrictions are correct the

resulting predictive distribution is indeed superior to the original predictive distribution in

terms of log-score. The method considered in this paper is different from theirs in that the

exponential projection is applied to the prior distribution of the underlying data distribution

as opposed to the posterior predictive distribution. Moreover, the underlying data distri-

bution is flexibly modeled and can allow for nonlinearity, while they only consider a linear

vector autoregressive model.

This paper utilizes the Dirichlet process mixture model to make inferences about an un-

known distribution. After the pioneering work of Ferguson (1974) and Antoniak (1974), there

have been much research to develop nonparametric and semiparametric Bayesian methods

1Use of extra information in the form of a moment condition is also considered in the frequentist literature.
Oryshchenko and Smith (2013) show the efficiency gain in the kernel density estimation when information
derived from such moment restrictions is exploited.
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under various frameworks.2 The Dirichlet process mixture modeling approach has first in-

troduced in the econometric literature by Tiwari et al. (1988). Chib and Hamilton (2002)

consider a semiparametric panel potential outcomes model where the joint distribution of

the treatments and potential outcomes is modeled as a mixture of normals with a random

number of components using the Dirichlet process prior. Hirano (2002) extends the random

effect autoregressive model to accommodate a flexible distribution for the disturbances us-

ing the Dirichlet process mixture model. Griffin and Steel (2004) develop a semiparametric

Bayesian method for stochastic frontier models using the Dirichlet process mixture model.

Conley et al. (2008) develop a Bayesian semiparametric approach to the linear instrumental

variable problem where the joint distribution of the disturbances in the structural and re-

duced form equations is modeled as the Dirichlet process mixture. Taddy and Kottas (2010)

propose a Bayesian nonparametric quantile regression based on the Dirichlet process mixture

model. Chib and Greenberg (2010) study a flexible Bayesian analysis of regression models

for continuous and categorical outcomes where the regression function is modeled additively

by cubic splines and the error distribution is modeled as a Dirichlet process mixture. Ap-

plications of the Dirichlet mixture models to stock returns and their volatility are quite an

active area of research; see Jensen and Maheu (2014) and references therein. However, none

of these consider over-identified moment condition models in a general form: as such.

Other Bayesian density estimation and flexible regression estimation methods are abound.

Geweke and Keane (2007), Villani et al. (2009), and Villani et al. (2012) develop a method

to estimate a conditional distribution using a finite mixture of normals, allowing the mixing

weights to depend on covariates. Norets (2010), Norets and Pelenis (2012, 2013), and Pelenis

(2014) provide posterior consistency results for various flexible Bayesian methods to condi-

tional density estimation. These papers are related to mine in the sense that both attempt

to model the underlying unknown data distribution in a flexible manner. However, I mostly

focus on modeling an unconditional distribution in conjunction with unconditional moment

restrictions.

Finally, one of the MCMC-based algorithms proposed in this paper is a modified version

of the Blocked Gibbs sampler of Ishwaran and James (2001). The Blocked-Gibbs sampler is

a posterior sampling method for the Dirichlet process mixture model. I modify the algorithm

to deal with complications induced by the introduction of moment conditions. The SMC-

based algorithm in this paper is based on the tempered-likelihood SMC algorithm studied

by Herbst and Schorfheide (2014). Their algorithm was developed mainly in the context of

DSGE models. In this paper, I study and apply the algorithm in the context of Bayesian

2What follows is by no means a complete list. See Dey et al. (1998) for applications in statistics and
Griffin et al. (2011) for applications in econometrics.
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moment condition models. Different types of SMC methods have also been applied to DPM

models (without moment restrictions). For example, Carvalho et al. (2010) apply the SMC

algorithm to DPM models in the context of parameter learning and Griffin (2014) develops

an adaptive method for truncation order selection in truncated DPM models based on SMC

techniques.

Organization of the paper. In Section 2 presents the model for i.i.d. data. Section 3

extends model introduced in Section 2 to moment condition models with dependent data and

latent variables. Prior specification and other details of the model are discussed in Section

4. Three posterior sampling algorithms are presented and studied in Section 5. The first

part of Section 6 presents a comparison of the performance of the proposed algorithms using

simulated data under i.i.d. environment. The second part illustrates implementation of the

posterior algorithms under more complicated setting: an Euler equation model with the

time-dependent data and a robust state-space model. Section 7 applies the SMC algorithm

to an Euler equation model using actual U.S. household-level data to estimate the risk

aversion parameter and investigate whether Euler equation restrictions are favored by the

data. Section 8 concludes.

2 Model

2.1 Moment-restricted Dirichlet process model (MR-DPM)

Consider the following moment condition:

EP [g(β, x)] =

∫
g(β, x)dP (x) = 0 (1)

where β ∈ B ⊆ Rk is a finite-dimensional parameter and x is a d× 1 random vector; EP is

the expectation operator associated with the probability measure P ; and the known function

g(·, ·) maps the parameter β and the realization of x to an r × 1 real-valued vector. r can

be larger than k (over-identification). Following Kitamura (2006), I denote P(β) as a set of

all probability measures that are compatible with the moment restriction for β ∈ B,

P(β) =

{
P ∈M :

∫
g(β, x)dP = 0

}
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where M is a set of all probability measures on Rd. And the union of P(β) over the parameter

space is called a statistical model and is denoted as,

P =
⋃
β∈B

P(β).

The first goal of this paper is to obtain the posterior distribution of β and P (or posterior

moments of its functional) given data {xi}Ni=1 generated (independently and identically dis-

tributed) from the unknown distribution, P which is assumed to be an element of P . To this

end, I consider a nonparametric conditional prior where the underlying data density follows

a mixture of parametric densities. Specifically, conditional on some β ∈ B, the unknown

data density is expressed as

fP (x|β) =

∫
k(x; θ)dG̃β(θ), (2)

where k(·; θ) is called a kernel function and is usually a density of some parametric distribu-

tion indexed by θ and the mixing distribution G̃β(·) is assumed to be discrete and random,

with its realization obtained in two steps. The first step draws a discrete distribution G(·)
from the Dirichlet process DP (α,G0) with concentration parameter α and base measure

G0. The second step solves the following informational projection to obtain the mixing

distribution, G̃(·):

min
G̃

∫
log

(
dG̃

dG

)
dG̃ s.t.

∫ ∫
g(β, x)k(x; θ)dG̃(θ)dx = 0. (3)

This second procedure is called an “exponential tilting projection” and guarantees that any

resulting density function corresponds to a draw from the above-specified nonparametric

prior contained in P(β), – that is, it satisfies the moment restrictions at β. The prior speci-

fication is completed by imposing a parametric prior distribution for the finite dimensional

parameter β.

In the absence of the exponential tilting projection step, the mixture model given by

Equation 2 is the Dirichlet process mixture (DPM) model , which is a popular nonparametric

Bayesian method for the density estimation problem (e.g., Müller and Quintana, 2004) known

to be very flexible and rich. For example, when the base measure is chosen so that it has full

support on the real line, the support of the mixing distribution G contains all probability

measures (Ghosal, 2010). This model is regarded as nonparametric in the literature, since

the number of mixtures is treated as unknown and random.
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One major difficulty of using the DPM model in the moment condition model framework

is that when one attempts to impose a DPM prior on P in conjunction with a separate inde-

pendent prior distribution on β, the probability that a draw from the joint prior distribution

satisfies the moment restrictions can easily be zero. The exponential tilting projection pro-

cedure fixes this problem by projecting probability measures for the mixing distribution, G,

onto the space of discrete distributions that satisfy the moment restriction defined in Equa-

tion 3. This optimization has a nice dual problem that makes the computation tractable,

and the resulting tilted mixing distribution, G̃ = G̃(β,G), is given by

dG̃

dG
(θ) =

exp (λ(β,G)′g̃(β, θ))∫
exp (λ(β,G)′g̃(β, θ)) dG(θ)

(4)

where

λ(β,G) = arg min
λ

∫
exp (λ′g̃(β, θ)) dG(θ). (5)

and λ is an r × 1 vector. Throughout the paper, I will refer to g̃(β, θ) =
∫
g(x, β)k(x; θ)dx

as an integrated moment condition.3 Note that this minimization problem finds the optima

over the finite-dimensional space Rr.

I will refer to the semiparametric model as the moment-restricted Dirichlet process mix-

ture (MR-DPM) model. Under the MR-DPM model, the likelihood function can be expressed

as

p(x1:N |β,G) =
N∏
i=1

(∫
k(xi; θ) dG̃(θ; β,G)

)
,

where a tilted DP draw G̃ is an implicit function of β and G given by the exponential tilting

projection procedure in Equation 4.

Discussion 1 (Exponential tilting projection). The exponential tilting projection in

Equation 3 is not the only way to impose restrictions on the mixing distribution G(·).
The exponential tilting projection minimizes the Kullback-Leibler (KL) divergence measure

between the original mixing distribution G(·) and the restricted mixing distribution G̃(·).
More generally, one can consider the minimization of f -divergence (Csiszàr, 1967) subject

3To obtain this object, I simply change the order of integration in the moment condition:∫ ∫
g(x, β)k(x; θ)dG̃(θ)dx =

∫ ∫
g(x, β)k(x; θ)dxdG̃(θ) =

∫
g̃(β, θ)dG̃(θ)
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to moment conditions,

min
G̃

∫
f

(
dG̃

dG

)
dG̃ s.t.

∫ ∫
g(β, x)k(x; θ)dG̃(θ)dx = 0. (6)

where the function f(·) is strictly convex and satisfies f(1) = 0. This class of divergence

functions includes well-known divergence measures such as Hellinger and KL divergences

(e.g., Kitamura, 2006). The f -divergence minimization problem in Equation 6 also has a

dual representation as in Equation 4, thereby rendering computation feasible. However, I

will focus on KL divergence in this paper because some nice theoretical properties such as

posterior consistency hold under this divergence (Kitamura and Otsu, 2011). Comparison of

the posterior distribution resulting from utilizing different divergences is an interesting and

open question, both in finite sample and asymptotic analysis.

Discussion 2 (Kitamura and Otsu, 2011). This paper is not the first to apply the

exponential projection to a Bayesian moment condition model. The most closely related

work is Kitamura and Otsu (2011, hereafter KO), who consider the following problem,

min
P̃

∫
log

(
dP̃

dP

)
dP̃ s.t.

∫
g(β, x)dP̃ (x) = 0, (7)

where the exponential projection is used to obtain a tilted probability measure P̃ . In con-

junction with the DPM formulation for P , KO call the resulting model the exponentially

tilted Dirichlet process mixture (ET-DPM) model. Under the ET-DPM modeling frame-

work, KO show the posterior consistency of the finite dimensional parameter β, and they

show that the resulting limit distribution achieves the semiparametric efficiency bound.

KO’s ET-DPM modeling framework is slightly different from the projection procedure

of this paper (MR-DPM model) in that KO’s procedure projects the probability measures

of the underlying data generating process, while that in this paper projects mixing dis-

tributions over the space of mixture distributions defined in Equation 2. Note, however,

that the constraint in both projection problems is identical, and therefore, both generate a

semiparametric prior distribution for the moment condition model P .

What makes the approach taken in this paper attractive is its computational tractability

and practicality. Under the ET-DPM modeling framework, obtaining the tilted probability
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measure amounts to evaluating the following integral numerous times:∫
exp(λ′g(x, β))k(x, θ)dx,

and this can be computationally costly. On the other hand, obtaining the tilted probability

measure in the MR-DPM modeling framework amounts to evaluating the term:

exp(λ′g̃(β, θ)) where g̃(β, θ) =

∫
g(x, β)k(x; θ)dx,

where the integral is computed before exponentiation. Computation of the integral in the

above term is relatively simpler, at least for the applications considered in this paper. This

integral has a closed form for many economic applications, including IV regression, quan-

tile regression, and IV quantile regression. In the Appendix, I provide closed forms and

derivations for these models.

In the actual computation of the posterior distribution, KO model the underlying data

distribution using a Dirichlet process rather than the Dirichlet process mixture for simplicity

and name this the ET-DP model. This leads to,

X ∼ i.i.d. P̃ , P̃ ← P, and P ∼ DP (α,G0)

where P̃ ← P denotes the exponential tilting projection in Equation 7. Under this modeling

assumption, the optimization problem in Equation 7 is much simpler vis-à-vis the ET-DPM

model, which facilitates posterior computation.

Nevertheless, there are a few reasons that one might want to model the unknown data

distribution through the Dirichlet process mixture model. First, as mentioned earlier, a

draw from the Dirichlet process is discrete with probability one, and therefore, the tilted

draw P̃ inherits this property. If one wants to obtain and analyze a density prediction

for a continuous random variable, non-smoothness in the data generating process might

be problematic. Second, as will be seen in a later section, the particular choice of the

kernel function in the DPM formulation opens the door to Bayesian modeling with moment

restrictions under more complicated yet important data structures. Such extensions include

dynamic moment condition models with time-dependent data and moment condition models

with dynamic latent variables, which are rarely studied in the literature.

The approach taken in this paper is somewhere between the ET-DP and the ET-DPM

approach presented in Kitamura and Otsu (2011) in the sense that it keeps computational

tractability while sticking with the Dirichlet process mixture formulation.
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2.2 Stick-breaking approximation and J-truncated MR-DPM

In practice, solving the minimization problem in Equation 3 requires the actual realization

of G from DP (α,G0). This is infeasible because G can be infinite dimensional. As a

work-around, I approximate the DP draw G by a truncated version of the stick-breaking

representation of the Dirichlet process. The approximation is based on the stick-breaking

representation of Sethuraman (1994), which is defined as

G(·) =
∞∑
j=1

qjδθj(·) (8)

where θj ∼i.i.d. G0 and δθj(·) is the Dirac delta function. The weights qj arise through the

stick-breaking construction

q1 = V1; qj = Vj

j−1∏
r=1

(1− Vr); Vj ∼ Beta(1, α). (9)

This representation bears out that a realization from the Dirichlet process is a discrete

distribution whose support points are randomly assigned based on the base measure, and

that its associated weights are constructed using independent Beta random draws Vj. Note

that the weights sum to one and are eventually expected to be small as j increases.

The stick-breaking approximation is made tractable by truncating the infinite sum at

some finite integer J :

GJ(·) =
J∑
j=1

qjδθj(·), θj ∼i.i.d. G0 (10)

where the weights qj are constructed in the same way as in Equation 9 for j = 1, ..., J − 1.

The last weight is set to one (VJ = 1) so that the sum of the weights totals exactly one. I will

denote the J-truncated DP draw as GJ ∼ DPJ(α,G0); note that it can be summarized by a

collection of vectors and matrices as GJ = {q, θ} with q = [q1, q2, ..., qJ ] and θ = [θ1, θ2, ..., θJ ].

With the realization GJ from the truncated Dirichlet process and β ∼ p(β), the exponen-

tial tilting projection becomes:

min
q̃

J∑
j=1

log

(
q̃j
qj

)
q̃j s.t.

J∑
j=1

q̃j g̃(β, θj) = 0, 0 ≤ q̃j ≤ 1,
J∑
j=1

q̃j = 1, (11)
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and the solution q̃ = q̃(β,GJ) is given by

q̃j =
exp (λ(β,GJ)′g̃(β, θj))∑J

j=1 qj exp (λ(β,GJ)′g̃(β, θj))
qj

where

λ(β,GJ) = arg min
λ

J∑
j=1

qj exp (λ′g̃(β, θj)) . (12)

and the tilted mixing distribution is composed of the tilted mixture probabilities q̃ =

[q̃1, q̃2, ..., q̃J ] and the parameters in the mixture density θ = [θ1, θ2, ..., θJ ], which I will

write as G̃J = {q, θ}. Note that a vector of tilted mixing weights q̃ is a function of β and

{q, θ}; for ease of exposition, I will write this relationship as q̃ = q̃(θ, β, q). The likelihood

function of the J-truncated-MR-DPM model is then expressed as

p(x1:N |θ, q, β) =
N∏
i=1

(
J∑
j=1

q̃j(θ, q, β)k(xi; θj)

)
. (13)

And the model will be completed below by specifying the kernel function (Section 2.3) and

the prior distributions of the unknown parameters (Section 4), as discussed.

The stick-breaking truncation to approximate the DPM model is often used to construct

an efficient posterior sampler (e.g., Ishwaran and James, 2001). One can view the truncated

MR-DPM model as an approximation to the original MR-DPM model and can thus expect

the quality of the approximation to improve as the truncation order increases. In a later sec-

tion, I will discuss how, instead of simply fixing the truncation order at an arbitrary number,

I use an adaptive algorithm to select the truncation order that avoids large approaximation

errors. Another view of the model with J-truncation is the following: essentially, the semi-

parametric prior with the J-truncated DP imposes a prior distribution over the space of

finite mixtures with at most J mixtures, where each element in this set satisfies the moment

restrictions. This implies that one assumes that the true data generating process follows

the finite mixture model with J∗ mixtures, where J∗ is treated as unknown but bounded by

some known finite integer J . In any case, the implied random densities satisfy the moment

restriction regardless of the truncation order because the exponential tilting projection is

applied after the truncation.
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2.3 Choice of kernel functions

For continuous data, I will make extensive use of the (multivariate) normal density as a

kernel function:

k(xi; θj) =
1√

2πd|Σj|
exp

(
−1

2
(xi − µj)′Σ−1

j (xi − µj)
)
, (14)

where θj = {µj,Σj}. Natural choices for the base measures are the normal distribution for

µj and the inverse Wishart distribution for Σj, respectively. That is,

G0(µ,Σ) =d N(µ; m,B) IW (Σ; s, sS)

where m, B, s, and S are the associated hyperparameters. Other choices of parametric

densities are also possible.

For categorical data, I use the multinomial kernel function in later sections,

k(xi; θj) = p
xi,1
1,j · p

xi,2
2,j · · · p

xi,m
M,j ,

Mx∑
m=1

pm,j = 1, pm,j > 0, (15)

where θj = [p1,j, p2,j, ..., pm,j], and Mx is the number of possible outcomes for xi, and xi,l = 1

if xi = l and 0 otherwise. In this case, a natural choice for the base measure is the Dirichlet

distribution,

G0(p) =d Dir(p; [αp1, ..., α
p
m]′)

where p = [p1, ..., pJ ]′ is a vector of multinomial probability parameters and αp = [α1, ..., αm]′

is the parameter for the Dirichlet distribution. Negative binomial and Poisson distributions

are alternative choices for modeling categorical variables.

It is also possible to model data where continuous (xi,c) and categorical (xi,d) variables

are mixed. Below, I impose the following structure:

k(xi,c, xi,d; θj) = fN(xi,c;µj,Σj)fMN(xi,d; pj)

where fN is a density function for the normal distribution (Equation 14) and fMN is a

probability mass function for the multinomial distribution (Equation 15). Note that even

though this kernel function assumes independence between xi,c and xi,d given the mixture

parameter θj, the resulting random density can ultimately have dependency through mixture

probabilities. There are alternative approaches that explicitly model the joint distribution of
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xi,c and xi,d. One such possible specification is to break down the joint kernel into conditional

and marginal kernels:

k(xi,c, xi,d; θj) = Pr(xi,d|xi,c, θj) k(xi,c; θj).

Then, a linear logistic/probit-type form can be used for the first term when xi,d is binary

data and the multivariate normal density can be used for the marginal density for xi,c. More

discussion can be found in Taddy (2008).

3 Extensions

The MR-DPM modeling framework is flexible enough to cover more complicated data den-

sities. In this section, I introduce two extensions to i.i.d. MR-DPM models. The first

extension is to introduce time-dependence to the unknown data density. This can be used

to estimate stationary time series data with moment restrictions via specific choices of the

kernel functions in Equation 2. The second extension is to incorporate exogenous dynamic

latent variables.

3.1 MR-DPM model with time-series data

Now suppose that the observation vector {xt}Tt=1 exhibits serial dependence with a p-th order

time-homogeneous transition density. Moreover, assume the moment conditions dependent

on the history of the data through time t − p, EP [g(xt, ..., xt−p, β)] = 0. In this case, the

mixture model in Equation 2 is not valid as it does not consider the dependence structure

of the data. Instead, I consider the following mixture density for the transition density of

the underlying data generating process,

p(xt|xt−1, ..., xt−p, G) =

∫
k(xt, xt−1, ..., xt−p; θ)dG(θ)∫
kM(xt−1, ..., xt−p; θ)dG(θ)

G|α, ψ ∼ DP (α,G0), G0 = G0(·|ψ),

(16)

where the kernel function in the denominator is obtained by marginalizing xt out of the joint

kernel function k(xt, ..., xt−p; θ),

kM(xt−1, ..., xt−p; θ) =

∫
k(xt, xt−1, ..., xt−p; θ)dxt.
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Note that mixture model defined in Equation 2 is a special case of this formulation with

p = 0.

One can view this nonparametric prior as a variant of the Dirichlet process mixture

prior with dependent weights, where the mixing weights are functions of the realizations of

observations. To see this, write Equation 16 as:

p(xt|x̄t−1, G) =
∞∑
j=1

wj(x̄t−1; q, θ)
k(xt, x̄t−1|θ)
kM(x̄t−1|θ)

, (17)

where the mixing weights depend on x̄t−1 = [xt−1, ..., xt−p]:

wj(x̄t−1) =
qjkM(x̄t−1; θj)∑∞

m=1 qmkM(x̄t−1; θm)
, (18)

where q = {qj}∞j=1 and θ = {θj}∞j=1 are the parameters in the stick-breaking representation

of the Dirichlet process (Equation 9)

With this formulation the transition and stationary distributions are modeled as nonpara-

metric mixtures, which is an important asset for the exponential tilting procedure since the

moment conditions can still be written in the same form as in the i.i.d. case:

EP [g(xt, x̄t−1, β)] =

∫∫∫
g(xt, x̄t−1, β)k(xt, x̄t−1; θ) dG(θ)dxtdx̄t−1.

It is important to note that once the DPM type mixture model is imposed on the uncondi-

tional joint distribution of x1:p, the exponential tilting procedure in the previous section goes

through without any major changes. The likelihood function of the J-truncated MR-DPM

model for time-dependent data can be written using the predictive likelihood decomposition:

p(x1:T |θ, β, q) =
T∏
t=1

p(xt|x̄t−1, θ, β, q)

=
T∏
t=1

(
J∑
j=1

q̃j(θ, β, q)kM(x̄t−1; θj)∑J
m=1 q̃m(θ, β, q)kM(x̄t−1; θm)

k(xt, x̄t−1; θj)

)
.

(19)

where the tilted probabilities q̃j are obtained by the exponential projection procedure in

Equation 12 with the integrated moment condition given by

g̃(β, θ) =

∫
g(xt, x̄t−1, β)k(xt, x̄t−1; θ)dxtdx̄t−1.
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Discussion. Because this modelling approach allows me to estimate the transition den-

sity as well as the parameters in the moment restrictions, I can make density predictions

in a straightforward manner. The predictive density for xT+1 at time T , given unknown

parameters, is

p(xT+1|xT , x̄T−1, θ, β, q) =
J∑
j=1

q̃j(θ, β, q)kM(x̄T−1; θj)∑J
m=1 q̃m(θ, β, q)kM(x̄T−1; θm)

k(xT , x̄T−1; θj).

The simulation-based approximation to the posterior predictive distribution can be obtained

as soon as one can generate draws from the posterior distribution of unknown parameters

using the above formula. Density prediction here shares a spirit similar to that in Robertson

et al. (2005) and Giacomini and Ragusa (2014), who construct a density prediction by

finding a probability distribution that minimizes the Kullback-Leibler divergence between the

density prediction based on reduced-form parametric models such as a vector autoregression

subject to the moment restrictions. However, their approaches are different from that in this

paper in that they use moment restrictions only after estimation, while that in this paper

imposes moment restrictions a priori. Moreover, they either calibrate or estimate unknown

parameters in the moment restrictions separately, while the method in this paper is designed

to estimate both the transition density and parameters in the moment restrictions jointly.

This modeling approach to time-dependent data requires users to set the order of depen-

dence, p, ex ante. One can select the order based on model selection criteria, such as the

density or the predictive score, which are discussed in a later section.

The time-dependent nonparametric prior in Equation 16 is studied by Antoniano-Villalobos

and Walker (2014) and Griffin (2014), but neither of them considers this in the context of

moment restriction models. There are of course other nonparametric priors for modeling

time-dependence. Among these are the generalized polya urn of Caron et al. (2007), the

probit stick-breaking process of Rodŕıguez and Dunson (2011), the order-based dependent

Dirichlet process of Griffin and Steel (2006), the autoregressive Beta (BAR) stick-breaking

process of Taddy (2010), and the stick-breaking autoregressive process of Griffin and Steel

(2011). All of these priors admit a formulation similar to that of the infinite sum in Equation

17 and most of them (save the first) introduce time-dependence through the mixing weights.

These priors can also be considered in our framework, but I found that the nonparametric

prior in Equation 16 is the most useful, as it directly models the stationary distribution of

the time-series, which is important for the exponential tilting procedure.
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3.2 MR-DPM model with latent variables

Consider the moment condition model with a latent variable,

EP [g(xt, zt, β)] = 0, zt ∼ p(zt|zt−1, βz) (20)

where zt is a latent variable with a transition distribution known up to a finite dimensional

parameter βz. In this framework, the unspecified part of the underlying distribution is a

conditional distribution of xt given zt and the other unknown paramters β and βz. I model

this using the MR-DPM modeling strategy. That is, the unknown conditional density is

modeled as a mixture of parametric densities,

p(xt|zt, θ, β, βz, q) =
J∑
j=1

q̃j(θ, β, βz, q)k(xt;h(zt, θj))

where h(zt, θj) is a function that returns the parameters in the kernel function k(·) which

captures the dependency of the distribution of xt on zt and θj. The tilted probabilities q̃j

are obtained by the exponential projection procedure in Equation 12 with the integrated

moment condition,

g̃(θj, β, βz) =

∫∫
g(xt, zt, β)k(xt, zt; θj, βz)dxtdzt

=

∫∫
g(xt, zt, β)k(xt|zt; θj)p(zt; βz)dxtdzt.

where p(zt; βz) is the unconditional probability density of the latent variable which corre-

sponds to the transition density specified in Equation 20.

Econometric approaches to moment condition models with this type of dynamic latent

variables are quite new to the literature (e.g., Gallant et al., 2014). Bayesian estimation of the

unknown latent variables is relatively easier than frequentist methods because the Bayesian

approach treats the unknown latent variable in the same way as unknown finite-dimensional

parameters. As can be seen in a later section, the estimation of the model proceeds in the

following Gibbs-type iterative algorithm. First, conditional on a sequence of latent variables,

estimation of other parameters is the same as previous cases since the conditional likelihood
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function is,

p(x1:T |z0:T , θ, β, q) =
T∏
t=1

p(xt|zt, θ, β, q)

=
T∏
t=1

(
J∑
j=1

q̃j(θ, β, q)k(xt;h(zt, θj))

)
,

(21)

which is essentially the same likelihood function as in the usual MR-DPM model. Second,

conditional on the other unknown parameters, estimation of a sequence of latent variables

can be done by the single-move Gibbs algorithm (Jacquier et al., 2002). For example, the

conditional posterior distribution of zt is proportional to

p(zt|zt−1, βz)p(xt|zt, θ, q, β, βz)p(zt+1|zt, βz), for 1 ≤ t ≤ T − 1,

where the first and third terms are given by the transition density of zt and the second term

is given by Equation 21.

Example of latent process and h(zt, θj). In a later section, I model zt to be univariate

AR(1) with a Gaussian shock,

zt = cz + ρzzt−1 + σzez,t, ez,t ∼ N(0, 1),

and use the normal density function as a kernel function. The natural choice of the function

h(zt, θj) = [hµ(zt, θj), hΣ(zt, θj)] is

hµ(zt, θj) = µx,j + Σxz,jΣ
−1
zz (zt − µz) and hΣ(zt, θj) = Σxx,j − Σxz,jΣ

−1
zz Σ′xz,j,

where θj = (µx,j,Σxz,j,Σxx,j), µz and Σz are the unconditional mean and variance of zt,

µz =
cz

1− ρz
and Σzz =

σ2
z

1− ρ2
z

.

The base measure can be chosen analogously to the i.i.d. MR-DPM model,

G0(θ) = N(µx; mz, Vz) IG(Σxx; s, S) N(Σxz; mxz, Vmz).

where (mz, Vz, s, S,mxz, Vmz) are the associated hyperparameters.
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4 Prior specification

In this section, I discuss prior distributions for the unknown parameters in the J-truncated

MR-DPM model. The J-truncated MR-DPM model contains the following parameters:

(θ, q, β, α, ψ). The model assumes that a collection of θ and q is drawn from the J-truncated

Dirichlet process, GJ = (θ1:J , q1:J) ∼ DPJ(α,G0(ψ)) where θj is the parameter in the j-

th mixture density (kernel function) and q is a vector of pre-exponential-tilting mixture

probabilities constructed via the stick-breaking formulation with independent Beta draws

V1:J (Equation 9).4 α is a concentration parameter in the truncated Dirichlet process and ψ

is a hyperparameter in the base measure G0. β is a parameter in the overarching moment

condition model. I consider prior distributions in the partially separable form

p(θ|ψ)p(ψ)p(V |α)p(α)p(β).

This section starts with a discussion of the effects of the exponential tilting projection with

a generic prior distribution. Owing to the exponential tilting projection step, the domain

of the prior distribution is restricted. I discuss how to analyze resulting prior distributions.

Then, I describe how one can form a prior distribution under the multivariate normal kernel

function, which I will use extensively in later sections. I also discuss forming priors on

hyperparameters such as ψ and α.

4.1 Implied prior distribution

Restricted domain. For each parameter, I begin with some parametric distribution with-

out any restriction on its domain. However, owing to the exponential tilting procedure, the

domain of the implied full joint prior distribution will be restricted. In fact, the support of

the prior is meaningful only when the solution to the exponential tilting problem in Equation

12 has a solution. Note that the solution exists and is unique when 1) the interior of the

convex hull of ∪j{g̃(θj, β)} contains the origin; and 2) the objective function in Equation 12

is bounded. This leads to the following implied joint prior distribution:

p(θ, β, V, α, ψ) ∝ p(θ|ψ)p(ψ)p(V |α)p(α)p(β)I(~0 ∈ H(θ, β)),

where I(·) is an indicator function that takes the value 1 if the condition inside of the

parentheses holds and 0 otherwise, and the set H(θ, β) denotes the interior of the convex

4The posterior sampling algorithm will draw V1:J instead of q1:J . Knowning V1:J is equivalent to knowning
q1:J because the stick-breaking formulation is deterministic transformation of V1:J .
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hull of ∪j{g̃(θj, β)}. The indicator function reflects the fact that the resulting joint prior

distribution puts positive probability only on the set where the solution to the exponential

projection exists. Hence, the marginal prior distribution implied by this distribution is

different from the unrestricted beginning prior distribution. I will refer to the former as an

“implied prior” and the latter as an “initial prior.” For later sections, I will denote S(θ,β) as

the domain of the joint prior distribution of θ and β,

S(θ,β) = {θ, β : ~0 ∈ H(θ, β)} ∩ Supp(initial prior for θ, β).

Note that the set S(θ,β) excludes a pair (θ, β) that does not have a solution to the exponential

tilting procedure from the joint support of the initial prior distribution for θ and β.

Analyzing the implied prior. It is worth noting that the prior specification for the

mixture component parameters θ affects the implied prior for β through the convex hull con-

dition restriction, since not all β can satisfy the convex hull condition given every realization

of θ. For example, with the univariate normal kernel function, k(xi; θj, σ
2), and the location

moment restriction, E[xi − β] = 0, the integrated moment condition can be written as

g̃(θ, β) = 0 ⇐⇒
J∑
j=1

(θj − β)q̃j = 0.

Suppose that the prior distribution for θ is chosen so that the realizations of θj are all con-

centrated around some negative number. Then, whenever the realizations of θj are negative

for all j = 1, ..., J , no positive realization of β will satisfy the convex hull condition. This

implies that even if the initial prior distribution for β puts large probability in a positive

region of β, the implied prior distribution of β will put only small probability in this region.

In the extreme, the initial prior for θj puts zero probability on positive values and the initial

prior for β puts all probability on positive values. In this case, the restricted domain S(θ,β)

becomes the empty set.

When the moment conditions are over-identified, the problem gets more complicated and

it is hard to analyze the implied prior distributions analytically. However, it is always possible

to check the shape and domain of the implied prior distributions by simulating draws from

the implied prior distribution. Straightforward method is accept-reject sampling, where the

draws that do not satisfy the convex hull condition are discarded. Then, one can analyze the

implied prior distribution based on these draws. The following algorithm generates M draws

from the implied prior distribution. Since I will refer to this process frequently in subsequent
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sections, I here formally outline an algorithm to generate M draws from the implied prior

distribution.

Algorithm 1. (Accept/Reject algorithm for the implied prior) Enter the following loop with

i = 1.

1. Draw a full parameter (θ(i), β(i), V (i), α(i), ψ(i)) from the prior distribution for the J-

truncated MR-DPM model, p(θ|ψ)p(ψ)p(V |α)p(α)p(β).

2. If the convex hull of ∪j{g̃(β(i), θ
(i)
j )} contains the origin, then keep (θ(i), β(i), V (i), α(i), ψ(i))

and set i = i+ 1. Otherwise, discard the current draw.

3. If i = M , then exit the algorithm. Otherwise, go to step 1.

There are at least two ways of detecting violation of the convex hull condition (step 2

in Algorithm 1). The first method is to compute the convex hull of ∪j{g̃(β, θj)} for each

draw and check for containment of the origin. The second method is to perform numerical

optimization to solve the exponential tilting projection in Equation 11 with a prior draw

in hand. Then, discard a draw if the norm of the moment condition evaluated at the

minimizer for that draw is larger than some pre-specified small number.5 The rationale

behind the second method is that if the prior draw violates the convex hull condition, then

the corresponding integrated moment condition will never be satisfied with this draw at

the optimum obtained by the numerical optimizer. I use the second method in this paper

because the first method requires additional computation to compute the convex hull.

4.2 Prior specification with a normal kernel function: i.i.d. case

In later sections, I extensively use the (multivariate) normal density as a kernel function for

the i.i.d. MR-DPM model as well as the dynamic MR-DPM models and models with latent

variables. Hence, I describe here how one can choose prior values for such applications. The

multivariate normal kernel function is in the following form:

k(xi; θj) =d N(xi; µj,Σj) for the jth component,

5In this paper, I use a variant of the Newton method for numerical optimization with the maximum
number of iterations set to be 50–200 (depending on the application) and the tolerance for the norm of the
moment condition to be 10−7 . Since the exponential tilting projection in this paper is a convex problem,
the convergence is very fast if the solution exists (less than 20 iterations for the applications considered in
this paper).
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where µj is a mean vector and Σj is a covariance matrix and parameter θ is a vector that

collects all pairs θj = (µj,Σj) for j = 1, ..., J . Then, the natural choice for the base measure

G0 in the Dirichlet mixture process is a multivariate normal for the location component and

inverse-Wishart for the scale,

G0(µj,Σj|ψ) =d N(µj;m,B)IW (Σj; s, S)

where the parameter ψ collects hyperparameters m,B, s and S. Following the literature, I

impose prior distributions on the hyperparameters, m,B, and S,

m|B ∼ N(m; a,B/κ) B ∼ IW (B; ν,Λ), S ∼ W (S; q, q−1R). (22)

which facilitate computation owing to conjugacy. This additional hierarchical structure

provides more flexibility in modelling underlying data density (Müller et al., 1996).

It is desirable that the prior distribution of the location component µi be centered around

the data while also sufficiently spread out so that it can cover a sizable range of the data.

For the rest of paper, I choose a so that µj is centered around the mean of the data. Then,

I reparameterize the scale matrix Λ in the prior distribution for B as

Λ = λ̄× diag(cov(X)),

where diag(·) is an operator that returns a diagonal matrix with diagonal entries equal to

those of the argument, λ̄ is a positive scalar, and cov(X) is the covariance of the data. Then,

the rest of the parameters (κ, ν, λ̄) are chosen so that the implied prior distribution for the

diagonal elements of B/κ can take from a small value (one-tenth of the data variance) to a

large value (four times of data variance) with high probability. This ensures that the location

components µj are distributed around the realized data.6

The scale parameter Σj plays a role similar to that of bandwidth in frequentists’ kernel

density estimation, as it governs the smoothness of the underlying density. The larger

the diagonal elements in Σj, the smoother the density is. Usually, the smoothness of the

underlying data density is unknown, and therefore, the prior distribution for Σj should cover

a wide range of values. As for the location components, it is useful to think about the

reasonable range of values in terms of the scale of the data. So, I reparameterize the shape

6Such priors are also considered by Ishwaran and James (2002) and Conley et al. (2008) for DPM-based
models.
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parameter R in the prior distribution for S as

R = r̄ × diag(cov(X)).

where r̄ is a positive real number. Then I choose, s, q and r̄ so that diagonal elements

of Σj are contained between one-tenth and four times the variance of the data with high

probability.

The prior distribution for the parameter β in the moment conditions can be flexibly chosen

depending on the context. When the moment conditions are implied by economic theory,

one might have access to some prior restrictions (For example, the risk aversion parameter

in the CRRA utility function has to be positive.).

Lastly, the concentration parameter α in the Dirichlet mixture process is assumed to

have Gamma density, α ∼ Gamma(aα, bα). In the usual DPM model, the concentration

parameter α is related to the number of unique clusters in the mixture density. Specifically,

Antoniak (1974) derived the relationship between α and the number of unique clusters,

E[n∗|α] ≈ α log

(
α +N

α

)
and V ar(n∗|α) ≈ α

{
log

(
α +N

α

)
− 1

}
.

That is, the expected number of unique clusters (n∗) is increasing in α and the number

of observations N . This relationship roughly holds for the semiparametric prior considered

in this paper as well. However, parameter restrictions given by the convex hull condition

complicate the relationship for which there is thus no closed form. Instead, I recommend

checking the effect of the prior on α using draws from the implied prior distribution created

with Algorithm 1.

Figure 1 illustrates the relationship between α and the number of unique clusters implied

by the prior choice for α. I generate 10,000 prior draws from the MR-DPM prior (using

Algorithm 1) and the DPM prior (without moment restrictions) with high and low means

for the initial prior distribution for α. For the MR-DPM prior, I use instrumental variable

regression moment restrictions that will be revisited in the upcoming simulation section.

Prior specifications for other parts of the prior are the same as those used later. I focus on

the effect of the initial prior distribution for α. Panel (a) shows a histogram of the number

of clusters for the DPM prior based on two prior specifications for α with low (grey) and

high (black) mean. As expected, all other things equal, the high α leads to more clusters.

This is also true for the MR-DPM prior, as can be seen in Panel (b). However, the MR-

DPM prior does not put prior probability on small numbers of clusters owning to the convex
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Figure 1 Effect of prior distribution for α

(a) # of unique clusters (DPM) (b) # of unique clusters (ET-DPM)

(c) Initial prior (α) (d) Implied prior (α)

Note: The grey line corresponds to a low mean prior for α and the black line corresponds to a high mean
α prior. All figures are histograms based on 10,000 draws from the prior distribution described in the main
text.

hull condition.7 This effect also can be seen from the implied prior for α (low mean prior).

Compared to the initial prior distribution, the implied prior tends to put less probability on

small α.

7The semiparametric prior in this paper does not admit very small numbers of clusters because the
probability of satisfying the convex hull condition decreases as the number of clusters decreases. For example,
when only one cluster is allowed with the location moment restriction, E[xi−β] = 0, the prior draw β and θ1
from the initial prior distribution must coincide to satisfy the convex hull condition, but this is a probability
zero event under the initial prior specification described above.
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4.3 Prior specification with a normal kernel function: Beyond the

i.i.d. case

Since the time-series MR-DPM model shares the unknown parameters with the standard

i.i.d. MR-DPM model, the prior distributions imposed on the unknown parameters are very

similar. For models with latent variables, there are two additional unknown parameters vis-

à-vis i.i.d. MR-DPM models. The first additional unknown is a vector of latent variables,

z0:T whose transition probability is known up to finite dimensional parameter βz. I impose

a prior distribution on the initial value for the latent variable, z0. The second additional

unknown is βz. As this parameter is finite dimensional, one can impose a parametric proper

prior distribution.

For example, if the latent variable zt is assumed to follow the univariate AR(1) with a

Gaussian shock,

zt = cz + ρzzt−1 + ez,t, ez,t ∼ N(0, 1),

one needs to impose prior distributions on cz, ρz, and z0. In the subsequent application, I

will impose

cz ∼ N(mcz , Vcz), ρz ∼ N(mρz , Vρz), z0 ∼ N

(
0,

1

1− ρ2
z

)
.

Under the normal kernel function for the conditional likelihood function (Equation 21), I

will impose prior distributions on the other parameters, (θ, q, β, α, ψ), a la the i.i.d. case.

5 Posterior analysis

The goal of this section is to develop a series of methods that allow for the analysis of

posterior distributions derived from the J-truncated MR-DPM model presented in Section 2

with priors as specified in Section 4 and the joint posterior distribution of model parameters

defined as

p(θ, β, V, α, ψ|X) ∝ p(X|θ, β, V )p(θ|ψ)p(V |α)p(β)I(~0 ∈ H(θ, β))p(ψ)p(α), (23)

where p(X|θ, β, V ) is the likelihood function given by Equation 13 for an i.i.d. model and

Equation 19 for a time-dependent model.8 I denote X as x1:N or x1:T depending on the

8The posterior sampling algorithm will draw V1:J instead of q1:J . Knowning V1:J is equivalent to knowning
q1:J because the stick-breaking formulation is deterministic transformation of V1:J .
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context. For models with latent variables, I splice βZ and z0:T into the vector of unknown

parameters and consider the posterior distribution for the augmented unknown parameter

vector, p(θ, β, V, α, ψ, βz, z0:T |X) based on the likelihood function given in Equation 21.

More specifically, I study three simulation-based posterior samplers that generate samples

from the posterior distribution which can be used to approximate the posterior moments of a

function of model parameters. This includes posterior moments of a function of parameters

in the moment condition,

E[h(β)|X] =

∫
h(β)π(β)dβ,

where I denote π(β) as the marginal posterior distribution of β and h(·) is some function

that will be clarified later. For example, if h(β) = β, the above quantity is simply a posterior

mean of β. Since the model specifies the underlying data generating process explicitly, it is

also possible to approximate posterior moments of functionals of the underlying distribution

such as the posterior mean for the data density f(x0; G̃J) at the point x0,

E[f(x0; G̃J)|X] =

∫ J∑
j=1

q̃j(θ, β, V )k(x0; θj)π(θ, β, V )d(θ, β, V )

where π(θ, β, V ) is the marginal posterior distribution.

Another important quantity of interest is the marginal likelihood,

p(X) =

∫
p(X|ϕ)p(ϕ)dϕ,

where ϕ = (θ, β, V, α, ψ). The marginal likelihood plays an important role in Bayesian

analysis as it can be used to compute the posterior model probability. This, in turn, can

be used to obtain the Bayes factor between two competing models for model selection.

In addition, the posterior model probability can be used to compute weights for model

averaging.

The rest of the section is organized as follows. First, I introduce the basic posterior sam-

pler based on the Metropolis-within-Gibbs algorithm and provide conditions under which this

sampler converges to the true posterior distribution as the number of simulations increases.

Second, I introduce a modified version of the basic sampler using a data-augmentation

method that improves the mixing properties of the posterior sampler, as well as compu-

tation time. Third, I discuss sequential Monte Carlo methods that can be used to compute

the marginal data density and select the truncation order adaptively.
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5.1 Basic sampler and its convergence

The posterior sampler that I introduce in this section will be called the basic sampler. The

sampler is based on the Metropolis-within-Gibbs algorithm, which cycles over each parameter

of the block ϕ = (θ, β, V, α, ψ) in order; a sequence of draws from this algorithm defines a

Markov chain with a transition kernel KB(ϕ∗|ϕ0) on the product set D = S(θ,β) × (0, 1)J ×
R+×supp(ψ), where supp(ψ) is the domain of the prior distribution for the hyperparameters.

Algorithm 2. Basic sampler for the J-truncated MR-DPM model. Enter the fol-

lowing steps with (θ0, β0, V 0, α0, ψ0) ∈ D and i = 1:

1. Draw θ∗j from p(θj|θ∗1:j−1, θ
0
j:J , β

0, V 0, α0, ψ0, X), for j = 1, ..., J .

2. Draw β∗ from p(β|θ∗, β0, V 0, α0, ψ0, X)

3. Draw V ∗j from p(Vj|θ∗, β∗, V ∗1:j−1, V
0
j:J , α

0, ψ0, X), for j = 1, ..., J .

4. Draw α∗ from p(α|θ∗, β∗, V ∗, α0, ψ0, X)

5. Draw ψ∗ from p(ψ|θ∗, β∗, V ∗, α∗, ψ0, X)

6. Store (θi, V i, βi, αi, ψi) = (θ∗, V ∗, β∗, α∗, ψ∗). Stop if i = Ns; otherwise, set

(θ0, β0, V 0, α0, ψ0) = (θ∗, β∗, V ∗, α∗, ψ∗)

and go to step 1 with i = i+ 1.

Under the multivariate normal kernel and prior specification described in the previous

section, a closed-form conditional posterior distribution for α and ψ is possible. However,

the conditional posterior distributions for θ, β, and V are not well-known parametric distri-

butions and are complicated. Instead, I use the random-walk Metropolis-Hastings (RWMH)

algorithm to draw θ, β, and V from the conditional posteriors. The step for parameters in

the mixture kernel function θ depends on the choice of the kernel function and can be further

decomposed into smaller blocks. In the case of the multivariate normal kernel function, I

decompose θj into its mean and variance-covariance matrix, θj = (µj,Σj) for each j = 1, ..., J

and update µj and Σj separately. The variances of each RWMH proposal densities are adap-

tively chosen following Atchadé and Rosenthal (2005) so that the resulting acceptance rates

are about 30%. A detailed derivation of the posterior sampler is presented in the Appendix.

When there are latent variables in the model, I add RWMH steps for βz and z0:T to

the previous algorithm. The conditional posterior distributions to update these parameters

are model-specific and can be different depending on the relationship between the observed
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data and the latent variables. The following algorithm is based on the example described in

Section 2, where zt follows an AR(1) process and the distribution of xt depends only on zt.

Algorithm 3. Basic sampler for the J-truncated MR-DPM model with latent

variables. Enter the following steps with (θ0, β0, V 0, α0, ψ0, β0
z , z

0
0:T ) and i = 1:

1. Draw (θ∗, β∗, V ∗, α∗, ψ∗) based on steps 1 – 5 of Algorithm 2 with the likelihood function

defined in Equation 21 and prior distributions described in Section 4.

2. Draw β∗z from p(βz|θ∗, β∗, V ∗, α∗, ψ∗, β0
z , z

0
0:T , X).

3. Draw z∗0 using the conditional posterior p(z0
1 |z0, β

∗
z )p(z0|β∗z ).

4. Draw z∗t using the following conditional posterior:

p(zt|z∗t−1, β
∗
z )p(xt|zt, θ∗, V ∗, β∗)p(z0

t+1|zt, β∗z ), for 1 ≤ t ≤ T − 1.

5. Draw z∗T using the conditional posterior p(zT |z∗T−1, β
∗
z )p(xT |zT , θ∗, V ∗, β∗).

6. Store (θi, βi, V i, αi, ψi, βiz, Z
i
0:T ) = (θ∗, β∗, V ∗, α∗, ψ∗, β∗z , z

∗
0:T ). Stop if i = Ns; other-

wise, set

(θ0, β0, V 0, α0, ψ0, β0
z , z

0
0:T ) = (θ∗, β∗, V ∗, α∗, ψ∗, β∗z , z

∗
0:T )

and go to step 1 with i = i+ 1.

Convergence of the basic sampler. Even though the sampler itself is quite standard

in the econometrics literature, the convergence of the posterior sampler in the present en-

vironment is not straightforward owing to the exponential projection step. The MR-DPM

model restricts the parameter space in such a way that the convex hull condition is satisfied

and the resulting support is usually different from that of the initial prior distributions for

model parameters. Therefore, it is important to identify under what conditions the Markov

chain defined by the basic sampler converges to the posterior distribution. To this end, I

make the following high-level assumptions.

Assumption 1. (Model) Observations, x1:N , are generated from the J-truncated MR-DPM

model with a multivariate normal kernel function, and its likelihood has the form in Equation

13.

Assumption 2. (Prior) The joint prior distribution has the form given in section 4 and

therefore ψ = (m,B, S), and the initial prior distribution for β is proper.



30

Assumption 3. (Support) The restricted support for θ and β implied by the joint prior

distribution, S(θ,β), is nonempty, open and arc-connected.

Assumption 4. (Bounded objective function for exponential tilting) The objective

function in the exponential tilting projection, Equation 11, is bounded on D.

Assumptions 1 and 2 have already been discussed in previous sections. Assumption 3 is

related to the restricted support ensuing from the exponential projection procedure. This

set is required to be open so that the invariant distribution of the transition kernel (posterior

distribution) is lower semi-continuous, which in turn guarantees that the transition kernel

is aperiodic. Arc-connectedness is used to show that the transition kernel is irreducible.

Intuitively, if the domain of the transition kernel of the Markov chain is not connected, then

it is possible that the chain visits only a subsection of the support and thus cannot explore

the whole domain of the posterior distribution; Assumption 3 rules out this possibility.

Assumption 4, in conjunction with the convex hull condition, guarantees that the solution to

the dual problem for the exponential tilting projection exists on the domain of the transition

kernel. The conditions in Assumption 3 and Assumption 4 depend on the properties of the

moment restrictions and can be verified case by case.

Proposition 1 below establishes the convergence of the basic sampler under the L1-norm.

The second part of the proposition shows that posterior moments of the function of the

model parameters can be estimated by a Monte Carlo average using draws from the basic

sampler (the strong law of large number). Another important implication of this proposition

is that one should start the posterior sampler from the set D, which excludes any θ and β

that do not satisfy the convex hull condition. In practice, one can draw initial prameters

from the prior distribution using the accept-reject sampling described in Algorithm 1. A

proof of Proposition 1 is provided in the Appendix.

Proposition 1. Let KB(ϕ∗|ϕ0) denote the transition density of the Markov chain defined

by Algorithm 2 without the adaption of the scale parameter in the RWMH proposal density

and let K
(i)
B denote the i-th iterate of the kernel. If Assumptions 1–4 hold, then for all

ϕ = (θ, β, V, α,m,B, S) in D = S(θ,β) × (0, 1)J × R+ × Rd × Rd2

∗ × Rd2

∗ (where Rd2

∗ =

{d× d positive definite matrices}), as Ns →∞:

1. |K(Ns)
B − p(ϕ|X)| → 0.

2. For real-valued, p(ϕ|X)-integrable functions h(ϕ),

1

Ns

Ns∑
i=1

h(ϕ(i))→a.s.

∫
h(ϕ)p(ϕ|X)dϕ.
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5.2 Improving mixing through data augmentation

When the underlying density is modeled with the i.i.d. MR-DPM model, one can improve the

mixing properties of the posterior sampler using a data-augmentation method. Specifically,

I introduce the configuration variable L = (L1, L2, ..., LN) as a missing observation. Each

element of the configuration variable can take values in {1, ..., J} such that all observations

with the same configuration arise from the same distribution,

xi|θ, Li ∼ k(xi; θLi) for i = 1, ..., N,

and therefore the complete-data likelihood of the J-truncated MR-DPM model now reads:

p(X,L|θ, β, V, α, ψ) =

(
N∏
i=1

k(xi; θLi)

)(
J∏
j=1

q̃
Mj

j

)
︸ ︷︷ ︸
=p(L|θ,β,V )

(24)

where Mj = #{i : Li = j} for j = 1, ..., J . Note that the configuration vector L breaks

down the J-truncated mixture density into individual kernel densities through θLi . The

last term depends on θ, β, and V due to the exponential tilting procedure. As for the

Bayesian estimation of a finite mixture model, one can estimate the augmented parameter

(L, θ, β, V, α, ψ) by sampling from the complete-data posterior distribution,

p(L, θ, β, V, α, ψ|X) ∝

(
N∏
i=1

k(xi; θLi)

)
p(L|θ, β, V )p(θ|ψ)p(V |α)p(β)I(~0 ∈ H(θ, β))p(ψ)p(α).

(25)

The posterior sampling method in Algorithm 4 below iterates over each parameter block,

(L, ϕ) = (L, θ, β, V, α, ψ) and defines a Markov chain with transition kernel on

D = {perm([1, ..., J ]′)} × S(θ,β) × (0, 1)J ×R+ × supp(ψ),

where {perm([1, ..., J ])} is a set of all possible permutations of the vector [1, ..., J ]′.

Algorithm 4. Second posterior sampler for the J-truncated ET-DPM. Enter the

following steps with (L0, θ0, β0, V 0, α0, ψ0) ∈ D and i = 1:

1. Draw L∗ from p(L|L0, θ0, β0, V 0, α0, ψ0, X)

2. Draw θ∗j from p(θj|L∗, θ∗1:j−1, θ
0
j:J , β

0, V 0, α0, ψ0, X), for j = 1, ..., J .

3. Draw β∗ from p(β|L∗, θ∗, β0, V 0, α0, ψ0, X)
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4. Draw V ∗j from p(Vj|L∗, θ∗, β∗, V ∗1:j−1, V
0
j:J , α

0, ψ0, X), for j = 1, ..., J .

5. Draw α∗ from p(α|L∗, θ∗, β∗, V ∗, α0, ψ0, X)

6. Draw ψ∗ from p(ψ|L∗, θ∗, β∗, V ∗, α∗, ψ0, X)

7. Store (Li, θi, βi, V i, αi, ψi) = (L∗, θ∗, β∗, V ∗, α∗, ψ∗). Stop if i = Ns, otherwise set

(L0, θ0, β0, V 0, α0, ψ0) = (L∗, θ∗, β∗, V ∗, α∗, ψ∗)

and go to step 1 with i = i+ 1.

This algorithm can be viewed as an extension of the Blocked-Gibbs sampler of Ishwaran

and James (2001) for the truncated DPM model, which is also based on data augmentation.

However, by introducing the moment condition and its related parameters, the full condi-

tional posterior distributions become complicated, and the conditional posteriors for θ, β,

and V do not have well-known parametric densities. I utilize the random-walk Metropolis-

Hastings algorithm for V and β as in the basic sampler. For θ, I use the independent

Metropolis-Hastings algorithm, with which more tailor-made proposal density can be con-

structed using the structure of the model. It is constructed in such a way that it resembles

the conditional posterior distribution without the moment condition. The details of the

algorithm are described in the Appendix.

The advantages of this posterior sampler over the basic sampler are the following. First,

it reduces computation time by breaking the likelihood into small pieces through the intro-

duction of the configuration variable. Moreover, conditional on the configuration variable,

the first term in the complete likelihood function (Equation 24) drops out in many cases,

which reduces the total number of evaluations of the kernel function. This is especially

beneficial when the number of observations is large, as the computational cost of likelihood

function evaluation is linear in the number of observations. Lastly, this algorithm generates

less-correlated posterior draws, and therefore, it offers a more efficient approximation of the

posterior moments of the object of interest. One of the reasons for this is that the proposal

distribution in the Metropolis-Hasting step for θ is constructed in such a way that it resem-

bles the true conditional posterior distribution, while the basic sampler simply employs the

random-walk proposal distribution. However, the use of the data-augmentation technique is

limited to i.i.d. models, as it exploits the particular structure of the likelihood function.



33

5.3 Posterior analysis via sequential Monte Carlo

In this section, I introduce another type of the posterior sampler based on the sequential

Monte Carlo method. The sequential Monte Carlo (or particle filtering) method is a general

method to approximate a sequence of multiple distributions of interest by applying impor-

tance sampling in an iterative fashion. It has been extensively used to analyze non-linear

state-space models (see Doucet and Johansen, 2009, for a review). In addition, Chopin

(2002) describes how the sequential Monte Carlo algorithm can be used to obtain the pos-

terior distribution under the static setting where a single such distribution is targeted.

Several researchers have applied the static version of the SMC method (Chopin, 2002) to

various models and found that the SMC algorithm can be an attractive alternative to MCMC-

based methods. It can perform better than MCMC-based posterior samplers when the pos-

terior distribution exhibits some complicated topography such as multimodality (e.g., Herbst

and Schorfheide, 2014). The SMC algorithm is also easily parallelizable vis-à-vis MCMC-

based posterior samplers, which reduces computational time significantly (e.g., Durham and

Geweke, 2011, 2014).

SMC using the tempered likelihood. The sequential Monte Carlo method applied in

this paper approximates a sequence of power posterior distributions indexed by t,

πt(ϕ|X) =
1

Cφt(X)
[p(X|ϕ)]φtp(ϕ), t = 1, ..., Nφ (26)

where ϕ = (θ, β, V, ψ, α) and Ct(X) is a normalizing constant for the t-th power posterior.

An increasing sequence, {φt, t = 1, ..., Nφ}, is chosen to satisfy the following

0 = φ1 < φ2 < ... < φNφ−1 < φNφ = 1.

This sequence is called the tempering or heating schedule. For t = 1, the object in Equation

26 is simply a prior distribution and its normalizing constant is one, C0(X) = 1. On the

other hand, the power posterior for t = Nφ is the posterior distribution and its normalizing

constant is the marginal likelihood.

In a nutshell, the algorithm recursively obtains the importance sampling approximation

to the above power posterior distributions. It starts with draws from the prior distribution of

the MR-DPM model and iterates three steps for each t-th power posterior distribution with
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a set of pairs {ϕit, W̃ i
t }
Np
i=1 that provides a particle approximation9 to the t-th power posterior

distribution πt(ϕ|X). The first step re-weights the particles to reflect the density in iteration

t (correction); the second step eliminates degenerated particles by resampling the particles

(selection); and the third step propagates the particles forward using a Markov transition

kernel Kt(ϕt|ϕ′t; ζt) whose stationary distribution is the t-th intermediate posterior distri-

bution πt(ϕ). I construct the transition kernel based on the MH-within-Gibbs algorithm.

Some of the parameter blocks are updated via the random-walk proposal distribution, and

parameter vector in the transition kernel ζt includes the scaling factor and covariance matrix

of those random-walk proposal distributions.

The general form of the algorithm described below is identical to that used in Herbst and

Schorfheide (2014). Specifically, I consider the adaptive version of the SMC algorithm where

the algorithm computes some tuning parameters during the estimation. The algorithm has

two adaptive features. First, the algorithm decides whether to implement re-sampling in the

selection step according to effective sample size at every stage. The algorithm performs re-

sampling when effective sample size is below ρ̂×Np where ρ̂ ∈ [0, 1]. Second, the algorithm

recursively computes the parameters in the transition kernel ζ̂t = (ĉt, Σ̃t). The scaling factor

ĉt is computed using the empirical rejection rates from the previous stage to keep the target

acceptance rate in the mutation step near some desirable constant. And the covariance

matrix of the random-walk proposal distributions Σ̃t are computed using the importance

sampling approximation to the intermediate distributions at each stage. These adaptive

schemes are discussed in detail after I present the algorithm.

Algorithm 5. Simulated tempering SMC for the J-truncated MR-DPM

1. Initialization. (φ1 = 0). Draw the initial particles from the prior using Algorithm 1,

ϕi1 ∼i.i.d. p(ϕ), W i
1 = 1, i = 1, ..., Np.

2. Recursion. For t = 2, ..., Nφ,

(a) Correction. Reweight the particles from stage t − 1 by defining the incremental

and normalized weights

w̃it =
[
p(X|ϕit−1)

]φt−φt−1 , W̃ i
n =

w̃itW
i
t−1

1
Np

∑Np
i=1 w̃

i
tW

i
t−1

, i = 1, ..., Np

9A pair of particle systems {ϕit, W̃ i
t }
Np

i=1 approximates the t-th power posterior distribution in the sense

that the posterior moments of the unknown parameter can be approximated by Eπt
[h(ϕ)] ≈

∑Np

i h(ϕit)W̃
i
t

where {W̃ i
t }
Np

i=1 serves as importance weights.
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(b) Selection. Compute the effective sample size ESSt = Np/

(
1
Np

∑Np
i=1

(
W̃ i
t

)2
)

.

If ESSt < ρ̂Np, resample the particles via multinomial resampling. Let {ϕ̂it}
Np
i=1

denote Np i.i.d. draws from a multinomial distribution characterized by support

points and weights {ϕit−1, W̃
i
t }
Np
i=1 and set W i

t = 1. Otherwise, let ϕ̂it = ϕit−1 and

W i
t = W̃ i

t , i = 1, ..., Np.

(c) Mutation. Propagate the particles {ϕ̂it,W i
t } via M steps of the MH-within-Gibbs

algorithm with transition kernel ϕit ∼ Kt(ϕt|ϕ̂it; ζ̂t) whose stationary distribution

is πt(ϕ). See Algorithm 6 for details.

3. For t = Nφ (φNφ = 1) the final importance sampling approximation of Eπ[h(ϕ)] is

given by:

h̄Nφ,Np =

Np∑
i=1

h(ϕiNφ)W i
Nφ
. (27)

Remark 1 (Markov transition kernel in the mutation step). In every iteration, the

mutation step requires a Markov transition kernel. In this paper, I construct the Markov

transition kernel based on the MH-within-Gibbs algorithm iterated over the parameter block

[ϕθ, ϕβ, ϕV , ϕα, ϕψ] where ϕθ,j = θj for j = 1, ..., J ; ϕβ = β; ϕV,j = Vj for j = 1, ..., J ; ϕα = α;

ϕψ = ψ. The blocks for θ, β, and V involve MH updating and I use RWMH updating with

covariance matrix of the form (ĉb,jΣ̃b,j) for b ∈ {θ, β, V } and j = 1, ..., J . The scaling

parameters ĉb,j are computed so that the rejection probabilities of the MH steps stay near

30%. The covariance matrices Σ̃b,j are adaptively chosen using the importance sampling

approximation at every stage. These are summarized below10.

Algorithm 6. (Adaptive transition kernel) Enter the algorithm with {ϕit−1, W̃
i
t }
Np
i=1 and

{ϕ̂it}
Np
i=1:

1. Compute importance sampling approximations

Σ̃b,j =

Np∑
i=1

(ϕit−1 − µ̃b,j)2W̃ i
t where µ̃b,j =

Np∑
i=1

ϕit−1W̃
i
t

for b ∈ {θ, β, V } and j = 1, ..., J .

10The algorithm is described for the MR-DPM models without latent variables. When there are latent
variables in the model, one can add the random-walk Metropolis-Hastings steps for βz and z0:T in the above
algorithm as in Algorithm 3.
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2. Compute the average empirical rejection rate R̂t−1,b,j, based on the mutation step in

the previous stage t− 1 for b ∈ {θ, β, V } and j = 1, ..., J .

3. Adjust the scaling factor according to

ĉ2,b,j = c∗b,j, ĉt,b,j = ĉt−1,b,jf(1− R̂t−1,b,j) for t ≥ 3,

for b ∈ {θ, β, V } and j = 1, ..., J . And f(·) is given by

f(x) = 0.95 + 0.1
exp(16(x− 0.30))

1 + exp(16(x− 0.30))
.

4. For each particle i, run M steps of the following MH-within-Gibbs algorithm. Let

ϕit,0 = ϕ̂it. For m = 1 to M :

(a) Let ϕit,m = ϕit,m−1.

(b) For b ∈ {θ, β, V } and j = 1, ..., J , generate a proposal draw ϕ∗b,j from

ϕ∗b,j ∼ N
(
ϕit,b,j,m−1, ĉ

2
t,b,jΣ̃t,b,j

)
and define the acceptance probability

α(ϕb,j) = min

{
1,

[p(X|ϕ∗b,j, ϕit,−(b,j),m)]φtp(ϕ∗b,j, ϕ
i
t,−(b,j),m)

[p(X|ϕit,b,j,m−1, ϕ
i
t,−(b,j),m)]φtp(ϕt,b,j,m−1, ϕit,−(b,j),m−1)

}

and let

ϕit,b,j,m =

ϕ∗b,j with probability α(ϕb,j)

ϕit,b,j,m−1 otherwise

(c) Draw ϕ∗t,α,m and ϕ∗t,ψ,m based on the relevant steps in Algorithm 2 with ϕ0 = ϕit,m.

5. Let ϕ̂it = ϕit,M .

Remark 2 (Tuning parameters). In this paper, I employ the following tempering sched-

ule with a scalar parameter η > 0,

φt =

(
t− 1

Nφ − 1

)η
.

The parameter η controls the relative similarity of the intermediate power posteriors across

stages. For example, for η = 1, the tempering schedule is linear in t and the similarity
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of adjacent power posteriors (as measured by the proximity of φt and φt−1—the smaller

φt − φt−1, the more similar the adjacent power posteriors) is the same across all stages.

On the other hand, for η > 1, two adjacent intermediate posteriors are closer in the initial

stages, with the similarity decreasing across stages. This means that a tempering schedule

with η > 1 moves the intermediate power posteriors slowly from the prior distribution at

the beginning stages, then transitions faster to the posterior distribution in the later stages.

Note that if η is too large, some of the intermediate distributions will be rendered redundant.

For fixed η, the number of stages Nφ controls the absolute similarity of intermediate

power posteriors over stages. When two adjacent power posteriors are close to each other,

more efficient approximation is possible because the SMC sampler utilizes the posterior

approximation from the previous stage as an importance sampling distribution. However, a

larger number of stages entails more likelihood evaluations, creating a computational trade-

off. As mentioned earlier, the algorithm performs the re-sampling if the effective sample size

is smaller than ρ̂ × Np. Tuning parameter M determines the number of transitions in the

mutation step.

Remark 3 (SLLN and CLT). The particle approximations to posterior moments such as

the one in Equation 27 satisfy the strong law of large numbers (SLLN) and the central limit

theorem (CLT) under suitable conditions without any adaptation. The following conditions

are provided in Herbst and Schorfheide (2014).

Assumption 5. Suppose that (i) the prior is proper:
∫
p(ϕ)dϕ < ∞; (ii) the likelihood

function is uniformly bounded: supϕ∈D < MD < ∞; and (iii) positive marginal data

density:
∫

[p(X|ϕ)]φ2 p(ϕ)dϕ > 0.

Assumption 6. πt(ϕ) is an invariant distribution associated with the transition kernel, that

is:
∫
Kt(ϕ|ϕ̂; ζt)πt(ϕ̂)dϕ̂ = πt(ϕ) where {ζt}

Nφ
t=1 is a non-random sequence of transition kernel

parameters.

Under Assumptions 5 and 6 the particle approximations to the posterior moments satisfy

the strong law of large numbers. That is,

h̄Nφ,Np =

Np∑
i=1

h(ϕiNφ)W i
Nφ
→a.s. Eπ[h] as Np →∞

for h ∈
{
h(ϕ)

∣∣∃δ > 0 s.t.
∫
|h(ϕ)|1+δp(ϕ)dϕ <∞

}
. This result corresponds to the law of

large numbers for the basic sampler in Proposition 1. In addition, the CLT applies to the



38

same quantity as the number particles Np increases to infinity. The asymptotic variance in

the limit distribution depends on many factors, including tuning parameters such as {ζt}
Nφ
t=1.

One of the potentially binding assumptions for these results to hold in the context of

the MR-DPM model is the second condition in Assumption 5. For example, when the

kernel function is set to the normal density function with heterogeneous location and scale

parameters k(xi;µj, σ
2
j ), the likelihood function of the J-truncated MR-DPM model is not

uniformly bounded. If one of the location parameters takes the same value as the observation

(µj = xi), then the likelihood tends to infinity as the corresponding scale parameter gets

smaller (σj → 0). One direct solution to this problem is to set lower bounds on the scale

parameters so that the likelihood function does not explode over the parameter space. The

current implementation of the algorithm in the simulation and application sections does

not restrict the domain of the scale parmaeters. Instead, I monitor whether the posterior

simulator pushes the scale parameters toward problematic regions; at least for the application

presented, this is not the case.

The other assumptions are implied by Assumptions 1–4. For example, the prior distribu-

tions used in this paper are proper (Section 4). Assumption 6 can be verified along the lines

of the proof of Proposition 1 because the transition kernels in the SMC sampler (Algorithm

2) and the basic sampler (Algorithm 2) are identical when there is no adaptation (except for

the fact that the likelihood function is powered by the positive number φt).

As pointed out by Herbst and Schorfheide (2014), convergence results with adaptive

schemes are harder to show. An alternative SMC algorithm that satisfies the SLLN and the

CLT is to run two versions of the SMC algorithms. First, run the adaptive SMC sampler

(Algorithm 5) to obtain a sequence of tuning parameters {ĉt, Σ̃t}
Nφ
t=1. Then, fix these tuning

parameters in subsequent runs of the algorithms.

Remark 4 (Marginal likelihood). One attractive feature of this algorithm is that it

produces marginal likelihood estimates as a by-product. Using a sequence of normalizing

constants of intermediate posteriors, the marginal likelihood can be written in telescoping

fashion as

p(X) = CφN (X) =
CφN (X)

CφN−1
(X)
×
CφN−1

(X)

CφN−2
(X)
× ...× Cφ1(X)

Cφ0(X)

where Cφ0(X) = 1 by construction. Each ratio can be written as

Cφt(X)

Cφt−1(X)
=

∫
p(X|ϕ)φtp(ϕ)dϕ

Cφt−1(X)
=

∫
p(X|ϕ)φt−φt−1 × p(X|ϕ)φt−1p(ϕ)

Cφt−1(X)
dϕ

= Eπt
[
p(X|ϕ)(φt−φt−1)

]
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and therefore it can be approximated by treating h(ϕ) = p(X|ϕ)(φt−φt−1) and the marginal

likelihood can be computed as:

p(X) =

Nφ∏
t=2

(
1

Np

Np∑
i=1

w̃itW
i
t−1

)
.

Remark 5 (Truncation order selection through J-posterior tempering). All of

the proposed posterior samplers so far assume that the truncation order J is fixed. It turns

out that a slight modification11 of the SMC algorithm introduced in this section offers a

natural method to select the truncation order J . The basic idea is to consider the sequence

of truncated posterior distributions indexed by J = J0, J1, ...:

πJ(ϕJ |X) ∝ pJ(X|θJ , β, VJ)p(θJ |ψ)p(VJ |α)p(β)I(~0 ∈ H(θJ , β))p(ψ)p(α) (28)

where ϕJ = (θJ , β, VJ , ψ, α) and θJ = {θ1,J , θ2,J , ..., θJ,J} and VJ = {V1,J , V2,J , ..., VJ,J}. And

the likelihood function is indexed by J . Instead of moving particles through the power

posteriors, the algorithm moves particles through the truncation level.

At the arbitrary stage (s + 1), the algorithm begins with the particle approximation to

the s-th posterior, {(ϕis, W̃ i
s)}

Np
i=1. Then one can propagate particles using the conditional

prior distributions of the (s+ 1)-truncated model given ϕis for i = 1, ..., Np,

V i
s+1,s+1 ∼ p(V i

s+1,s+1|V i
s , α

i) and θis+1,s+1 ∼ p(θis+1,s+1|θis, βi, ψi) (29)

from both of which it is easy to sample under the J-truncated MR-DPM modeling assump-

tions and the associated prior specifications. Equipped with augmented particles

{(ϕis, V i
s+1,s+1, θ

i
s+1,s+1, W̃

i
s)}

Np
i=1,

one can update the particle weights to get the particle approximation to the (s + 1)-th

posterior distribution using the following SMC increment

w̃is+1 =

∏N
l=1

(∑s+1
j=1 q̃j,s+1(θis+1, β

i, V i
s+1)k(xl; θ

i
j,s+1)

)
∏N

l=1

(∑s
j=1 q̃j,s(θ

i
s, β

i, V i
s )k(xl; θij,s)

) ,

where I define θis+1 = {θi1,s, θi2,s, ..., θis,s, θis+1,s+1} and V i
s+1 = {V i

1,s, V
i

2,s, ..., V
i
s,s, V

i
s+1,s+1}. Note

11This type of modification of the SMC sampler is considered by Griffin (2014) in the context of the DPM
model without moment restrictions.
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that this SMC increment simplifies to a ratio between the likelihood of the (s+1)-truncation

model and the s-truncation model because of the choice of the transition distribution in

Equation 29.

Unlike the simulated tempring SMC algorithm (Algorithm 5), this algorithm starts from

a J0-truncated model and moves particles forward to a higher-order truncated model. As

the truncation order increases, we expect the approximated posterior to be closer to the

true posterior, which is achieved when the truncation order is ∞. In practice, the algorithm

must stop with a finite truncation order. Griffin (2014) suggests a stopping rule based on the

effective sample size (ESS). The rationale behind this idea is that as the truncation order gets

larger, two adjacent posterior distributions πs(ϕs|X) and πs+1(ϕs+1|X) become very close,

since the newly introduced component will not affect the posterior much, and therefore, the

SMC increment at stage (s+ 1) becomes closer to one, i.e., w̃is+1 ≈ 1 for all i.

The initial posterior distribution for this algorithm can be obtained by Algorithm 5 with

some J > 1. I close this section with complete instructions for the algorithm.

Algorithm 7. J-selection SMC for the MR-DPM model

1. Initialization. Run Algorithm 5 with a truncation order J0 to get the particle approxi-

mation to the J0-truncation posterior, {(ϕis, W̃ i
s)}

Np
i=1, and set s = 1.

2. Recursion.

(a) Propagation. Propagate particles using the conditional prior distributions of the

s-truncated model given ϕis−1 for i = 1, ..., Np,

V i
s,s ∼ p(V i

s,s|V i
s−1, α

i) and θis,s ∼ p(θis,s|θis−1, β
i, ψi)

and augment with a set of particle pairs, {(ϕis−1, V
i
s,s, , θ

i
s,s, W̃

i
s−1)}Npi=1,

(b) Correction. Reweight the particles from stage s − 1 by defining the incremental

and normalized weights

w̃is =

∏N
l=1

(∑s
j=1 q̃j,s+1(θis, β

i, V i
s )k(xl; θ

i
j,s)
)

∏N
l=1

(∑s−1
j=1 q̃j,s−1(θis−1, β

i, V i
s−1)k(xl; θij,s−1)

) , W̃ i
n =

w̃isW
i
s−1

1
Np

∑Np
i=1 w̃

i
sW

i
s−1

for i = 1, ..., Np.

(c) Selection. Compute the effective sample size ESSs = Np/

(
1
Np

∑Np
i=1

(
W̃ i
s

)2
)

.

If ESSs < ρ̂Np, resample the particles via multinomial resampling. Let {ϕ̂i}Npi=1
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denote Np i.i.d. draws from a multinomial distribution characterized by support

points and weights {ϕis−1, W̃
i
s}
Np
i=1 and set W i

s = 1. Otherwise, let ϕ̂is = ϕis−1 and

W i
s = W̃ i

s , i = 1, ..., Np.

(d) Mutation. Propagate the particles {ϕ̂is,W i
s} via M steps of the posterior sampler

described in the previous section (Algorithm 6).

(e) Stopping rule. Stop the algorithm if |ESSk−ESSk−1| < εNp for k = s−2, s−1, s

and ε = 10−5. Otherwise, go to step (a) with s = s+ 1.

6 Working with simulated data

This section is composed of three subsections designed to illustrate the proposed samplers

with simulated data. Simulation designs in each subsection are carefully chosen so that each

section delineates a different aspect of the proposed samplers. In the first subsection, data

are simulated from an i.i.d. instrumental regression model with log-normal shocks. I use this

environment to compare the performance of the three algorithms described in the previous

section. In the second part of this section, I simulate data based on an Euler equation model.

The simulated data are serially correlated, and therefore, I fit the data using the time series

MR-DPM model. Here, I focus on the SMC sampler and describe the role of the marginal

likelihood in Bayesian moment condition models. Finally, I turn the simulations toward

dealing with models with latent variables. In this part, I simulate data from a non-Gaussian

state-space model and illustrate how one can perform the MR-DPM model estimation with

latent variables.

6.1 IV regression

The model considered in this section is the linear instrumental variable regression

yi = β2xi + e1,i

xi = z′i(ιδ) + e2,i

(30)

where yi and xi are scalar and zi is a r × 1 vector. ι is a vector of r ones and δ is a scalar.

The parameter of interest is β2 and it is set to one. I consider two specifications for ei,(
e1,i

e2,i

)
= cv; v ∼ logN(0, 0.6 · Σ), where Σ =

(
1 0.6

0.6 1

)
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and c is set to 1.25. The zi are from an independent standard normal distribution. The

number of instruments is three, δ is 1, and the sample size is set to 200.

Moment condition. To estimate β, I use the following moment conditions

E[yi − β1 − x′iβ2] = 0

E[zi(yi − β1 − x′iβ2)] = 0.
(31)

Note that β1 is the intercept and β2 is the parameter loaded on xi in Equation 30. Under

the simulation design, β1 is non-zero because the shocks to yi and xi follow the log-normal

distribution. The integrated moment conditions are then

µY − β1 − µ′Xβ2 = 0

ΣZY + µZµY − β1µZ − (ΣZX + µZµ
′
X)β2 = 0,

(32)

given some mixture parameter θ = (µ,Σ), µY denotes the mean parameter for variable Y

and ΣZY denotes covariance parameter for Z and Y .

Kernel function and prior specification. I model the joint distribution of [y′i, x
′
i, z
′
i]
′

based on the i.i.d. MR-DPM model in conjunction with moment conditions in Equation 32.

The initial prior distribution for β1 and β2 follows the uniform distribution

β1 ∼ Unif [−1, 1] and β2 ∼ Unif [0, 3].

and other prior specifications are set according to Section 4.2. To check whether the expo-

nential tilting projection with this prior specification distorts the initial prior distribution,

I generate 1,000 draws from the prior distribution using accept/reject sampling (Algorithm

1). Figure 2 shows the scatter plot of prior draws for (β1, β2) with their prior means (dashed

lines). Visually speaking, it turns out that the introduction of the exponential tilting pro-

cedure does not significantly change the initial prior distribution, at least for β – the draws

appear uniformly distributed on the domain of the initial distribution.

Tuning of samplers. In this experiment, I compare the three posterior algorithms pro-

posed in Section 5: the basic sampler (Algorithm 2, hereafter B-sampler), the data-augmentation

(Algorithm 4, hereafter DA-sampler), and the sequential Monte Carlo sampler (Algorithm

5, hereafter S-sampler). I set the tuning parameters of the SMC sampler as follows: the

number of stages Nφ = 50; the number of particles Np = 1000; the number of transitions in
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Table 1 Posterior sampler comparison

Mean [0.05, 0.95] SD(Mean) Neff

B-Sampler
β1 0.374 [0.338, 0.995] 0.0028 74.89
β2 1.021 [0.414, 1.047] 0.0050 12.18

DA-Sampler
β1 0.369 [0.329, 0.989] 0.0023 111.03
β2 1.019 [0.413, 1.048] 0.0010 278.68

S-Sampler
β1 0.367 [0.329, 0.995] 0.0057 18.42
β2 1.023 [0.405, 1.052] 0.0079 4.91

Notes: B-sampler stands for the basic sampler. DA-sampler stands for the modified version of the basic

sampler using data augmentation. S-sampler stands for the SMC posterior sampler. Means and standard

deviations are over 10 runs for each algorithm. I define Neff = V̂ (β)/SD2. Both B- and DA- samplers use

100,000 draws with the first half discarded. The S-samplers use 1,000 particles and 50 stages.

the mutation step M = 2; and the bending coefficient η = 1.5. For the basic sampler and

the data augmented sampler, I compute posterior moments based on 100,000 draws, with

the first 50,000 draws discarded.

Result: Prior/Posterior. Figure 2 shows the 1,000 draws of β1 and β2 from the marginal

prior (left panel) and the marginal posterior (right panel) distribution. As one can see, once

conditioned on data, the marginal distribution of β1 and β2 shrinks and centers around the

true value. Figure 3 shows prior and posterior draws of the density of yi. Prior draws can

exhibit various shapes such as skewed and multi-modal densities. Once conditioned on the

data, all densities implied by posterior draws have one mode and are distributed around

the posterior mean (solid red line). The posterior mean estimate is reasonable in that it is

very close to the kernel density estimate implied by Silverman’s optimal bandwidth using

the same data.

Result: Comparison of proposed samplers. To compare the performance of the algo-

rithms, I ran the three samplers 10 times each with different initial points drawn from the

prior distribution. The first two columns of Table 1 show the posterior moments (mean and

quantiles) of (β1, β2) computed from the three samplers. They are not exactly the same,

but are very close to one another. The third column presents the standard deviation of the
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Figure 2 Scatter Plot of draws for (β1, β2)

(a) Prior Draws (b) Posterior Draws

Notes: Scatter plot of draws of (β1, β2) from prior (left) and posterior (right) distribution. Dashed red lines

show prior and posterior means. Figures are generated based on the draws from the S-sampler.

posterior mean estimates from the three samplers. They are computed by taking the sample

standard deviation of the posterior mean estimates from 10 runs with different initial val-

ues. Several findings emerge. First, the gain from data augmentation is evident. It reduces

the standard deviation of the posterior mean estimate by a factor of five for β2. Second,

the SMC sampler produces the least accurate posterior mean estimator given the current

choice of the tuning parameters. The same conclusion can be made based on the number of

effective samples defined as Neff = V̂ (β)/SD2 where V̂ (β) is an estimate of the posterior

variance of β obtained from the output of the SMC algorithm and the SD2 is the variance

of the posterior mean estimate across the 10 runs of each algorithm. The gain from the

data-augmentation is large, but the S-sampler is the least efficient.

The current version of the sequential Monte Carlo sampler needs more investigation. The

most immediate exercise is to increase the number of particles to see whether the central limit

theorem presented in Section 5 holds under this tuning parameter configuration. Moreover,

as Herbst and Schorfheide (2014) point out, other tuning parameters such as the tempering

schedule are crucial for the efficient implementation of the SMC algorithm. Currently, I am

investigating these issues in detail.



45

Figure 3 Draws for Density of yi

(a) Prior Draws (b) Posterior Draws

Notes: Each draw from the prior/posterior is transformed into a marginal density of yi and is evaluated at

100 equally spaced grid points from [−10, 10]. The left panel shows 50 draws from the prior distribution.

The right panel shows 50 draws from the posterior distribution as well as the point-wise posterior mean of

the density (thick red line). The dashed green line is the kernel density estimate using the same data with

Silverman’s optimal bandwidth. Figures are generated based on the draws from the S-sampler.

6.2 Estimating an Euler equation with time series data

In this subsection, I consider the following data generating mechanism,

rt+1 = −γω + γct+1 −
γ + 1

2
c2
t+1 − γer,t+1

ct+1 = ρcct + ec,t+1

where the innovations are generated from the bi-variate normal distribution,(
εr,t+1

εc,t+1

)
∼ N(0,Σ), Σ =

(
1 0.6

0.6 0.2

)
.

This simulation design resembles the representative agent Euler equation model with CRRA

utility function and satisfies the following moment conditions,12

E

[
ct+1 − ω −

1

γ
rt+1 −

γ + 1

2
(ct+1)2

∣∣∣∣ It] = 0 (33)

12This Euler equation is derived from the household’s optimization problem in a life-cycle model based
on a second-order Taylor approximation. A similar Euler-equation model is considered by Alan et al. (2012)
in the context of heterogeneous agents.
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where the information set contains past histories of ct and rt, It = {ct, rt, ct−1, rt−1, ...}. I

simulate 500 observations with (ω, γ, ρc) = (−0.6, 3, 0.6).

Moment conditions. To perform the MR-DPM estimation, I transform the above Euler

equation into unconditional moment conditions using the instruments zt,

E

[(
ct+1 − ω −

1

γ
rt+1 −

γ + 1

2
(ct+1)2

)
zt

]
= 0.

In this experiment, I consider three model specifications using different moments (instru-

ments, zt). The first specification uses {1, ct, rt}′ as instruments and is thus the correctly

specified model. The second specification uses the same instruments as the first specification

but the risk aversion parameter γ is fixed at one (implying log-utility). The last specification

adds ct+1 to the first instrument set. Note that because of endogeneity, ct+1 is an invalid

instrument. Note also that the last two approaches are misspecified models and hence the

moment conditions are violated.

Kernel function and prior specification. To fit simulated data using the MR-DPM

model, I impose the time series version of the MR-DPM modeling assumption on the joint

distribution of (ct, rt, ct−1, rt−1) introduced in Section 3,
ct

rt

ct−1

rt−1

 ∼
∑
j=1

q̃j(µ,Σ, β, V )N

(
·
∣∣∣ (µj

µj

)
, Σj

)

where the multivariate normal density is used for the kernel function; µj is 2× 1 and Σj is

4× 4. The prior distribution for β = (ω, γ) is set to be a uniform distribution

ω ∼ Unif [−3, 0] and γ ∼ Unif [0, 5].

For the base measure G0(µ,Σ), I decompose the covariance matrix Σj into two pieces, Σj =

Dj ×Rj ×Dj where

Dj =


σ2

1,j 0 0 0

0 σ2
2,j 0 0

0 0 σ2
1,j 0

0 0 0 σ2
2,j

 and Rj =


1 · · ·
r1,j 1 · ·
r2,j r4,j 1 ·
r3,j r5,j r1,j 1


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where the correlation parameters (r1,j, , r2,j, r3,j, r4,j, r5,j) are assumed to be uniform on

[−1, 1] and σ2
1,j and σ2

2,j are assumed to be Gamma-distributed, σ2
1,j ∼ Ga(2, 0.52V ar(ct)) and

σ2
2,j ∼ Ga(2, 0.52V ar(rt)). The prior distribution for µj is similar to that presented in Section

4, and a normal distribution is used. Related hyperparameters are fixed so that the prior

distribution of µj is distributed around the realized data. The prior for the concentration

parameter α is implemented as Ga(10, 2).

Tuning of the posterior samplers. In this experiment, I only consider the SMC sampler

and focus on computation of the marginal likelihood. I set the tuning parameters as follows:

the number of stages Nφ = 100; the number of particles Np = 1000 and 3000; the number of

transitions in the mutation step M = 1; and the bending coefficient η = 1.

Result: Marginal likelihood comparison. Table 2 presents the log marginal likelihood

estimates (mean and standard deviation) for the time series Euler equation experiment

based on the SMC sampler. The first row presents means and standard deviations of log

marginal likelihood estimates over the 10 runs for each specification. The marginal likelihood

comparison correctly ranks the competing model specifications. Means of the log marginal

likelihoods based on the wrong moments (M2 and M3) are smaller than that of M1. The

misspecified utility assumption (M2) is clearly dominated by the other two specifications.

However, marginal likelihood comparison betweenM1 andM3 is less sharp because standard

deviations of the log marginal likelihood estimates are large and, therefore, require more

accurate approximation. As I pointed out in the previous experiment, the current version

of the SMC sampler needs more investigation of its tuning setup to improve efficiency. One

way to improve the accuracy of the marginal likelihood approximation is to run the sampler

with a larger number of particles. To see this, I present log marginal likelihood estimates

with 3,000 particles for M1 in the second row of the table, and as expected, the standard

deviation becomes smaller. However, this improvement comes at the cost of computation

time.

6.3 Robust estimation of the state-space model

In this section, I illustrate how one can apply the MR-DPM estimation when there are latent

variables. I consider the following linear state-space model,

xt = βzt + et

zt = ρzzt + vt, vt ∼ N(0, 1)
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Table 2 Log marginal likelihood estimates

M1 M2 M3

Np = 1, 000 802.16 (9.61) 768.90 (7.97) 798.62 (7.38)
Np = 3, 000 807.38 (5.48) - -

Notes: This table presents the log marginal likelihood estimates (mean and standard deviation) for the time-

series Euler equation experiment based on the SMC sampler. There are three specifications with different

sets of moments: M1 is the correctly specified model (zt = {1, ct, rt}); M2 restricts the risk-aversion

parameter to one but uses the same set of moments as M1 (zt = {1, ct, rt}); M3 contains an invalid

moment condition (zt = {1, ct, rt, ct+1}). Means and standard deviations are computed over 10 runs for

each specification. Np denotes the number of particles used in each run of the SMC samplers.

where zt is assumed to be unobserved by the econometrician. The measurement error et is

assumed to follow the two-component mixture of normals,

et ∼ 0.5N(0, 12) + 0.5N(0, 52),

so that et is mean zero but negatively skewed. Moreover, et is assumed to be orthogonal to

vt, and therefore, the model can be written in the same form as Equation 20,

E[(xt − βzt)zt)] = 0, zt = ρzzt + vt, vt ∼ N(0, 1).

I simulate 500 observations with (β, ρz) = (2, 0.8).

Kernel function and prior specification. To fit simulated data using the MR-DPM

model, I impose the MR-DPM modeling assumption on the conditional distribution of xt

given zt as illustrated in Section 3.2 with a normal density as the kernel function,

p(Xt|Zt, θ, β, βz, V ) =
J∑
j=1

q̃j(θ, β, βz, V )N(xt;hµ(zt, θj), hΣ(zt, θj))

where θj = (µx,j, ρx,j, σ
2
x,j), βz = ρz, and

hµ(zt, θj) = µx,j + ρx,jzt and hΣ(zt, θj) = σ2
x,j −

ρ2
x,j

1− ρ2
z

.

The base measure is set to the following form,

G0(µx, ρx, σ
2
x) = N(µx;mµ, Vµ)×N(ρx;mρ, Vρ)× IG(σ2

x; sσ, Sσ)
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Figure 4 Estimated latent variables (zt)

(a) MR-DPM

(b) Gaussian measurement assumption

Notes: This figure presents the estimated latent variables for the first 70 among 500 observations. The

first figure is based on the MR-DPM estimation, while the second figure is based on the wrong parametric

assumption (Gaussian measurement error). The green lines are the true latent series, the blue lines are

posterior means, and the dashed red lines are 90% credible bands.

where the hyperparameters are chosen in a way similar to that described in Section 4. The

prior for ρz is set to be the truncated normal distribution ρz ∼ TN(ρz; 0.5, 10, [−1, 1]) and

the prior for β is uniform on [−5, 5]. The prior for the concentration parameter α is set to

be Gamma(10, 2).

Posterior simulators. In this section, I run the basic sampler for the model with latent

variables (Algorithm 3). For comparison, I also run the Gibbs sampling algorithm assum-

ing that the measurement error is normally distributed. Apparently, the second posterior

simulator is based on the wrong distributional assumption.
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Figure 5 Predictive distribution for xT+1

(a) MR-DPM (b) Gaussian measurement assumption

Notes: This figure presents the estimated 1-step-ahead predictive distributions for xT+1 when xT = 0. The

left panel is based on the MR-DPM estimation, while the right penal is based on the wrong parametric

assumption (Gaussian measurement error). The solid blue lines are estimated 1-step-ahead predictive dis-

tributions and the dashed red lines are the true predictive distributions. Owning to skewed measurement

error, the predictive distribution is skewed as well.

Results. Figure 4 shows the estimated latent variables for the first 70 observations among

the 500. The first figure is based on the MR-DPM estimation, while the second figure is

based on the wrong parametric assumption (Gaussian measurement error). Both estimated

latent variables (blue lines) are similar and the 90% credible bands (dashed red lines) contain

the true latent (green lines) variables during most periods. However, the root mean squared

error of state estimates based on the MR-DPM model is 10% smaller than the one computed

based on the wrong parametric assumption. The difference in the estimated 1-step-ahead

predictive distribution for xT+1 based on the two approaches is more stark. The left panel

in Figure 5 shows the estimated 1-step-ahead predictive distribution when xT = 0 based on

the MR-DPM estimation (solid blue line). It correctly captures the skewness in the true

predictive distribution. On the other hand, the estimated predictive distribution based on

the wrong parametric assumption is far from the truth as it cannot capture skewness in the

data.

7 Empirical application: Estimating an Euler equation

To illustrate the method proposed here, I estimate the risk aversion parameter based on

the Euler equation for consumption. More specifically, I take household-level consumption
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panel data with a large N (≈ 1, 160 households) and small T (= 4 years). Then, I apply the

posterior sampling algorithm for the MR-DPM model and estimate both the risk aversion

parameter and the joint distribution of household consumption.

Model. I estimate the risk aversion parameter using the Euler equation for consumption,

allowing for demographic heterogeneity. Specifically, I consider the following life time opti-

mization problem of a generic household with a CRRA utility function,

max
{Cht+j ,At+j+1}T−tj=0

Et

[
T−t∑
j=0

(Ch
t+j)

1−γ

1− γ
eζX

h
t ρj

]

subject to Aht+j+1 = (1+Rh
t+j)A

h
t+j+Y

h
t+j−Ch

t+j, where Ch
t denotes consumption by household

h at time t, Xh
t is the number of children in household h at time t, Aht is assets held by

household h at time t, Y h
t is labor income earned by household h at time t, and Rh

t is the

rate of interest for household h at time t. Throughout this subsection, I assume that the

rate of interest is common and known to all households and that shocks to labor income are

independent across households. In addition, I assume that the demographic variable Xh
t is

exogenously given to each household and Xh
t+1 is known to the household at time t. In the

within-period utility function, there are three unknown parameters – the discount factor ρ,

the risk aversion parameter γ, and the parameter loaded on demographic variables ζ. Note

that the level of utility achieved by a given amount of consumption depends on the number

of children in the household.

For this specification, the Euler equation for consumption has the form

Et
[
exp

(
−γ∆cht+1 + ζ∆Xh

t+1

)
(1 + rt+1)ρ

]
= 1

where ∆cht+1 denotes consumption growth and ∆Xh
t+1 denotes changes in the number of

children. In the actual estimation, I approximate the Euler equation and obtain the following

expression:

∆cht+1 = ω +
1

γ
log(1 + rt+1) +

γ + 1

2

(
∆cht+1

)2
+
ζ

γ
∆Xh

t+1 + νht+1, (34)

where ω contains the discount rate (ρ) and higher order moments of the consumption growth

and the residual νht+1 contains the expectation error between t and t+1 and an approximation

error. I consider past consumption growth and future changes in the number of children as
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instruments Zt and therefore,

Zh
t = [1,∆cht ,∆X

h
t+1]′ and E[Zh

t ν
h
t+1] = 0. (35)

for all h.

Data. I use the household-level annual food consumption and the demographic character-

istic data taken from the Panel Study of Income Dynamics (PSID). The sample covers the

period 1980 to 1984. Following Alan et al. (2009), I exclude 1) households that did not re-

port five consecutive years of food expenditure; 2) single-headed households and households

whose marital status changed over the sample period; and 3) households that do not have

information on savings. The number of remaining observations after imposing the sample se-

lection is 5,800 (1,160 per year). I also assume that all households face the same real interest

rate series, computed via the US 3-month Treasury bill rates and the consumer price index.

Changes in the number of children are transformed to take one of three values {−1, 0, 1}.
This variable takes a value of −1 if the number of children in the household has decreased,

1 if it has increased, and zero otherwise.

The MR-DPM model. For the MR-DPM model estimation, I collect consumption growth

(four years of growth) and changes in the number of children for each household (three years

of changes) in one vector,

xh = [xc,h, xd,h]
′ = (∆cht+3,∆c

h
t+2,∆c

h
t+1,∆c

h
t ,∆X

h
t+3,∆X

h
t+2,∆X

h
t+1)′.

Note that the data contain both continuous (xc,h, consumption growth) and discrete (xd,h,

changes in the number of children) variables. The joint distribution13 of xh is modelled as

an MR-DPM and

xh ∼ i.i.d.

∫
fN(xc,h; µ,Σ)fM(∆Xh

t+3; p3)fM(∆Xh
t+2; p2)fM(∆Xh

t+1; p1)dG̃ (µ,Σ, p1, p2, p3)

where fN is the density function of the multivariate normal distribution and fM is the prob-

ability mass function of the multinomial distribution with one trial and three support points

(−1, 0, 1). The parameters pi in multinomial distributions are 3 × 1 vectors, each of which

13Strictly speaking, estimation of the joint distribution is conditional on the realized path of the interest
rate rt+1. However, owing to the assumption I made in the beginning of the section (the interest rate is
common and known to all households at time t), the interest rates are treated as exogenous and enter only
in the moment condition.
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sums up to one. Although continuous and discrete variables are independent given partic-

ular component parameters (µ,Σ, p1, p2, p3), their joint distribution can have dependency

through the random mixture distribution G̃(·). The distribution of the random mixing dis-

tributions is assumed to be the tilted Dirichlet process with moment conditions based on the

Euler equation in Equation 34 and instruments presented in Equation 35. There are three

unknown parameters in the moment condition, (ω, γ, ζ) and I collect them in one vector and

write β = (ω, γ, ζ).

In this application, I consider three model specifications based on the set of instruments

used in the estimation. The first specification (“Full”) refers to the estimation based on

instruments Zt = [1,∆ct,∆Xt+1] and estimates (ω, γ, ζ). The second specification (“No

demographic”) refers to the estimation based on instruments without the demographic vari-

ables ∆Xt+1 and estimates only (ω, γ). The last specification (“No moment”) estimates only

the underlying data generating process without moment restrictions and is a standard DPM

model estimation.

Prior Distribution. The initial prior distributions for (ω, γ, ζ) are set to be independent

normal distributions with

ω ∼ N(−2, 1), γ ∼ N(4, 4), and ζ ∼ N(0, 1).

The center of the prior for the risk aversion parameter is based on the posterior estimates14

of Aruoba et al. (2013). The parameter loaded on the demographic variable is centered at

zero, reflecting the prior ignorance of the sign of the effect of the demographic variable. The

base measure in the Dirichlet process is decomposed as follows:

G0(µ,Σ, p1, p2, p3) =d N(µ; m,B)IW (Σ; s, (sS)−1)
3∏
i=1

Dir(pi; [1/3, 1/3, 1/3])

where Dir(p;αp) denotes the Dirichlet distribution with parameter αp. I set s to be 5 and

hyperparameters m,B, and S to have the following prior distributions,

m|B ∼ N(m; a,B/κ), B ∼ IW (B; ν, λ̄×diag(cov(xc,h))), S ∼ W

(
S; q,

r

q
× diag(cov(xc,h))

)
where (a, κ, ν, λ̄, r, q) = (mean(xc,h), 10, 7, 1, 0.2, 5). The concentration parameter α in the

Dirichlet process for G has a Gamma distribution and is independent of all other parameters

14Their posterior estimate is based on aggregate macroeconomic time series data, without using aggregate
consumption series, while I use panel data on household food consumption.
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a priori, α ∼ Ga(10, 2). This prior implies that the expected number of clusters (mixtures)

is about 4.8 under the DPM model without moment constraints.

Tuning of the SMC sampler. The estimation in this section is based on the SMC

sampler. I set tuning parameters of the SMC sampler as follows: the number of stages

Nφ = 100; the number of particles Np = 3000; the number of transitions in the mutation

step M = 2; and the bending coefficient η = 1.5.

Results: Posterior estimates. Panel (a) in Table 3 presents the mean and quantiles (5%

and 95%) of the implied prior distributions as well as the initial prior distribution of ω, γ,

and ζ. Unlike the IV regression example in the previous section, the implied distributions

are affected by the exponential projection procedure. First, all 90% intervals of the implied

prior distributions are shorter than those of the initial prior distributions. Second, for ω and

γ, the center of the implied distribution moved slightly to the right, while the center of the

implied distribution for ζ stayed the same. Lastly, the support of the implied distribution

for γ admits only positive values, even though the initial prior distribution has its support

on both negative and positive regions.

Panel (b) in Table 3 presents the posterior moments for ω, γ, and ζ. All posterior intervals

are shorter than prior intervals. The posterior mean for ζ is positive (0.84) and its 90%

credible set excludes zero, meaning that an increase in the number of children is associated

with an increase in the future consumption of the household. The posterior mean for γ is

around 5 and is larger than the mean of the initial prior distribution but very close to the

mean of the implied prior distribution for γ. However, the posterior interval became shorter

compared to that of the implied prior distribution, and therefore, the data are informative

about the risk aversion parameter. Figure 6 presents scatter plots of draws for ω, γ, ζ from

the implied prior and posterior distributions and shows graphically how the prior belief about

these parameters has been updated through the likelihood (data).

The posterior moments of ω and γ based on the second specification (estimation without

the instrument for the number of children, “no demographic”) are also presented in Table 3.

The posterior mean for the risk aversion parameter is smaller than that based on the “full”

specification but it is contained in the 90% credible set. Other features of the implied prior

and posterior distribution are similar to the results obtained from the “full” specification.

The last row in Table 3 presents the log of the marginal likelihood (ML) from the three

specifications. Compared to the non-restricted specification (“no moment”), the other two

specifications based on the moment restrictions lead to higher marginal likelihood. This
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Table 3 Estimating an Euler Equation

Initial Prior Full specification No demographic No moment
(a) Implied Prior Mean 90% Mean 90% Mean 90% Mean 90%

ω −2 [−3.64,−0.36] −1.2 [−2.44,−0.29] −1.2 [−2.51,−0.20] - -
γ 4 [−2.58, 10.6] 5.4 [2.64, 8.24] 4.9 [1.99, 7.85] - -
ζ 0 [−1.64, 1.64] 0 [−1.38, 1.37] - - - -

Initial Prior Full specification No demographic No moment
(b) Posterior Mean 90% Mean 90% Mean 90% Mean 90%

ω −2 [−3.64,−0.36] −0.58 [−0.73,−0.47] −0.51 [−0.67,−0.40] - -
γ 4 [−2.58, 10.6] 5.6 [4.25, 7.15] 4.5 [3.01, 6.58] - -
ζ 0 [−1.64, 1.64] 0.84 [0.31, 1.44] - - - -

(c) log(ML) Full No demographic No moment

−2845.31 −2832.63 −2876.50

Notes: This table reports moments (means and 90% equal tail credible sets) of the prior, the implied prior,

and the posterior distribution of the parameters in the Euler equation moment conditions based on the SMC

sampler. Three model specifications are considered in this table. The first specification (“Full”) refers to

the estimation based on instruments Zt = [1,∆ct,∆Xt+1] and estimates (ω, γ, ζ). The second specification

(“No demographic”) refers to estimation based on the same instruments without the demographic variable

∆Xt+1 and estimates only (ω, γ). The last specification (“No moment”) estimates only the underlying

data generating process without moment restrictions and is a standard DPM model estimation. For all

specifications the marginal likelihood (ML) is computed. Tuning parameters for the SMC sampler are the

following: the number of stages Nφ = 100; the number of particles Np = 3000; the number of transitions in

the mutation step M = 2; and the bending coefficient η = 1.5.

shows that the model fit improves by introducing the Euler equation moment condition.

More specifically, since the marginal likelihood can be decomposed into the product of one-

step-ahead predictive likelihoods, this finding can be interpreted as the improvement in the

model’s prediction performance achieved by the Euler equation restriction. Even though

the Euler equation restriction improves model fit, not all Euler equation-based moment

restrictions are equally useful. Comparing the marginal likelihood between the “full” and

“no demographic” specifications, it turns out that the moment restriction based on the

number of children instrument reduced log(ML) by about 12.7.

Another important use of the marginal likelihood is for the Bayesian model averaging.

Bayesian model averaging provides a coherent decision-theoretic approach to estimation and

inference about unknown parameters. More important, it takes account of model uncertainty

by taking weighted averages of a quantity of interest. The weights are computed using the

posterior model probability which is proportional to a product of the marginal likelihood and

the model prior probability. For example, under the quadratic loss function, the optimal risk-
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Figure 6 Scatter Plots of draws for (ω, γ, ζ)

(a) Prior (implied) Draws (ω, γ) (b) Posterior Draws (ω, γ)

(c) Prior (implied) Draws (ζ, γ) (d) Posterior Draws (ζ, γ)

Notes: Scatter plot of draws of (ω, γ, ζ) from implied prior (left) and posterior (right) distributions. The

dashed red lines show prior and posterior means. All outputs are based on the SMC sampler and the “full”

specification.

aversion parameter estimate is simply a weighted average of the two posterior means of the

risk-aversion parameter based on M1 and M2,

E[γ|X] = p(MF |X)︸ ︷︷ ︸
=0.000003

×E[γ|MF , X] + p(MN |X)︸ ︷︷ ︸
=0.999997

×E[γ|MN , X] ≈ 4.5.

where MF is the “Full specification” and MN is the “No demographic” model. p(Mi|X)

denotes the model i’s posterior model probability. In this example, the Bayesian model

averaging estimate for the risk aversion parameter is almost identical to the one obtained
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Figure 7 Evolution of power posteriors

(a) Posterior distributions of γ (b) Posterior moments of γ

(c) Posterior moments of ω (d) Posterior moments of ζ

Notes: Evolution of the posterior moments for ω, γ, and ζ over the tempering schedule. All outputs are

based on the SMC sampler and the “full” specification.

based on MN because the marginal likelihood of MN far dominates that of MF .

Figure 7 shows the evolution of the particle approximation to the intermediate poste-

rior distributions from the SMC sampler. Panel (a) presents the evolution of the marginal

posterior distribution of γ over the tempering schedule. When φt = 0, the marginal power

posterior distribution is simply the implied prior distribution of γ and is widely distributed.

Then, as φt increases, the SMC sampler injects the data information gradually and the power

posterior distribution becomes narrower and closer to the posterior distribution. Panel (b)

conveys a similar information in a different view. This panel shows the evolution of posterior

moments (mean and quantiles) over the tempering schedule. At the beginning stages, the
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Figure 8 Draws for the density of consumption growth in 1981

(a) Prior Draws (b) Posterior Draws

Notes: Each draw from the prior/posterior is transformed into a marginal density of yi and it is evaluated

at 100 equally-spaced grid points from [−3, 3]. The left panel shows 50 draws from the prior distribution.

The right panel shows 50 draws from the posterior distribution as well as the point-wise posterior mean of

the density (thick red line). The green dashed line is the kernel density estimate using the same data with

Silverman’s optimal bandwidth. All outputs are based on the SMC sampler and the “full” specification.

marginal posterior distribution of γ becomes wider with higher mean. A few stages later, the

intermediate posterior distributions gradually narrow down until about φt = 0.45. Between

φt = 0.45 and 0.5 there is an abrupt drop in the posterior mean and the standard deviation

of the power posterior. Then, its mean gradually increases until the end of the algorithm.

Similar abrupt drops in dispersion of the intermediate distributions can be seen from the

evolution of the marginal posterior distributions for ω and ζ as well.

After posterior simulation, one can estimate quantities other than moments of the pa-

rameters in the moment condition. One important quantity is the density estimates for

the underlying data generating process, that is, the density of consumption growth. Fig-

ure 8 shows 50 draws of density functions of consumption growth in 1981 from the implied

prior (left panel) and the posterior distribution (right panel). Density draws from the prior

distribution have various shapes while density draws from the posterior distribution are

concentrated around its posterior mean (thick solid line).

8 Concluding Remarks

I have developed practical Bayesian econometric procedures for moment condition models

under a far-reaching class of assumptions about the underlying data distribution. Build-
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ing on the exponentially tilted DPM model of Kitamura and Otsu (2011), I flexibly model

the underlying data distribution using a mixture of parametric distributions with random

mixture weights restricted by exponential tilting projection. I first show that the baseline

i.i.d. framework for moment condition models can naturally be extended to more compli-

cated data structures, including models with serially dependent data and laltent variables,

through judicious choice of the kernel functions. Then, I developed simulation-based pos-

terior sampling algorithms based on Markov chain Monte Carlo (MCMC) and sequential

Monte Carlo (SMC) methods. The SMC algorithm provides a way to computing marginal

likelihood and further gives a coherent approach to Bayesian moment selection and Bayesian

model averaging.

The proposed posterior sampling algorithms are compared on simulated data. All of

the posterior samplers produce almost identical posterior moment estimates. However, the

samplers are differentiated by their efficiency, which requires the econometrician to make

trade-offs between efficiency and practicality. For example, the current version of the SMC

sampler is less efficient than the MCMC-based samplers, but it maintains utility because it

produces the marginal likelihood, which is an important object in posterior analysis. It is not

obvious how to compute this object based on the output from currently-known MCMC-based

samplers.

I also illustrate exactly how one can use the marginal likelihood for posterior analysis

based on both simulated and real data. Using simulated data generated from a dynamic

Euler equation, the computed marginal likelihood correctly distinguishes the correctly spec-

ified moment condition model from models with invalid moment conditions. In application

section, I use household-level annual food consumption and the change in the number of

children taken from the Panel Study of Income Dynamics (PSID) and find that the Euler

equation restrictions are favored by the data.

There are several directions for future research. On the computational side, there is

potential room for improvement as regards the efficiency of the SMC sampler adopted in this

paper by tweaking its tuning parameters, such as the number of stages Nφ or the bending

coefficient λ of the tempering schedule. As Herbst and Schorfheide (2014) point out, these

tuning parameters are the keys in constructing an efficient SMC algorithm. Currently, I am

investigating the possibility of improving the SMC algorithm by explaining the effect of the

tuning parameters on the efficiency of the algorithm in the context of the MR-DPM model.

Second, even though this paper mainly focuses on finite-sample posterior analysis for

moment condition models, it leads to some interesting and important theoretical research

questions such as the asymptotic properties of a Bayes estimator for the finite-dimensional
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parameter β based on the MR-DPM modeling framework. Kitamura and Otsu (2011) pro-

vide conditions for the posterior consistency of β, but their results are limited to the i.i.d.

environment. Hence, extending the results to the more complicated data structures con-

sidered in this paper is an essential task. In addition, it would be interesting to compare

the limiting behavior of the moment selection procedure proposed in this paper to that of

frequentist moment selection procedures found in the literature (e.g., Andrews, 1999).

Third, the MR-DPM model could be extended to analyze misspecified moment condition

models. One plausible approach is to introduce a new hyperparameter τ into the moment

condition modeling framework,

E[g(X, β)] = τ.

The parameter vector τ could then be modeled as an unknown random vector which cap-

tures the degree of misspecification. The posterior distribution of τ can be interpreted as

updated belief about the degree of misspecification in each of the moment conditions. One of

attractive features of this approach is that it can reflect idiosyncratic beliefs about each sep-

arate moment condition. This is an important extension, because researchers might be more

confident about certain theoretically well-founded moment conditions than about others.

Finally, it would be interesting to extend the implementation of the proposed algorithm

to more complex models with latent variables. The illustrated algorithm for the models

with latent variables in this paper works when the latent variables are exogenously given.

Even though this class of models includes various economic applications, there are some

econometric models that require a more complicated relationship between the observables

and exogenous variables. One example of such a model is the Dynamic Stochastic General

Equilibrium (DSGE) model with endogenous state variables. I plan to pursue several of

these lines of research in the near future.
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Appendix

A Details of MCMC Samplers

This section describes details of the MCMC-based samplers (Algorithm 2 and 4). The J-

truncated MR-DPM model contains the following paramters: (θ, β, V, α, ψ). The posterior

distribution has the following form:

p(θ, β, V, α, ψ|X) ∝ p(X|θ, β, V )p(θ|ψ)p(V |α)p(β)I(~0 ∈ H(θ, β))p(ψ)p(α),

where p(X|θ, β, V ) is the likelihood function given by Equation 13 for an i.i.d. model and

Equation 19 for a time-dependent model. I denote X as x1:N or x1:T depending on the

context. Define the likelihood function as

f(µ,Σ, β, V ) =
N∏
i=1

(
J∑
j=1

q̃j(θ, β, V )k(xi; θj)

)
, (A.1)

where the dimension of xi is d× 1: for notational purposes, I will denote by:

fN(·;m,B) is a multivariate normal density with mean m and variance B;

fIW (·; df, S) is an inverse Wishart density with degrees of freedom df and scale S;

fW (·; df, S) is a Wishart density with degrees of freedom df and scale S;

fG(·; a, b) is a Gamma density with parameters a and b.

Note that the pre-tilting mixture probability q is a function of independent Beta draws V ,

q1 = V1; qj = Vj

j−1∏
r=1

(1− Vr), j = 2, ..., J − 1; qJ =
J−1∏
r=1

(1− Vr), Vl ∼ Beta(1, α).

For notational convenience, I will denote q(V ) as q without its argument. The tilted mixture

probability, q̃ = q̃(θ, β, V ), is defined by an implicit function induced by the exponential

tilting projection:

q̃j =
exp (λ(θ, β, V )′g̃(β, θj))∑J

j=1 qj exp (λ(θ, β, V )′g̃(β, θj))
qj,

where

λ(θ, β, V ) = arg min
λ

J∑
j=1

qj exp (λ′g̃(β, θj)) .
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The first part of this section describes the basic sampler (Algorithm 2) and the second

part of this section describes the data-augmented version of the sampler (Algorithm 4).

A.1 Basic sampler

The basic sampler is based on the Metropolis-Hastings-within-Gibbs algorithm iterated over

the parameter block [θ1, θ2, ..., θJ , β, V1, V2, ..., VJ , α, ψ]. The full conditionals below are de-

rived under the multivariate normal kernel with mean µ and variance-covariance matrix Σ

where θj = (µj,Σj) and k(xi; θj) = fN(xi;µj,Σj) in conjunction with conjugate priors for

hyperparameters ψ = (m,B, S) presented in section 4.2. Extension to the other cases can

be done easily by modifying the algorithm described below.

Updating µj for j = 1, ..., J. The full conditional posterior density of µj is proportional

to

f(µ,Σ, β, V )fN(µj;m,B)I(~0 ∈ H(µ,Σ, β)),

and µj is updated via the random-walk Metropolis-Hastings algorithm with the following

proposal distribution at the i-th iteration,

µ∗j = µ
(i−1)
j + e, e ∼ N(0, ciµ,jΣµ,j),

where ciµ,j is a scalar and Σµ,j is a d×d matrix. The current implementation of the algorithm

sets Σµ,j to be the identity matrix. The scale parameter ciµ,j is adaptively chosen using the

following rule (à la Atchadé and Rosenthal, 2005; Griffin, 2014),

log ci+1
µ,j = log ciµ,j +

1

i0.55
(mhµ,j,i − 0.3) (A.2)

where mhµ,j,i is the acceptance probability of the i-th MH step for µj. Note that this proposal

density targets a 30% empirical acceptance rate.

Updating Σj for j = 1, ..., J. The full conditional posterior density of Σj is proportional

to

f(µ,Σ, β, V )fIW (Σj; s, sS)I(~0 ∈ H(µ,Σ, β)).
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To perform the random-walk Metropolis-Hastings update step, I first take the Cholesky

decomposition of Σj:

chol(Σj) =


d11,j 0 ... 0

c21,j d22,j ... 0

... ... ... 0

cp1,j cp2,j ... dpp,j


and then update c and log(d) using proposal distributions at the i-th iteration:

c∗j = c
(i−1)
j + ec, ec ∼ N(0, cic,jΣc,j)

log d∗j = log d
(i−1)
j + ed, ed ∼ N(0, cid,jΣd,j),

where cj = [c21,j, ..., cd1,j, ..., cd(d−1),j]
′ and dj = [d11,j, ..., ddd,j]

′. Σc,j is set to be the 1
2
d(d −

1) × 1
2
d(d − 1) identity matrix and Σd,j is set to be the d × d identity matrix. The scale

parameters cic,j and djc,j are adaptively chosen following the rule in Equation A.2. There

are two parameter transformations (Cholesky and log) involved in this step, and Jacobian

terms are required to compute the acceptance probability. Note that the determinant of the

Jacobian due to the Cholesky decomposition is 2d
∏d

i=1 d
d+1−i
ii,j , and the Jacobian of the log

transformation is
∏d

i=1 dii,j.

Updating β. The full conditional posterior density of β is proportional to

f(µ,Σ, β, V )p(β)I(~0 ∈ H(µ,Σ, β))

and β is updated via the random-walk Metropolis-Hastings algorithm with the following

proposal distribution at the i-th iteration,

β∗ = β(i−1) + e, e ∼ N(0, ciβΣβ),

where ciβ is a scalar and Σβ is a k × k identity matrix. The scale parameter is adaptively

chosen following the rule in Equation A.2.

Updating Vj for j = 1, ..., J. The full conditional posterior density of Vj is proportional

to

f(µ,Σ, β, V )(1− Vj)α−1,

where the last term comes from the fact that Vj ∼ Beta(1, α). Then Vj is updated via

random-walk Metropolis-Hastings algorithm with the following proposal distribution at the
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i-th iteration,

Φ−1(V ∗j ) = Φ−1(V i
j ) + e, e ∼ N(0, ciV,j)

where Φ−1(·) is the inverse normal distribution function. The scale parameter ciV,j is adap-

tively chosen following the rule in Equation A.2. The Jacobian term due to the inverse

normal distribution function is φ(Vj).

Updating α. The full conditional posterior density of α is of the Gamma family:

fG(α; J + aα − 1, bα − log(qJ)), where log(qJ) = log
J−1∏
j=1

(1− Vj);

α can be drawn directly from this Gamma distribution.

Updating m,B, S. The relevant conditional posterior is,

p(m,B, S|others, data) ∝ p(µ,Σ|m,B, S)p(m,B, S)

∝
J∏
j=1

fN(µj;m,B)fN(m; a,B/κ)fIW (B; ν,Λ)

×
J∏
j=1

fIW (Σj; s, sS)fW (S; q, q−1R).

Updating m and B can be done according to the normal-Inverse-Wishart model treating

µ = (µ1, ..., µJ) as the data. Updating S is done by noting that

Wd(Σ
−1
j |s, (sS)−1) =

1

2(sd)/2|(sS)−1|s/2Γd(s/2)
|Σ−1

j |(s−d−1)/2 exp(−1/2tr((sS)Σ−1
j )),

and

Wd(S|q, q−1R) =
1

2(qd)/2|q−1R|q/2Γd(q/2)
|S|(q−d−1)/2 exp(−1/2tr(qR−1S)).

The conditional posterior is a Wishart distribution with trace part element:

tr(S(s
J∑
j=1

Σ−1
j + qR−1))
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and determinant part |S|(sJ+q−d−1)/2. Therefore, S can be drawn directly from the following

Wishart distribution:

p(S|others, data) = fW

S; (sJ + q),

(
s

J∑
j=1

Σ−1
j + qR−1

)−1
 .

A.2 Data-augmented sampler

The objective of this section is to derive the full posterior conditionals once configuration

variables are introduced and describe posterior sampler in detail. The essence of the sampler

is similar to the Blocked-Gibbs sampler for DPM (Ishwaran and James, 2001) but there is

an important change due to the exponential tilting procedure. The prior distribution of L

differs from the usual truncated DPM case because

Li|q̃ ∼
J∑
j=1

q̃jδj(Li), where q̃ = q̃(θ, β, V ),

where q̃ is a projected mixture probability based on V and g̃(β, θ) which can be written

(implicitly) as a function of θ, β, V . The probability mass function of the vector L is propo-

sitional to

p(L|θ, β, V ) ∝
J∏
j=1

q̃
Mj

j

where Mj = #|{i : Li = j}| for j = 1, ..., J .

As in the previous section, the sampler is based on the Metropolis-Hastings-within-Gibbs

algorithm and it iterates over the parameter block [L, θ1, θ2, ..., θJ , β, V1, V2, ..., VJ , α, ψ]. The

full conditionals below are derived under a multivariate normal kernel with mean µj and

variance-covariance Σj where θj = (µj,Σj) and k(xi; θj) = fN(xi;µj,Σj) in conjunction with

conjugate priors for hyperparameters ψ = (m,B, S) presented in section 4.2.

Updating for L. First note that,

p(L|θ, β, V, α, ψ,X) ∝ p(L|θ, β, V, α, ψ)p(X|L, θ, β, V, α, ψ)

∝ p(L|q̃)p(X|θ, L).

Each Li is drawn from a discrete distribution on {1, ..., J} with probabilities

p̃ji ∝ q̃jk(xi; θj), j = 1, ..., J.
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Under the multivariate normal kernel, these probabilities become

p̃ji ∝ q̃jN(xi; µj,Σj), j = 1, ..., J.

Updating for θj for j = 1, ..., J. The conditional posterior distribution of θ can be written

as follows (up to a normalizing constant):

p(θ|L, β, V, α, ψ,X) ∝ p(θ|L, β, V, α, ψ)p(X|θ, L, β, V, α, ψ)

∝ p(L|θ, β, V, α, ψ)p(θ|β, V, α, ψ)p(X|θ, L, β, V, α, ψ),

where p(θ|β, V, α, ψ) = p(θ|ψ) and p(X|θ, L, β, V, α, ψ) = p(X|θ, L). One can set the pro-

posal density as

p(θ|β, V, α, ψ)p(X|θ, L, β, V, α, ψ) ∝ p(θ|ψ)
n∗∏
j=1

∏
{i:Li=L∗j}

k(xi; θL∗j ),

where n∗ is the number of distinct values in the vector L and the L∗j are these values. Owing

to the choice of proposal density, the Metropolis-Hastings weight greatly simplifies as,

mhθ = min(rθ, 1), where rθ =
p(L0|θ∗, β0, V 0)

p(L0|θ0, β0, V 0)
=

J∏
j=1

(
q̃∗j
q̃0
j

)Mj

where θ∗ is a proposed draw and q̃∗ is a tilted mixture probability based on (θ∗, β0, V 0).

One can also update the θj one-by-one in the similar fashion based on the following

conditional posterior density:

p(θj|L, β, V, α, ψ,X, θ−j) ∝ p(θj|θ−j, L, β, V, α, ψ)p(X|θ, L, β, V )

∝ p(L|θ, β, V )p(θj|θ−j, β, V, α, ψ)p(X|θ, L, β, V, α, ψ);

further, p(θj|θ−j, β, V, α, ψ) = p(θj|ψ).

With a multivariate normal kernel with mean µ and variance-covariance matrix Σ in

conjunction with conjugate priors for ψ = (m,B, s), the proposal density becomes,

p(θj|ψ)
∏

{i:Li=L∗j}

k(yi; θL∗j ) = fN(µj;m,B)fIW (Σj; s, sS)
∏

{i:Li=L∗j}

fN(xi;µL∗j ,ΣL∗j
)

where its draw θj = (µj,Σj) can be directly generated from the multivariate normal distri-

bution for µj and the Wishart distribution for Σj.
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Updating β. The full conditional posterior density of β is

p(β|L, θ, V, α, ψ,X) ∝ p(β|L, θ, V, α, ψ)p(X|β, L, θ, V, α, ψ)

∝ p(L|θ, β, V, α, ψ)p(β) p(X|β, L, θ, V, α, ψ)︸ ︷︷ ︸
not relevant for updating β

∝ p(L|θ, β, V )p(β)

and β is updated using the random-walk Metropolis-Hastings algorithm with the following

proposal distribution at the i-th iteration:

β∗ = β(i−1) + e, e ∼ N(0, ciβΣβ),

where ciβ is a scalar and Σβ is the k × k identity matrix. The scale parameter is adaptively

chosen following the rule in Equation A.2. Note that the Metropolis-Hastings weight reduces

to the following:

mhβ = min(rβ, 1), where rβ =
p(L0|θ0, β∗, V 0)p(β∗)

p(L0|θ0, β0, V 0)p(β0)
=
p(β∗)

p(β0)
×

J∏
j=1

(
q̃∗j
q̃0
j

)Mj

, (A.3)

where β∗ is the proposed β and q̃∗ is a tilted mixture probability based on (θ0, β∗, V 0).

Updating for Vj for j = 1, ..., J. The full conditional posterior density of Vj can be

written as

p(Vj|L, θ, β, α, ψ, V−j, X) ∝ p(Vj|θ, L, β, α, ψ, V−j) p(X|L, θ, β, α, ψ, V )︸ ︷︷ ︸
not relevant for Vj updating

∝ p(L|θ, β, V, α, ψ)︸ ︷︷ ︸
=p(L|q̃)

(1− Vj)α−1

where the last term comes from the fact that Vj ∼ Beta(1, α). As for the basic sampler,

Vj is updated via a random-walk Metropolis-Hastings algorithm with the following proposal

distribution at the i-th iteration,

Φ−1(V ∗j ) = Φ−1(V i
j ) + e, e ∼ N(0, ciV,j)



A-8

where Φ−1(·) is the inverse normal distribution function. The scale parameter ciV,j is adap-

tively chosen following the rule in Equation A.2. The Jacobian term due to the inverse

normal distribution function is φ(Vj). Finally, the MH weight is defined in a similar fashion

as in Equation A.3.

α and ψ. Updating strategy α and ψ is the same as for the basic sampler.

B Convergence of the Basic Sampler

In this section, I show the convergence of the basic sampler (Algorithm 2). The proof is

done by verifying the conditions in Theorem 2 of Roberts and Smith (1994) and Tierney

(1994). These are verified in the following two Lemmas.15 For expositional simplicity, I

assume that hyperparameters α and ψ are fixed, that α ≥ 1, and that the data is univariate

with heterogenous location parameters µj. The likelihood function for the MR-DPM model

is

p(X|µ, σ2, β, V ) =
N∏
i=1

(
J∑
j=1

q̃j(µ, σ
2, β, V )fN(xi;µj, σ

2)

)
and the prior distribution is proportional to

p(µ, σ2, β, V ) ∝

(
J∏
j=1

fN(µj;m,B)

)
fIG(σ2; s, sS)fN(β;mβ, Vβ)fB(Vj; 1, α)I(~0 ∈ H(µ, σ2, β)),

where fIG is an inverse Gamma density function and fB is a Beta density function. The

parameter space is restricted due to the convex hull condition, and I denote it as

ϕ ∈ D = S(µ,σ2,β) × (0, 1)J

where ϕ = (µ, σ2, β, V ).

Lemma 1. Under the stated assumptions, the posterior density of ϕ = (µ, σ2, β, V ) defined

on the product set D = S(µ,σ2,β) × (0, 1)J satisfies the following properties:

1. p(ϕ|X) is lower semi-continuous at 0. That is, if p(ϕ′|X) > 0, there exists an open

neighborhood ϕ ∈ Nϕ′ and ε > 0 such that, for all ϕ ∈ Nϕ′, p(ϕ|X) ≥ ε > 0.

15A similar strategy for showing the convergence of the MH-within-Gibbs algorithm is employed by Chib
and Greenberg (1994).
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2.
∫
p(ϕ|X)dτ is locally bounded for each τ ∈ {µ1, µ2, ..., µJ , σ

2, β, V }.

3. The support D of p(ϕ|X) is arc-connected.

Proof of Lemma 1.

1. First note that q̃j(µ, σ
2, β, V ) > 0 for some j and (µ, σ2, β, V ) ∈ S(µ,σ2,β) × (0, 1)J .

Since fN(xi|µj, σ2) is a continuous function on an open set Sµ,σ2,β for all j, for any

(µ′, σ2′ , β′, V ′) with
J∑
j=1

q̃j(µ
′, σ2′β′, V ′)fN(xi|µ′j, σ2′) > 0.

there exists an open neighborhood ofN(µ′,σ2′ ,β′,V ′) and ε > 0 such that, for all (µ, σ2, β, V ) ∈
N(µ′,σ2′ ,β′,V ′),

J∑
j=1

q̃j(µ, σ
2, β, V )fN(xi|µj, σ2) ≥ ε > 0.

This implies that
∑J

j=1 q̃j(µ, σ
2, β, V )fN(xi|µj, σ2) is lower semi-continuous at 0. More-

over, the prior distributions are defined on the product of open sets and continuous

densities are imposed on each of these sets. Since the product of functions that are

lower semi-continuous at 0 is also lower semi-continuous at 0, p(ϕ|X) is lower semi-

continuous at 0.

2. The joint posterior distribution can be written as

p(µ, σ2, β, V |X) =
1

Z

N∏
i=1

 J∑
j=1

q̃j(µ, σ
2, β, V )fN (xi;µj , σ

2)


×

 J∏
j=1

fN (µj ;m,B)

 fIG(σ2; s, sS)p(β)fB(Vj ; 1, α)I(~0 ∈ H(µ, σ2, β))

︸ ︷︷ ︸
=prior(µ,σ2,β,V )

,
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where Z is the normalizing constant and Z <∞. First note that

p(µ, σ2, β, V |X) =
1

Z
× prior(µ, σ2, β, V )×

N∏
i=1

 J∑
j=1

q̃j(µ, σ
2, β, V )fN (xi;µj , σ

2)


≤ 1

Z
× prior(µ, σ2, β, V )×

N∏
i=1

 J∑
j=1

fN (xi;µj , σ
2)

 , ∵ q̃j < 1

≤ 1

Z
× prior(µ, σ2, β, V )×

N∏
i=1

 J∑
j=1

1√
2πσ2

 , ∵ exp

(
− (xi − µj)2

2σ2

)
< 1

=
1

Z
× prior(µ, σ2, β, V )× JN√

2π
× (σ−2)N/2︸ ︷︷ ︸

=M(µ,σ2,β,V )

,

The quantity obtained by integrating out any of (µ1, ..., µJ , β, V1, ..., VJ) fromM(µ, σ2, β, V )
is locally bounded because

pior(µ, σ2, β, V ) ≤
(

1√
2πB

)J (
1√

2πVβ

)
×

J∏
j=1

(1− Vj)α−1

B(α, β)
× fG(σ2; s, sS),

≤
(

1√
2πB

)J (
1√

2πVβ

)
× 1

B(1, α)J
× fG(σ2; s, sS) ∵ α ≥ 1

where B(·, ·) is a Beta function. Moreover, for any even number N ,

∫
M(µ, σ2, β, V )dσ2 ≤

(
1√

2πB

)J (
1√

2πVβ

)
× 1

B(1, α)J

∫
(σ−2)N/2fIG(σ2; s, sS)dσ2

=

(
1√

2πB

)J (
1√

2πVβ

)
× 1

B(1, α)J

∫
(σ−2)N/2fG(σ−2; s, (sS)−1)dσ−2

≤
(

1√
2πB

)J (
1√

2πVβ

)
× 1

B(1, α)J
(sS)

−s
Γ(s+N/2)

Γ(s)(sS)−(s+N/2)

<∞,

where Γ(·) is a Gamma function.

3. By Assumption 3, S(µ,σ2,β) is arc-connected. Since a set (0, 1)J is arc-connected, D is

also arc-connected.

Lemma 2. The proposal distributions of the Metropolis-Hastings step in the Algorithm 2

for (µ1, ..., µJ , σ
2, β, V1, ..., VJ) satisfy the following. Let τ ∈ {µ1, ..., µJ , σ

2, β, V1, ..., VJ}. For

every point τ ∈ Supp(τ) and every A ⊂ Supp(τ) with the property
∫
A
p(τ |ϕ−τ , X)dτ > 0, it
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is the case that ∫
A

q(τ ∗|τ 0, ϕ0
−τ )dτ

∗ > 0.

Proof of Lemma 2. This holds as long as the random-walk MH proposal density is used,

which is true for Algorithm 2.

C Integrated Moment Conditions and Examples

This section discusses how to compute the moment conditions written in the double integral

of Equation 3, which I call an integrated moment condition:

g̃(β, θ) =

∫
g(x, β)k(x; θ)dx.

To solve the projection problem in Equation 3, one needs to be able to evaluate this function

at any point in the support of (β, θ). If the expression does not have a closed form, it can be

computed by using numerical methods (such as Gaussain quadrature). Note that a closed

form is possible with a multivariate normal kernel in various cases. These include linear

instrumental variable (IV) regression, quantile regression, instrumental quantile regression,

and the Euler equation for consumption presented in the main text. Here I illustrate how

to obtain a closed form of the integrated moment function. Through out the section, I use

a (multivariate) normal kernel density,

k(x; θj) = fN(x;µj,Σj)

where θj = (µj,Σj). The presented examples cover 1) Location model; 2) Linear regression;

3) Linear IV regression; 4) Quantile regression; 5) Quantile IV regression; 6) Euler equation

model.

C.1 Location model

Let the moment condition be

E[x− β] = 0.

Then the integrated moment function is

g̃(θ, β) =

∫
(x− β) fN(x;µ,Σ) dx = µ− β.
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C.2 Linear regression

Consider the following model,

yi = x′iβ + ui, where E[ui|xi] = 0.

Let the moment conditions be

E[y − α− x′β] = 0,

E[x(y − α− x′β)] = 0.

Then the first integrated moment function is

µy − α− µ′xβ = 0,

and the second integrated moment function is

Σxy + µxµy − αµx − (Σxx + µxµ
′
x)β = 0.

C.3 IV regression

Consider the following model,

yi = x′iβ + ui, where E[ui|zi] = 0,

and E[xiz
′
i] = 0. Then the moment conditions are

E[y − α− x′β] = 0,

E[z(y − α− x′β)] = 0.

The kernel function for the MR-DPM model is

k([yi, x
′
i, z
′
i]
′, θ) = fN([yi, x

′
i, z
′
i]
′;µ,Σ).

Hence the first integrated moment function is

µy − α− µ′xβ = 0,



A-13

and the second integrated moment function is

Σzy + µzµy − αµz − (Σzx + µzµ
′
x)β = 0.

C.4 Euler equation model

In section 6.2, I consider the following model,16

∆ct+1 = ω +
1

γ
log(1 + rt+1) +

γ + 1

2
(∆ct+1)2 + νt+1

where

E[νt+1] = 0, E[∆ctνt+1] = 0, and E[rtνt+1] = 0.

The kernel function for the MR-DPM model is then

k([∆ct+1, rt+1,∆ct, rt]
′, µ,Σ) = fN([∆ct+1, rt+1,∆ct, rt]

′, µ,Σ)

with

µ =


µc

µr

µc

µr

 and Σ =

(
V Γ

Γ V

)
,

where V and Γ are 2× 2 matrices.

First moment condition. E[νt+1] = 0 leads to the following integrated moment function:

µc − ω −
1

γ
µr −

γ + 1

2
(Vcc + µ2

c) = 0.

Second moment condition. E[∆ctνt+1] = 0 leads to the second integrated moment

function:

(Γcc + µ2
c)− ωµc −

1

γ
(Γrc + µrµc)−

γ + 1

2
E[∆c2

t+1∆ct] = 0

where

E[∆c2
t+1∆ct] = J0µc + J1(Vcc + µ2

c) + J2(µ3
c + 3µcV

2
cc),

16The set of integrated moment conditions used in section 7 is almost identical to the one derived in this
example.



A-14

and

J0 = Vcc − ΓccV
−1
cc Γcc + µ2

c − 2µ2
cΓccV

−1
cc + (ΓccV

−1
cc )2µ2

c

J1 = 2µcΓccV
−1
cc − 2(ΓccV

−1
cc )2µc

J2 = (ΓccV
−1
cc )2.

Third moment condition. E[rtνt+1] = 0 leads to the third integrated moment condition:

(Γcr + µcµr)− ωµr −
1

γ
(Γrr + µ2

r)−
γ + 1

2
E[(∆ct+1)2rt] = 0

where

E[∆c2
t+1rt] = K0µr +K1(Vrr + µ2

r) +K2(µ3
r + 3µrV

2
rr),

and

K0 = Vcc − ΓcrV
−1
rr Γcr + µ2

c − 2µrµcΓcrV
−1
rr + (ΓcrV

−1
rr )2µ2

r

K1 = 2µcΓcrV
−1
rr − 2(ΓcrV

−1
rr )2µr

K2 = (ΓcrV
−1
rr )2.

C.5 Quantile regression

Consider a τ -th quantile regression with a single regressor

P (y ≤ α(τ) + β(τ)x|x) = τ,

which implies unconditional moment conditions

E [1{y ≤ α(τ) + β(τ)x} − τ ] = 0

E [x (1{y ≤ α(τ) + β(τ)x} − τ)] = 0.

The kernel function for the MR-DPM model is

k([yi, x
′
i]
′, θ) = fN([yi, x

′
i]
′;µ,Σ).
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First moment condition. First, I examine the left hand side of the first moment condi-

tion:

E[1{y ≤ α + βx}] = E

[
Φ

(
α + βx− µy|x

σy|x

)]
= E

[
Φ

(
α + βx−

(
µy + ΣyxΣ

−1
x (x− µx)

)
σy|x

)]

= E

[
Φ

((
α− µy + ΣyxΣ

−1
x µx

σy|x

)
+

(
β − ΣyxΣ

−1
x

σy|x

)
x

)]
=

∫
Φ(a+ bx)

1

σx
φ

(
x− µx
σx

)
dx

=

∫
Φ(a+ bµx + bσxz)φ(z)dz

= Φ

(
a+ bµx√
1 + (bσx)2

)

Second moment condition. The left hand side of the second moment condition is

E[x1{y ≤ α + βx}] = E[xΦ(a+ bx)], x ∼ N (µx, σ
2
x)

and a, b are defined as in the previous derivation. The closed form of the above equation can

be obtained in the same way as in the quantile IV regression case in the next subsection.

Special case: Estimating quantiles. The above specification encompasses quantile es-

timation. Set β = 0. Then the moment condition is

P (Y ≤ α) = τ

where α is a quantile at τ . The integrated moment condition is then

E

[
Φ

(
α− µ
σ2

)
− τ
]

= 0.

C.6 Quantile IV regression

Following Chernozhukov and Hansen (2006) and Lancaster and Jun (2010), I consider the

following model

y = d′α(u) + x′β(u), u|x, z ∼ Unif(0, 1)
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in which d is dependent on u, d′α(τ) + x′β(τ) is strictly increasing in τ , and z is a set of

instrumental variables that are independent of u but dependent on d. Then d′α(τ) + x′β(τ)

is the τ th quantile of y conditional on x, z. That is,

P (y ≤ d′α(τ) + x′β(τ)|x, z) = τ

I consider following unconditional quantile functions

E
[
x
(
1{y ≤ d′α(τ) + x′β(τ)} − τ

)]
= 0

E
[
z
(
1{y ≤ d′α(τ) + x′β(τ)} − τ

)]
= 0.

In addition, following Lancaster and Jun (2010), I consider the case where xi = 1. The

kernel function for the MR-DPM model is

k([yi, di, z
′
i]
′, θ) = fN([yi, d

′
i, z
′
i]
′;µ,Σ).

First moment condition. Using the conditional argument,

E[CDFy|d(d
′α(τ) + β(τ)] = τ,

This becomes∫
Φ

(
d′α + β − µy|d

σy|d

)
f(d) = τ ⇐⇒

∫
Φ(ad+ b)

1

σd
φ

(
d− µd
σd

)
dd = τ

where

a =
α− σyd

σ2
d

σy|d
and b =

β −
(
µy − σyd

σ2
d
µd

)
σy|d

.

because µy|d = µy +
σyd
σ2
d

(d− µd). The reparametrization c = d−µd
σd

gives d = µd + σdc and

∫
Φ(ãc+ b̃)

1

σd
φ(c)

dd

dc
dc = τ ⇐⇒

∫
Φ(ãc+ b̃)φ(c)dc = τ

where ã = aσd and b̃ = aµd + b. Hence, we have

Φ

(
b̃√

1 + ã2

)
= τ,
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Second moment condition. Using the conditional argument

E
[
z × E[1{y ≤ d′α + β}|z]

]
= τE[z], (A.4)

I first examine the inside expectation on the left hand side:

E[1{y ≤ d′α + β}|z] = E
[
CDFy|d,z(d

′α + β)|z
]

= E

[
Φ

(
d′α + β − µy|d,z

σy|d,z

) ∣∣∣z]
= E

[
Φ

(
αd+ β − µy − Σ̃z(z − µz) + Σ̃dµd − Σ̃dd

σy|d,z

)∣∣∣z]

= E

Φ


(
β − µy − Σ̃z(z − µz) + Σ̃dµd

σy|d,z

)
︸ ︷︷ ︸

=b

+

(
α− Σ̃d

σy|d,z

)
︸ ︷︷ ︸

=a

d

∣∣∣z


=

∫ ∞
−∞

Φ(b+ ad)
1

σd|z
φ

(
d− µd|z
σd|z

)
dd

=

∫ ∞
−∞

Φ(b+ ad)
1

σd|z
φ(c)

dd

dc
dd where d=̧

d− µd|z
σd|z

=

∫ ∞
−∞

Φ(b+ a(µd|z + σd|zc))φ(c)dc

=

∫ ∞
−∞

Φ(b+ aµd|z + aσd|zc)φ(c)dc

= Φ

(
b+ aµd|z√
1 + (aσd|z)2

)

= Φ

(
b+ a (µd + ΣdzΣ

−1
z (z − µz))√

1 + (aσd|z)2

)

= Φ

(
b+ aµd − aΣdzΣ

−1
z µz + aΣdzΣ

−1
z z√

1 + (aσd|z)2

)
= Φ (γ0 + γ1z)
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where I write

µy|d,z = µy + Σy,(d,z)Σ
−1
(d,z)

(
d− µd
z − µz

)

= µy +
(

Σ̃d, Σ̃z

)(d− µd
z − µz

)
= µy + Σ̃d(d− µd) + Σ̃z(z − µz),

Next, the whole term on the left hand side of Equation A.4 is

E
[
z × E[1{y ≤ d′α + β}|z]

]
= E

[
z × Φ (γ0 + γ1z)

]
=

∫
zΦ(γ0 + γ1z)

1

σz
φ

(
z − µz
σz

)
dz

=

∫ (
w − γ0

γ1

)
Φ(w)

1

σz
φ

(
w − γ0 − γ1µz

γ1σz

)
dz

dw
dw

=

∫ (
w − γ0

γ1

)
Φ(w)

1

γ1σz
φ

(
w − (γ0 + γ1µz)

γ1σz

)
dw

= k1 + k2,

where

k1 =
1

γ1

∫
wΦ(w)

1

γ1σz
φ

(
w − (γ0 + γ1µz)

γ1σz

)
dw

=
1

γ1

E
[
wΦ(w)

]
where w ∼ N(γ0 + γ1µz, γ1σz),

and

k2 = −γ0

γ1

∫
Φ(w)

1

γ1σz
φ

(
w − (γ0 + γ1µz)

γ1σz

)
dw

= −γ0

γ1

E
[
Φ(w)

]
, where w ∼ N(γ0 + γ1µz, γ1σz).

Note that k1 and k2 can be computed using the results in section C.7.

C.7 Useful Results

Let Φ(·) be the cumulative function of the standard normal distribution and φ(·) be the

probability density function of the standard normal distribution.
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Result 1. ∫ ∞
−∞

Φ(a+ by)φ(y)dy = Φ

(
a√

1 + b2

)
.

Result 2. ∫ ∞
−∞

φ(y)φ

(
y − µ
σ

)
dy =

1√
2π

1√
2π

√
2πσ2

1 + σ2
exp

(
µ2

(1+σ2)2
− µ2

(1+σ2)

2
(

σ2

1+σ2

) )
.

Result 3. Let w ∼ N(µ, σ2). Then

E[wΦ(w)] = − 1

σ

a

b2
+

1

σb2

∫ ∞
−∞

φ(y)φ(a+ by)dy︸ ︷︷ ︸
use Results 2

+
a

σb2

∫ ∞
−∞

φ(y)Φ(a+ by)dy︸ ︷︷ ︸
use Result 1

,

where

a = −µ
σ
, and b =

1

σ
.

Result 4. The following result is taken from Patel and Read (1996),∫
Xφ(a+ bX)dX = − 1

b2
φ(a+ bX)− a

b2
Φ(a+ bX).


