Supply and Demand Responses to a Tax on Size of Rental Housing: Theory and Evidence from Iran

David Albouy* Carlos Hurtado† Kaveh Nafari‡
University of Illinois University of Richmond Deloitte

April 13, 2019

Abstract
We use a unique administrative dataset on housing transactions in Tehran to provide evidence on the incidence and distortionary effects of taxes on the size of rental properties. We exploit a feature of the tax code in the Tehran rental market where the tax-exemption threshold is based on the property’s size in square meters. Substantial bunching occurs below the tax cutoff, suggesting strong behavioral responses to the tax kink. We also find higher after-tax rents above the kink. Based on these variations, we develop a structural framework with property taxes and filing costs to estimate the responses of supply and demand for rental housing size. We also examine the question of the economic incidence of the property tax. We estimate a mid-run (10-year) price response of rental housing size supply of 1.36, and a price response of rental housing size demand of -0.17. We find high, but incomplete pass-through of the rental tax, implying that most filing costs are borne by renters.

Keywords: Behavioral Responses, Tax Kinks, Structural Estimation
JEL Classification Numbers: R13, R31, R32, H22, H30, L23

*Department of Economics, University of Illinois at Urbana-Champaign, 214 David Kinley Hall, 1407 West Gregory Drive, Urbana, IL 61801, USA. Email: albouy@illinois.edu.
†Economics Department, Robins School of Business, 102 UR Drive, University of Richmond, VA 23173, USA. Email: churtado@richmond.edu.
‡Corresponding author. This paper previously circulated as “Behavioral Responses to the Tax Kinks in the Rental Housing Market: Evidence from Iran”. Email: knafari@deloitte.com
1 Introduction

A large body of literature in public finance estimates structural parameters to measure behavioral responses to taxation. Most of these studies consider supply or demand in isolation, assuming the other side of the market is perfectly elastic. This is more often the case for the analysis of the housing market where the relationship between property taxes and housing supply is generally neglected (Lutz, 2015). Such an assumption may result in biased estimation of structural parameters because supply and demand responses to taxes are associated with their share of the tax burden, not the full burden. This paper develops a structural model to estimate the responses of rental housing size supply and demand simultaneously. Based on these estimates, we answer the classic question: “Who bears the property tax?” A central challenge in estimating separate structural parameters of supply and demand is the requirement of observed tax-induced variations in both quantity and price. In the case of the latter, it involves the identification of how changes in taxes are passed through to producers and consumers.

This study examines size responses to taxation on rental properties using a distinctive feature of the tax code in Tehran, where taxes on owners depend on the size of their property. Specifically, the owner’s tax liability becomes positive when the total cumulative size of her rental properties exceeds 150 m^2 ($\approx 1600 \ ft^2$). This policy started in 2001. Moreover, in Tehran, paying rental property taxes requires a specific filing process, different from filing income taxes. Owners with zero rental income tax liability are exempted from filing. Therefore, when the total size of owners’ rental properties surpasses 150 m^2, the costs of filing taxes become positive for them. In this analysis, we use a unique administrative dataset that includes over 600,000 rental and purchasing transactions in Tehran from 2012 to 2014. Tehran’s rental market provides an advantageous setting because the quasi-experimental variation in total rental prices around the cutoff allows for quantifying the extent to which the tax burden passes to renters.

To model demand and supply responses to a discrete change in the marginal tax rates (a kink) on rental properties of a specific size, which we refer to as the “size kink,” we develop a theoretical framework in which taxes are on owners and depend on the size. This framework allows for passing forward some of the tax burden to renters via higher rents. Moreover, it allows for tax-induced changes in the measured area of properties around the size kink. As for the supply responses, we address the hassle costs of complying with taxes

1Wage earners are exempt from filing income taxes.
2This contrasts with tax systems in majority of developed countries where taxpayers file taxes even if they do not owe any taxes.
by assuming that this size kink adds extra costs for filing taxes in addition to owners’ tax liability. Therefore, the total tax liability is made up of two elements: the fixed costs of filing taxes, and the marginal taxes on rental income. On the demand side, renters’ responses to taxation are identified by assuming that renters only observe policy-induced changes in the rental prices above the cutoff. This model predicts that the size kink creates an incentive for both owners and renters to move from above the size kink, and locate at the tax-favored side or, in other words, to exhibit “bunching behavior.” We show that the amount of bunching, the filing costs, and the policy-induced changes in the total rent can characterize responses of rental housing size supply and demand.

Rental housing is a bundle of services produced with land and composites of materials. Renters value rental units according to their floor area and other characteristics. The total rent paid by renters is the sum of the price of each attribute times its quantity. In our administrative database, we observe total rent and property size in square meters. Unfortunately, the only other attribute that we have is the time of construction of the property. Because of this data limitation, we cannot decompose total rental prices into the price of size and the prices of other characteristics completely. Even if the quantity of other housing components remains unchanged around the size kink, it may be possible that prices of other attributes change around the size-threshold. Because of this data limitation, our structural estimates measure the responses of rental housing size only; but our structural estimates reflect both supply and demand. Our estimates are not comparable to price elasticities of housing supply and demand from previous literature. However, our estimates capture the behavioral responses on the size dimension around the size kink.

For the empirical analysis, we apply the structural model to Tehran rental market to identify size responses and pass-through rates. First, we estimate the discrete increase in the rent-value right above the size kink and the change in rents further away from the kink to identify filing costs and rent responses. The quasi-experimental design allows for the use of average rent of properties below 150 m2 as a valid counterfactual for apartments above 150 m2. The results present significantly higher rent (approximately 3.9 percent) right above the size kink in response to the filing costs. The results also show that 1 square meter increase in rent above the cutoff is associated with 3,700 to 4,300 Rials (roughly $1 in 2015 dollars) increase in rent. Second, we estimate the excess bunching, defined as the difference between the empirical and counterfactual densities in the small interval below the size kink as in Saez (2010) and Kleven and Waseem (2013). The results indicate large bunching below the cutoff, suggesting strong behavioral responses to the size kink. We find evidence on heterogeneity by age and neighborhoods, with stronger responses for “old apartments” and low rent neighborhoods.
Applying the measures of excess bunching, filing costs, and rent responses to the model for the entire sample, we find significant responses of rental housing size supply, ranging from 0.243 to 0.616, and significant but small in magnitudes responses of rental housing size demand, ranging from -0.015 to -0.025. To alleviate the effects of market frictions, we use the measure of bunching for the subsample of newly built properties for which owners can consider tax policy before choosing the size of their properties. While the estimated responses of rental housing size supply from the representative of the “frictionless” market are roughly 2 to 6 times bigger, responses of rental housing size demand are at least 10 times larger, ranging from 0.172 to 0.365. Estimation of the pass-through rate for the frictionless market shows that most of the economic incidence of taxation is passed on to renters in the form of higher rents.3 Overall, the results provide clear evidence of bunching, large frictions, and higher after-tax rent, implying that size-based taxation on rental properties is highly regressive and distortionary.

This paper builds on and contributes to a growing body of literature on the distortionary effects of discrete changes in the marginal and proportional taxes. The main contribution of this paper is to develop a framework that incorporates pass-through of taxes as a cost of filing them to estimate responses of rental housing size supply and demand.

Recent literature documents behavioral response to taxes and transfers using bunching techniques (Saez, 2010; Chetty et al., 2011; Kleven and Waseem, 2013). A small body of work has also studied sources of frictions and has pursued different approaches to account for them (Chetty, 2009; Chetty et al., 2011; Chetty and Saez, 2013; Kleven and Waseem, 2013; Gelber et al., 2013). This literature typically concentrates on one side of the market, assuming the other side is perfectly elastic, which implies complete pass-through of taxes.4 This study adds to the existing literature by considering both supply and demand responses simultaneously.5 This paper also provides quasi-experimental evidence, plausibly hinging on fewer modeling assumptions than elsewhere in the literature, regarding the effects of frictions on the housing market’s responses to property taxes.

Another strand of literature to which this paper relates uses transaction taxes to analyze behavioral responses to tax policies in the housing market (Kopczuk and Munroe, 2015; Slemrod et al., 2017; Best and Kleven, 2017). This paper departs from this literature by focusing on property taxes, which compared to transaction taxes, represent a long-term

3In this study tax-incidence is defined as the ratio between the changes in consumer surplus and the changes in producer surplus due to a tax.

4Saez et al. (2012) mentions that studies on payroll taxes and income-tax reform typically assume the full tax burden is borne by employees.

5Several studies have recently examined supply of housing and urban dynamics. See Green et al. (2005), Glaeser et al. (2005), Astyk et al. (2010), and Saiz (2010).
tax commitment, and thus, arguably reveal long-run behavioral responses. Property taxes are also one of the primary sources of governments’ tax revenue. In addition, this study analyzes the effects of taxes in the rental market, a subject targeted by a variety of urban policies, but one that remains understudied by the literature. The findings of substantial evidence of pass-through of taxes to renters imply regressive distributional burden. This is different from the incidence of transaction taxes (Besley et al., 2014) where both buyers and sellers are arguably from the same quantile of the income distribution. Lastly, in contrast to the existing literature that focuses on developed countries (e.g., the United States and the United Kingdom), this paper provides evidence of behavioral responses to taxes in the housing market for an emerging country where raising tax revenue is more of an issue for policymakers.

A few other studies have documented estimates of the costs of filing taxes. Benzarti (2015) suggests that the total burden of filing income taxes in the United States amounts to 1.25 percent of GDP. Kleven and Kopczuk (2011) model administrative hassle as a policymakers’ instrument to screen out individuals with higher opportunity costs. Ramnath and Tong (2017) shows that monetary incentives to file tax returns significantly increase individual’s participation in the tax system and increase their welfare in the long run. However, to our knowledge, no literature considers the pass-through burden of filing taxes - in particular, for property taxes. Our results suggest that most of the burden of complying with rental property taxes is borne by renters.

This paper is also related to a critical literature on the incidence of property taxes (Simon, 1943; Mieszkowski, 1972; Hamilton, 1976; Fullerton and Metcalf, 2002). Although, a large body of theoretical work attempts to find ways to choose between “old,” “benefit,” and “new” views, only a small body of empirical work addresses property taxes’ effects on rental housing (Carroll and Yinger, 1994; Muthitacharoen and Zodrow, 2012). To the best of our knowledge, this paper is the first to combine micro administrative data on rental properties with policy-induced quasi-experimental variation to analyze the incidence of property taxes. We find renters bear most of the policy’s costs. This result is of relevance because renters usually are at the left side of the income distribution.

The paper proceeds as follows. Section 2 describes the data sources and overviews the policy. Section 3 develops the theoretical framework. Section 4 describes the empirical

6In 2012, in the United States, transfer taxes compromise less than 2 percent of the total state tax revenues, while property taxes generated over $480 billion dollars (Census Bureau, Quarterly Sum of State and Local Tax Revenue).

8Slemrod (1989) and Benzarti (2015)

9Median household income in 2014 (in the United States) was $53,482.
2 Data and Background

Taxes on rental properties are common around the world; however, tax policy on rental properties in Tehran is unusual because the tax depends on both the size of properties and their rental income.10 This policy was implemented in 2001. Figure 1 presents the average annual tax paid with respect to size. Taxes are applied to properties located at the right side of the vertical dashed line; the taxes depend on the extra rental income, defined as the annual rental income gained from extra square meters above 150 m^2. Based on regulations enforced by the Iranian National Tax Administration (INTA), the policy is progressive, ranging from a low of 15 percent for an extra rental income less than or equal to 30 million Rials (approximately $857 in 2015 USD) to a high of 35 percent for part of an extra income that is over 1,000 million Rials (approximately $28,571 in 2015 USD). Paying rental property taxes requires a specific filling process, different from filing income taxes and owners with zero rental income tax liability are exempted from filing. Table 1 shows the percentage of tax that owners pay on their annual rental income for each tax bracket in which they qualify.

The primary data used in this paper are obtained from the Rahbar Informatics Services Company (RISC). Since 2009, the law requires all purchasing and rental transactions to be registered online.11 Nearly all rental properties in Tehran are owned individually. Also, an owner typically leases her rental property through real estate agencies. If the owner and renter reach an agreement, the real estate agent will fill out specific forms online, including information such as rent or price, full address of the unit, property size, age, ZIP code, and date of the contract.12 For robustness checks, we also used records on historical real estate listings in Tehran that come from the website of Iranfile, that is the largest real estate portal in Iran.13 These records contain rich details of each listing, including the number of stories in the building, number of units in each floor, facing direction of the unit, kitchen materials (e.g., steel, wood, MDF, etc.), flooring (e.g. parquet, stone, ceramic, carpet, etc.), building facade materials, years since construction, floor number, number of bedrooms.14

Since owners of two or more rental properties respond to the size kink at 150 m^2 based on the total combined size of all their properties, one potential concern is that the observed

10Law of direct taxes 53-11.
11http://www.irananlaak.ir/Files/TasvibNameh.aspx
12Although personal information of the owner (seller) and tenant (buyer) are recorded, for reasons of confidentiality the provided data do not include this information.
13www.irانfile.ir
14It also has information on number of phone lines, number of parking, storage, and balcony, type of heating/cooling system, and whether the building has elevator, yard, backyard, pool, sauna, and Jacuzzi.
distribution of properties does not capture all behavioral responses. The reason is that the multiple-rental-property owners remain unresponsive to the size kink at 150 m^2. However, the aggregate data on homeownership in Tehran shows that only 4 percent of rental properties belong to owners who possess more than one property.15 Therefore, their impacts on our estimations are negligible.

The raw data include 278,473 rental and 371,904 purchasing observations during the years 2012 – 2014. In the final data, we exclude transactions for which complete information is not available along with all nonresidential and non-apartment transactions.16 Observations that the district number does not match with the Zip Code, possibly due to data-entering mistakes, are excluded as well. Moreover, to rule out the effects of outliers, we trim observations where the rent and price per square meter are in the least 1 percent and beyond the 99 percent levels. The final sample includes 243,144 rental and 344,774 purchasing observations from 2012 to 2014. Figure 2 shows the distribution of observations across Tehran to examine whether the RISC dataset is representative of the universe of properties in Tehran. As can be seen in Figure 2, each panel contains at least 2,800 housing observations for each of the 22 districts, indicating that the data are representative of nearly all neighborhoods.

Another concern is misreporting of size by owners to evade taxation. Because owner-occupied units are exempted from taxation, there is no clear incentive for owners to misreport the size when they sell their properties.17 Therefore, one way to test for misreporting is to check whether the reported sizes match in both rental and purchasing data. In doing so, we perform a fuzzy match of the two datasets based on address, 10-digit ZIP Code, district, and floor number. The matched data, composed of the high-quality matches that result via this method, include 64,677 unique observations. We focus on properties in the proximity of the size kink $(140m^2, 150m^2]$, where the probability of misreporting is expected to be high. The matched data reveal that for over 87 percent of observations the reported size for the rental transaction is exactly the same as for the purchased one. More importantly, for only 4 percent of rental observations in $(140m^2, 150m^2]$ is the reported size for the purchasing transactions over 150 m^2, which suggests that owners do not strategically under-report the size of their rental properties.

Table 1 shows summary statistics for rental transactions. Although mean size is below the
15Rahbar Informatics Services Company (RISC) has provided this number by summarizing number of different rental transactions in each year for each owner, using owner’s unique identification number.

16An apartment in this study is defined as a unit that is owned individually, which is very similar to the definition of a condo in the U.S. housing market.

17Misreporting the size of his rental property at the time of sale is a possible but difficult undertaking for an owner. The seller, buyer and real estate agent must agree. Moreover, the average price of more than $1,000 per-square-meter serves as a disincentive for the seller to report a size that is smaller than the correct one.
cutoff of 150 m^2, several thousand rental transactions are within 10 m^2 of the size-threshold. The jump in the average rent-value right above the size-threshold is evident here, as is the dwindling number of observations. Note that, the median age of properties is 11 years, which implies many constructions are fairly new in Tehran.

3 Theoretical Framework

This section describes a model of behavioral responses to taxation in the rental-housing market; this motivates and underlies the empirical investigation. We analyze the distortion that a tax kink creates at a particular housing size. We define a size kink as an increase in the marginal tax rates on rental properties at a specific size. First, we develop a static model with a cost of filing to measure the owners’ responses to a size kink. Second, to calculate responses of rental housing size demand, we construct a model for renters, who optimize their utility based on housing consumption and total rent price. Finally, we describe the connection between size responses, tax-incidence, and pass-through rates.

3.1 Setup

Consider owners (providers) and renters (tenants) in the rental-housing market. Each owner owns a rental property and maximizes profits by choosing how much housing size services to provide (e.g., square meter). Let us denote by s the size of an apartment per-unit of land, which represents units of housing services. Moreover, let us denote by p the gross equilibrium rent price per-unit of size.\(^{18}\) Under this setup, an owner of a rental property with size s receives a total rent of sp. This analysis allows for heterogeneity on the costs of providing housing services at rent price p. Owners provide housing services using composite materials, M, and land-factor, L, according to a constant returns to scale Cobb-Douglas production function defined by $S(M, L) = AM^{\frac{\eta}{1+\eta}}L^{\frac{1}{1+\eta}}$, where A is a productivity parameter with a smooth density distribution $g(A)$.\(^{19}\) Intuitively, the productivity parameter controls for qualitative differences such as age, land characteristics, and location across rental properties.

The housing services on a per-unit of land basis are:

$$s(m) = Am^{\frac{\eta}{1+\eta}},$$

where $m = \frac{M}{L}$. Let us normalize the price per-unit of materials factors to one and let us

\(^{18}\)In this study, each unit size is one square meter.

\(^{19}\)It can be shown that given a smooth tax system, the smooth productivity distribution implies a smooth distribution of properties with respect to size.
denote by \(r \) the land factor price. Solving for \(m \) in equation (1), the owner’s profit per-unit of land is given by:\(^{20}\)

\[
\pi(s) = sp - \left(\frac{s}{A} \right)^{1+\frac{1}{\eta}} - r. \tag{2}
\]

Suppose the introduction of a discrete increase in the marginal tax rate (a kink) for properties bigger than \(s \). Suppose further that the owners of rental properties larger than \(s \) pay taxes, \(\tau \), on the marginal rental income gained from the extra square meters above this threshold. In response to the size kink, each owner maximizes profits and relocates to the new optimal size in the presence of taxes, assuming zero adjustment cost.\(^{21}\) Moreover, assume that paying taxes adds extra filing costs on owners, denoted by \(f \). Intuitively, the cost of filing taxes captures the aversion to filing taxes, time costs, record keeping, and tax-preparers’ fees. We assume that owners with zero tax liability do not need to file any taxes, implying \(f = 0 \) for properties sized below or equal \(s \).

3.2 Responses of Rental Housing Size Supply

A size kink imposes tax liabilities and filing costs to owners, which can be shifted forward to renters (i.e., pass-through). Let us denote by \(\gamma \) the pass-through of filing costs and tax liability to renters via a discrete increase in the total rent for properties sized above \(s \). Hence, profits are given by:

\[
\pi(s) = sp - \left(\frac{s}{A} \right)^{1+\frac{1}{\eta}} - r - \mathbb{I}(s > s) \cdot \left[\tau (s - s) p + (1 - \gamma) f \right], \tag{3}
\]

where \(\mathbb{I}(s > s) \) is the indicator function that takes the value of one if \(s > s \), and zero otherwise, and \(\tau \) denotes the tax on the marginal rental income gained from the extra square meters above \(s \). This is the owner’s profit per-unit of land, equation (2), but with the possible additional cost of taxes and filing cost.

The first order condition yields the following supply function:

\[
s = \left(\frac{\eta}{1 + \eta} \right)^{\frac{\eta}{\eta}} A^{1+\eta} \mathbb{I}(s > s) \cdot (1 - \tau)^{\eta} p^{\eta}. \tag{4}
\]

\(^{20}\)For simplicity, we only consider one period by assuming that the discount rate for rental income \(\beta = 0 \). Considering a richer model with \(\beta \neq 0 \) only complicates the analysis, and it does not change the quantitative conclusion.

\(^{21}\)Think of it as an owner selling his current rental property and buying another property of an optimal size where search costs of selling and buying are negligible. In practice, the adjustment costs are lower for newly built and very old properties. In the case of the former, an owner has the opportunity to take into account the effects of tax policy before choosing the optimal size of her rental property. In the case of the latter, the opportunity costs of demolishing properties and replacing them with properties smaller than the size kink are arguably lower for owners of old properties.
Notice that $\eta = \frac{\partial \eta}{\partial p}$ is the response of rental housing size supply with respect to the total rent price. Figure 3 illustrates the implication of this size kink in a production function diagram. Introduction of a size kink creates a discontinuity in the Iso-profit curve at s and make it steeper for $s > s$. The gap in the Iso-profit curves at s implies that owners who would have chosen their rental properties in the range $(s, s + \Delta s)$, in the absence of the size kink can optimize their profits by providing less housing services and bunch at s. Let us subindex with l the owners with the lowest productivity, A_l, among those who choose $s = s$. They would provide s both in the presence and absence of the size kink. We indicate with h the owners with the highest productivity, A_h, among those who bunch at the s. They would provide $\bar{s} = s + \Delta s$ when there is no size kink. In the presence of the size kink, they are indifferent between supplying s and \bar{s}. With no other frictions in the model, all owners with productivity parameters in the range (A_l, A_h) will bunch at the cutoff.\footnote{Note that the above analysis is concentrated on intensive margin responses and cannot identify extensive margin responses. Kleven and Waseem (2013) and Best and Kleven (2017) show that extensive margin responses converges to zero in the vicinity of the cutoff.}

Let us denote by p_0 the distorted gross equilibrium rent price of an apartment of size s, and denote by p_1 the rent price of an apartment of size \bar{s} in the presence of the size kink. Using equation (4), the marginal bunching individual provides $\bar{s} = \left(\frac{\eta}{1 + \eta}\right)^A A_h^{1+\eta} (1 - \tau)^{\eta} p_1^\eta$. From equation (3), there are two possible profits for the marginal bunching individual:

$$\pi_0 = p_0 s - \left(\frac{s}{A_h}\right)^{1+\frac{1}{\eta}} - r,$$

and

$$\pi_1 = \bar{s} p_1 - \left(\frac{\bar{s}}{A_h}\right)^{1+\frac{1}{\eta}} - r - \tau (\bar{s} - s) p_1 - (1 - \gamma) f$$

$$= \bar{s} p_1 (1 - \tau) - \left(\frac{\bar{s}}{A_h}\right)^{1+\frac{1}{\eta}} - r + \tau s p_1 - (1 - \gamma) f$$

$$= \frac{\eta^\eta}{(1 + \eta)^{1+\eta}} A_h^{1+\eta} (1 + \gamma)^{1+\eta} p_1^{1+\eta} - r + \tau s p_1 - (1 - \gamma) f.$$
(6)
rent responses, filing costs, and bunching is:

\[
\frac{s}{s} \left[\frac{p_0 - \tau p_1}{p^*} + \frac{(1 - \gamma)f}{sp^*} \right] = \frac{1}{1 + \eta} \left[\frac{(1 - \tau) p_1}{p^*} \right]^{1+\eta} + \frac{\eta}{1+\eta} \left(\frac{s}{s} \right)^{1+\eta}.
\]

(7)

To solve equation (7) for \(\eta\), we need to estimate the size responses \(\bar{s}\), the pass-through rate \(\gamma\), the filing costs \(f\), the and the counterfactual rent price \(p^*\). The remaining parameters \(s\), \(p_0\), \(p_1\) and \(\tau\) are directly observable.

We estimate the size responses, \(\bar{s}\), using the total amount of bunching (Saez, 2010). The number of owners who decide to locate at \(s\) after the introduction of the size kink is:

\[
B = \int_{\bar{s}}^{s} h(s) ds \approx h(\bar{s}) \Delta s,
\]

(8)

where \(h(s)\) is the counterfactual density of \(s\) without taxation. This approximation uses the standard assumption that \(h(s)\) is roughly constant around the bunching interval. Hence, by estimating the amount of bunching \(B\), and the counterfactual density \(h(s)\) at the size-threshold, we numerically solve for \(\Delta s\). Section 4.1 describes the empirical methodology for estimating \(B\) and \(h(s)\).

For the remaining parameters, in section 3.4 we explain the relationship between the responses of rental housing size supply and demand and the pass-through rates. Finally, in section 4.2 we develop the identification strategy to estimate rent responses and costs of filing.

3.3 Responses of Rental Housing Size Demand

From the demand perspective, we model individual preferences using a utility function that only depend on consumption. We divide consumption into two groups: consumption of housing and composition of all other goods. Consumption of other goods equals the total income net of rent. We use size as a proxy for housing consumption. Given all other variables, a larger property provides higher utility for a renter. We use the following quasi-linear utility function to represent individual preferences:

\[
U(c, s) = c - \frac{\epsilon}{1 - \epsilon} \alpha^{\frac{1}{2}} s^{1 - \frac{1}{z}},
\]

(9)

\(^{23}\)Check appendix A for the details.
where \(c \) is the consumption of market goods, \(\epsilon \) is a positive constant different than one\(^{24} \), \(s \) is the size of the apartment, and \(\alpha \) is a measure of the relative housing preferences. The quasi-linearity assumption on the preferences rules out the income effects. Hence, the responses of rental housing size demand reflects only the substitution effects in response to rent changes induced by the size kink.\(^{25} \) Given the assumption on preferences, renters spend their entire income, \(y \), on rent and the composite good.

Although the statutory incidence of taxes is on owners, renters bear part of the incidence that is passed into the rent. Let us consider a pass-through of the tax burden in the form of a discrete increase in the total rent (equals to \(\gamma f \)) for properties bigger than \(\underline{s} \). Therefore, the budget constraint for renters is: \(y = sp + c + \mathbbm{1}(s > \underline{s}) \cdot (\gamma f) \), where \(\mathbbm{1}(s > \underline{s}) \) is the indicator function that takes the value of one if \(s > \underline{s} \), and zero otherwise. Replacing the budget constraint into equation (9), we get:

\[
U(c, s) = y - sp - \mathbbm{1}(s > \underline{s}) \cdot (\gamma f) - \frac{\epsilon}{1 - \epsilon} \alpha \frac{1}{s} s^{1 - \frac{1}{\epsilon}}.
\] (10)

The discontinuity and nonlinearity in the budget constraint at the right side of the size kink creates an incentive for renters to locate at \(\underline{s} \) to increase their utility level. Figure 4 illustrates the mechanism, assuming heterogeneous housing preferences among individuals. A renter’s first order condition (FOC) with respect to size leads to the following equation:

\[
s = \alpha p^{-\epsilon},
\] (11)

which shows an inverse relationship between gross rent and property size, if the size response is negative (e.g., \(\epsilon > 0 \)).

Let us subindex with \(l \) the renters with the lowest preferences, \(\alpha_l \), among those who bunch at the tax-cutoff. They would choose \(\underline{s} \) both in the absence and presence of the size kink. We indicate with \(h \) the marginal renters with the highest preferences, \(\alpha_h \), among those who bunch at the \(\underline{s} \). They are indifferent between \(\underline{s} \) and \(\bar{s} \) in the presence of the size kink. Their optimal choice in the absence of the size kink would be \(\bar{s} = \underline{s} + \Delta s \). All renters with preferences between \((\alpha_l, \alpha_h)\), who would rent properties with size in the range \((\underline{s}, \bar{s})\), bunch at the size kink. The utility level at \(\underline{s} \) is:

\[
u = y - sp_0 - \frac{\epsilon}{1 - \epsilon} \alpha_h \frac{1}{\bar{s}} \bar{s}^{1 - \frac{1}{\epsilon}}.
\] (12)

\(^{24}\)We show in equation (11) that this constant is related to the responses of rental housing size demand because \(\epsilon = -\frac{\partial s}{\partial p} \).

\(^{25}\)Saez (2010) explains that income effects are negligible when changes in the marginal tax rates are small because income effects depend on the average tax rates.
Using equation (11), we have $\bar{s} = \alpha_h (p_1)^{-\epsilon}$. Hence, the corresponding utility is

$$u = y - \bar{s}p_1 - \gamma f - \frac{\epsilon}{1 - \epsilon} \frac{1}{\alpha_h \bar{s}^{1-\frac{1}{\epsilon}}}$$

$$= y - \alpha_h p_1^{1-\epsilon} - \gamma f - \frac{\epsilon}{1 - \epsilon} \alpha_h p_1^{1-\epsilon}$$ \hspace{1cm} (13)

Let us denote by p^* the rent price in the absence of the size kink. In this case, individual h would choose a property with size \bar{s}, which implies $\alpha_h = \bar{s}p^*$. Replacing α_h in equations (12) and (13), and using the condition $u = \bar{u}$, the response of rental housing size demand is an implicit function of size responses, the change in rent, and the filing cost: \hspace{1cm} (14)

$$\frac{s}{\bar{s}} \left[\frac{p_0}{p^*} - \frac{\gamma f}{2p^*} \right] = \frac{1}{1 - \epsilon} \left(\frac{p_1}{p^*} \right)^{1-\epsilon} - \frac{\epsilon}{1 - \epsilon} \left(\frac{s}{\bar{s}} \right)^{-\frac{1-\epsilon}{\epsilon}}$$

Upon market clearing assumption, the rent response, total volume of bunching, and size response are the same from both supply and demand perspectives. Therefore, using the same measure of rent and size responses from the previous section, we can numerically solve for ϵ.

3.4 Pass-Through and Incidence

Under perfect competition, the pass-through – marginal changes in prices due to a change in taxes – is a function of the relative elasticities of supply and demand (Weyl and Fabinger, 2013):

$$\gamma = \frac{dP}{d\tau} = \frac{1}{1 - \frac{\epsilon}{\eta}} = \frac{\eta}{\eta - \epsilon},$$ \hspace{1cm} (15)

where P is the after-tax price. This equation intuitively means that the greater the price elasticity of one side of the market is, the more the tax burden is borne by the other side. \hspace{1cm} (27)

Pass-through itself is a key parameter to determine incidence ratio, I, defined as the ratio between the changes in consumer surplus (renters) and the changes in producer surplus (owners).

Applying the envelope theorem to the consumers, a decrease in the consumer surplus (renters) due to an increase in a tax is equal to the product of equilibrium quantity Q^*, and γ. Similarly, applying the envelop theorem to producers, the reduction in producer surplus
(owners) is equal to Q^* times the change in producers’ price $1 - \gamma$. Therefore, we have:

$$I = \frac{\partial CS}{\partial \tau} = \frac{\gamma}{1 - \gamma} = \frac{\eta}{\epsilon},$$

where CS is the consumer surplus and PS is the producer surplus.28 Intuitively incidence larger than one means the majority of the tax burden is borne by the demand side of the market. Therefore, under perfect competition, the relative elasticity of supply and demand can fully characterize the pass-through rates and tax incidence.

To numerically solve for η and ϵ, we use an iterative method with an initial guess for the pass-through rate γ. This method generates successive approximations to solve equation (7) and (14), by updating γ using the previous approximations of γ and ϵ.

4 Empirical Methodology

This section presents the empirical methodology for the identification of excess bunching B, rent counterfactual rent p^*, and filing costs f around the size kink; the parameters required to estimate the structural parameters.

4.1 Estimation of Excess Bunching

The difference between the observed and counterfactual densities around the size kink provides a measure of excess bunching. To recover the counterfactual density, defined as the density of rental properties with respect to size in the absence of the size kink, we fit a smooth polynomial to the empirical density and exclude the observations around the kink that are affected by the tax policy (Kleven and Waseem, 2013). The reason is that in the presence of the size kink, individuals in the range $(s, s + \Delta s]$ cluster at the left side of the size kink in the range $(s_o, s]$29. Therefore, apartments are grouped into small size bins (i.e., one square meter) and estimate the following classical regression:

$$N_i = \sum_{j=0}^{k} b_j s_i^j + \sum_{r \in R} \rho_r \cdot 1 \left(\frac{s_i}{5} \in \mathbb{N} \right) + \sum_{s=s_o}^{s+\Delta s} e_s \cdot 1 \left(s_i = s \right) + \nu_i,$$

28These analyses assume infinitesimal changes in tax rates beginning from zero.

29In practice, excess bunching doesn’t occur at one point, instead, it is spread over a tiny band $(s_o, s]$. The optimal bunching segment is the one that the difference between the counterfactual and empirical distribution is minimum.
where N_i is the number of apartments in bin i, the size-level is s_i, the order of the polynomial is k, and $\mathbb{1}\left(\frac{s_i}{5} \in \mathbb{N}\right)$ are indicator variables that controls for rounding effects. The excess distribution is capture by the indicator $\mathbb{1}(s_i = s)$, for $s \in (s_o, s + \Delta s]$.

The counterfactual density is the fitted value of the dependent variable from equation (17), excluded from the estimated values of dummies in the affected range. We estimate it using the classical regression:

$$\tilde{N}_i = \sum_{j=0}^{k} \tilde{b}_js_i^j + \sum_{r \in R} \tilde{\rho}_r \mathbb{1}\left(\frac{s_i}{5} \in \mathbb{N}\right) + \varepsilon_i. \tag{18}$$

As mentioned above, excess bunching is the difference between empirical and counterfactual densities for a range $(s_o, s]$, that is: $\hat{B} = \sum_{i \in (s_o, s]} (N_i - \tilde{N}_i)$. We compute the standard errors of the excess bunching using a bootstrap procedure.

4.2 Estimating Rent Responses and Cost of Filing Taxes

As mentioned in the theoretical section, if owners can pass forward some of the burdens of filing costs to renters, the expectation is to observe a discrete increase in total rent right above the size kink. Similarly, an increase in marginal tax rates above the cutoff can be shifted forward to renters in the form of higher rent for extra size above the cutoff. Figure 5 graphically shows how the treatment effect is identified using evidence from data. Comparison between the mean annual rent at the left and right side of the size kink, presented in the figure, provides clear evidence of a spike in rent payments for properties that are located right above the size kink. Figure 5 provides evidence that a policy-induced spike exists in rent payments at the cut-off; however, to test this hypothesis, we estimate the following regression:

$$Rent_i = \beta_0 + \beta_1 SizeKink_i + \beta_2 SizeKink_i \times (Size_i - 150m^2) + \beta_3 (Size - 150m^2) + \beta_4 Age_i + \beta_5 Age_i^2 + Zipcode_i + t + Q + \varepsilon_i \tag{19}$$

30 One possible concern is that owners may tend to register the properties’ size in round numbers, which can cause spikes at multiples of 5 in the empirical distribution. To address this issue we use the finite set of rounded sizes that are natural numbers \mathbb{N}, that is, $\phi = \{s | \frac{s}{5} \in \mathbb{N}\}$. We denote by R a set of indexes for ϕ.

31 One concern is that this method does not consider the shifting of the observed distributions above $s + \Delta s$ to the right of the cutoff. However, Kleven (2016) describes that these effects are negligible in many applications, in particular, if the observed distribution is not steep.

32 Note that if the number of owners with more than one rental property is significantly high, the estimated bunching underrepresents the true level; in this case our estimation of the response will be a lower bound. However, in this sample, only 4 percent of properties belong to owners with more than one property.
where $Rent_i$ is the annual real rent for apartment i. Age, and Age^2 control for the characteristics of the rental properties. $SizeKink$ is a dummy variable equal to one for properties larger than 150 m^2, and zero otherwise. Interaction of $SizeKink$ with $(Size - 150m^2)$ captures the change in the slope of rent per square meter above 150 m^2. ZIP Code-level fixed effects are added to control for the neighborhood characteristics. In Iran, the 10-digits ZIP Code locates an address precisely. The first 5 digits of a ZIP Code can properly determine the neighborhood boundaries, which typically contain several blocks. The data cover 2,601 neighborhoods in Tehran. Year fixed-effects t, control for business cycles and macroeconomic variables that may affect the overall rental housing market. Seasonal fixed effects Q, control for seasonal patterns in the rental market.

The central coefficient of interest in equation (19) is β_1 that captures the differences of rent value between properties above and below the cutoff due to the pass-through of the filing costs. The other coefficient of interest is β_2, that capture the effects of marginal taxes on rent per square meter above the cutoff point. The coefficient of $SizeKink$, β_1, will do a better job in capturing the effects of filing costs around the cutoff because tax liability is very small. On the other hand, as the size gets further away from the cutoff, the tax liability becomes larger and β_2 can capture the effects of marginal taxes more precisely. Therefore, we estimate equation (19) for different samples: the entire sample, a sample that only include observations around the cutoff, and a sample that exclude the bunching area.

5 Results

5.1 Graphical Evidence

Figure 6 illustrates the distribution of rental properties with respect to size for the entire sample (panel a) and newly built properties (panel a) between March 2012 and September 2014 by bins of 5 m^2. The size kink is denoted by the vertical dashed line, which itself belongs to the tax-zero side of the kink. Two elements are worth noting in these panels. First, there is clear evidence of bunching right below the tax-exemption threshold, followed by a substantial drop in the number of properties above it. Second, sharper bunching at the kink point surfaces in the distribution of newly built properties for which owners have already

33 A block is defined as the smallest area surrounded by four streets.

34 The Box-Cox lambda transformation for our specification shows that qualitatively linear transformation is a better choice compared to log-log and log-linear transformations. The transformation parameter is 0.62.

35 Newly built properties are defined as those for which the “year since construction” is zero at the time of transaction.
taken into account the tax policy before choosing the size of their apartments. This is consistent with the optimization friction theory of Kleven and Waseem (2013) that predicts larger responses in frictionless markets compared to the ones observed in the presence of frictions. Sample of newly built properties is a suitable representative of a frictionless market because the adjustment costs of choosing the optimal size are much smaller for owners, who purchase them for leasing. This also implies that a more responsive supply leads to stronger bunching at the size kink.

Exploiting the longitudinal feature of the dataset, Figure 7 breaks down the full sample of properties into three consecutive years, 2012-2014, to illustrate the dynamics of bunching behaviors. While all three panels show substantial bunching at 150 m^2, the contrast between panel a (year: 2012) and panel c (year: 2014) is still striking, suggesting that behavioral responses are magnified over time. One way of thinking about this transition is that the stock of existing properties, i.e., properties that were built before the implementation of tax-regulation (2001), decreases through time. The share of existing properties for each year, presented in Table 3, demonstrates that sharper bunching is associated with the reduced share of existing stock.

To explicitly verify that the tax policy induces bunching, Figure 8 presents the comparison of the density of apartments that were constructed before the tax-regulation and newly built apartments in the owner-occupant market. The sample of newly built properties here is reduced to observations from 2014, which have the furthest time-distance from the tax implementation date. The focus here is on the owner-occupant market that is not subject to the property taxes (as opposed to the rental market). As in the figure, for properties built before the introduction of the regulation, the density smoothly decreases over size, and there is no evidence of systematic clustering below the size kink. Moreover, the absence of evident bunching in the density of old properties helps to rule out alternative explanations for bunching at the focal point. In fact, properties in both graphs are similar in all respects except age. In contrast, the distribution of newly built properties in 2014 provides clear evidence of bunching at the size kink.

36 The reduction in the number of apartments that occurs by moving from the bin (145m^2, 150m^2] to the bin (150m^2, 155m^2] is 58 percent for panel b, versus 52 percent for panel a.

37 Data are broken down into a three-year period based on Iranian calendar in which the new year starts on March 21st.

38 Here, we count an apartment as existing if it has been completely constructed before 2004, assuming that those between 2001 and 2003 had already been partly built at the time of the change in the regulation. However, changing the cut-off criteria from 2004 to 2003 or 2002 does not noticeably affect the graphs or results.
5.2 Estimation of Rent Responses and Filing Costs

We estimate equation (19) to measure the rent responses to the tax in Tehran rental market. Under the null hypothesis of no tax policy effects on rent, the coefficients on the dummy variable for size, β_1, and the interaction term, β_2, in equation (19) are zero: owners of properties larger than 150 m^2 cannot shift forward the burden of filing costs and marginal taxes to renters through higher rent. On the other hand, as long as supply is not perfectly inelastic, the prediction is that the size kink creates a spike in the rent value right above the tax-cutoff, followed by a linear increase in rent per square meter afterward.

Table 4 presents the OLS estimates of β_1 and β_2 for various versions of equation (19). All specifications include year, seasonal, and 5-digit ZIP Code fixed effects. Results for the entire sample, presented in models 1 and 2, suggest that introduction of the size kink at 150 m^2 lead to a discrete increase in the rent value, and positive change in rent per square meter for each extra square meter above the cutoff. The positive and significant coefficients for β_1 and β_2 imply that some of the tax burden is passed forward to renters. Models 3 and 4 of the same table present the results for the sample that removes observations in the range (140 m^2, 160 m^2). The point estimate of the interaction term in model 4 is larger in magnitude, suggesting that the effects of marginal taxes on rent per square meter tend to enhance further away from the cutoff.

Models 5 and 6 report estimates from specifications that restrict the sample to include only observations within 10 square meters of the cutoff. This restriction plausibly isolates the effects of filing costs on rent. The results in models 5 and 6, which are not significantly different from their counterparts in models 3 and 4, show that the burden of filing taxes is associated with a 140,000 (approximately $3.9 in 2015 dollars) Rials increase in rent per square meter. Considering average rent per square meter of 3,600,000 Rials (approximately $100 in 2015 dollars) per square meter below the cutoff, this number can be translated to 3.9 percent increase in rent value right above the cutoff. This is also consistent with findings of Benzarti (2015) and Ramnath and Tong (2017) that show individuals compromise a significant amount of money to avoid the burden of filing taxes.

5.3 Estimation of Excess Bunching

Figure 9 presents the results of excess bunching by comparing the empirical and counterfactual distributions of properties with respect to size for different samples. Counterfactual

39This restriction also rules out the alternative explanation that observations with both large size and high rents are driving the results.

40Wald test results cannot reject the null hypotheses of restricting the point estimates in models 4 and 6 to be the same.
distributions in all panels are estimated based on equation (17). Panel a shows the results for the entire sample. Panel b focuses on newly built properties in the rental market where greater bunching is happening. Panel c, on the other hand, presents the same graphs in the owner-occupant market by combining purchasing transactions of newly built properties for the years 2012 to 2014. Each panel shows the estimation of excess bunching which is defined as the proportion of excess bunching to the counterfactual frequency in the small interval above the kink.41

The main findings from these panels are the following. First, excess bunching for all panels is highly significant varying from 1 to 5 times the height of the counterfactual distributions. Second, the estimated parameter is larger for the newly built apartments in both rental and owner-occupant markets, thus supporting the idea that attenuation of frictions leads to stronger responses. Third, the difference in magnitude of excess bunching in panel a and b also suggests that stronger bunching responses are associated with the more elastic supply.

Examining the heterogeneous bunching responses across different type of properties, Figures 10 and 11 present excess bunching based on the property’s age and rent-value. Panel a in Figure 10 includes rental properties that were built at least 5 years before the tax regulation. Panel b of the same figure presents the same histogram for older rental properties by trimming the dataset further to include only rental properties that were built at least 15 years before the regulation. Figure 11 presents excess bunching for high- and low-rent regions. In doing so, the full sample is split into two subsamples, one that includes only properties located in postal regions with average rent above the median, and the other one that includes the rest of observations.

There is evidence of heterogeneity by the property’s age that suggests an increasing relationship between age and volume of bunching. This is consistent with the hypothesis that housing deteriorates with age (Brueckner and Rosenthal, 2009). Therefore, older dwellings (with probably lower quality) larger than 150 m^2 can be torn down and replaced with new dwellings with size below 150 m^2 at arguably lower costs. Moreover, Figure 11 illustrates that the bunching for apartments in low-rent neighborhoods is strongly larger compared to high rent neighborhoods. This contrast can be interpreted as evidence that owners and renters in low-rent neighborhoods might have higher responses. These figures may suggest that some of the responses are along with other margins such as quality. In Section 5.5, we compare the housing characteristics of properties at the two side of the cutoff to explore this possibility further.42

41 As a robustness check, we use different orders of polynomials to estimate the counterfactual distributions. The results appear to be insensitive to the order of polynomials.
42Saez et al. (2012) and Kopecky and Munroe (2015) argue that tax-induced responses along other margins still indicate the efficiency costs of taxation.
To rule out alternative explanations for bunching at the focal point, we formally check for the presence of a density discontinuity at the size kink in the owner-occupant market, by performing the McCrary test separately for the distributions of the full sample of newly built properties, and properties built before the regulation (McCrary, 2008). The results are consistent with the graphical evidence, suggesting that the log-difference between the frequencies of newly built properties just below and above the size kink are statistically significant, while the null hypothesis that the discontinuity at the size kink is zero cannot be rejected for already built properties. The contrast between these two distributions confirms that the supply of new housing strongly responds to the tax policy. This finding also provides evidence of tax spillovers – i.e., the impact of tax policy in one market on others – in the housing market.

5.4 Estimation of Elasticities and Pass-Through

The measures of rent responses, bunching, and costs of filing around the kink point (150\(m^2\)) allow us to calculate the separate estimation of responses of rental housing size demand and supply using the structural framework introduced in Section 3. Table 5 presents the estimated responses for different choices of bunching segments. The table presents five models. Models 1 and 2 report the responses of rental housing size demand and supply using equation (7) and (14), respectively. Models 3 and 4 present estimated responses, using the measure of bunching from the subsample of newly built properties, the representative of the frictionless market. Model 5 takes the estimated responses from column (3) and (4) and embeds them into equation (15) to measure the pass-through rate.

The results for the entire sample show that both responses of rental housing size supply and demand are almost always statistically significant with the expected signs for all specifications, consistent with the graphical evidence presented earlier. The estimated responses of rental housing size supply for the subsample of newly built properties, the representative of the frictionless market, are 2 to 6 times as large as their counterparts in model 1. This contrast highlights the substantial role of frictions in attenuating the rental housing size supply responses. The estimates of rental housing size demand responses, reported in models 2 and 4, are smaller, but still significant. Results here suggest that the estimation of the response of rental housing size demand highly depends on the magnitude of bunching.

43 Point estimates of the McCrary tests for distributions in Figure 8 are as follows: Newly built properties: 0.451 (0.039); Built before the regulation: 0.074 (0.045). Optimal bin size and bandwidth as in McCrary (2008).

44 Although estimated responses based on the measure of bunching from the entire sample are small, they are consistent with the literature on behavioral responses to transaction taxes, which finds relatively small elasticities in spite of large housing price responses, e.g. Best and Kleven (2017).
responses. Model 5 presents the estimation of the pass-through rates that range between 0.88 and 0.91 across the different choice of bunching segments, meaning that the incidence ratio is over one.45

5.5 Robustness Checks

This section contains additional estimations to ensure that potential biases in the sample or alternative explanations do not drive the results. One alternative explanation is that some of the local response to the size-kink may be due to the supply side and demand side adjustment along the quality margin. Although our concentration is on a narrow band around the tax cutoff, it is possible that properties below and above the cutoff are significantly different along housing characteristics other than size. To investigate this possibility, we use records on real estate listings in Tehran for years 2014 to 2016.

Table 6 presents the summary statistics for the 875 listings. Column (1) and (2) present the housing characteristics for observations in the size range \((140m^2, 150m^2]\) and \((150m^2, 160m^2]\), respectively. Each row presents the mean value of housing characteristics for both groups. Column (3) presents the results for the mean difference between the two groups. The \(t\)-statistics are in parentheses. Column (4) reports the \(p\)-value. For mostly all key housing characteristics there is no significant difference between the two groups of observations. In fact, the computed Benjamini-Hochberg \(p\)-values only reject the null hypothesis for one characteristic with a significance of one percent.46 Although there is no direct way to fully capture the quality of housing, attributes such as facing direction, kitchen materials, flooring, building facade, and age plausibly reflect the quality of housing. Hence, the results here are reassuring that the base results for the rent responses and costs of filing are not significantly biased by the quality adjustment.

We also run placebo tests to investigate the causality concerns regarding the effect of the tax policy on rent. If the results reflect a treatment effect of the tax kink, then the results should disappear if we falsely assume that the treatment occurs at 10 square meters before or after the actual kink-point. For these tests, we run two additional regressions, one for observations within the interval \((130m^2, 150m^2]\) assuming \(140m^2\) is the size kink, and another one for observations within the interval \((150m^2, 170m^2]\) assuming \(160m^2\) is the

45While the results do not seem to be very sensitive to the choice of the bunching segment, increasing the length of the bunching segment lead to inclusion of lower and upper band densities around the size kink that are probably affected by the tax policy (Saez, 2010). Therefore, one would expect to see higher responses when the length of bunching segments is increased. As a result, the baseline estimations that rely on small bunching segment around the kink are lower-bound estimates.

46Although the difference for the number of bedrooms between the two groups is significant, the magnitude is small.
size kink. Results of these regressions indicate that the coefficients estimates on the falsified kink dummies are insignificant. We do two additional placebo tests for intervals \((120 \, m^2, 140 \, m^2)\) and \((160 \, m^2, 180 \, m^2)\). As in the previous test, results again indicate that falsified dummies are not significant. Therefore, the placebo tests show that the baseline results are robust to subsample choices and the size kink has a causal effect on rent values.

6 Conclusion

This study has taken advantage of rich micro administrative data on rental properties in Tehran and quasi-experimental variation in marginal taxes to estimate the responses of rental housing size demand and supply simultaneously. This paper then examined the pass-through rate of the size kink using the estimated responses. The analysis reveals substantial evidence of behavioral responses through bunching below the size kink, and a rent spike above it. Using the measure of bunching from newly built properties that have fewer frictions, the responses of rental housing size supply and demand are at least 10 times larger compared to estimates using the entire sample. The high but incomplete estimation of pass-through rates suggests that owners are able to pass forward the majority of the tax burden in the form of higher rents.

This paper shows the importance of considering the supply responses to uncover structural parameters of demand. Additional conclusions are reached because the setting accounts for the effects of incomplete pass-through in attenuating demand responses. The results from the representation of the “frictionless” market highlight the effects of frictions on attenuating behavioral responses. Moreover, this may be of broader interest in other fields that generally assume completely elastic supply and full pass-through. The estimation of incidence ratio above one implies that renters who typically are at the bottom tail of the income distribution are the ones who bear most of the cost of the policy. That is, size-based taxes on rental properties might be highly regressive. Finally, the findings show that rental taxation policy not only distorts the owners’ and renters’ decisions in the rental market but also induces large distortionary responses in the owner-occupant market.

In this paper, we provided a framework to estimate separate responses of rental housing size supply and demand using evidence of bunching and incidence. Here, we focus on the effects of taxation on locations around the kink-point where agents chiefly react through the intensive margin. It would be interesting to use this evidence to examine the extensive responses to the size kink. We also provided evidence that size-based tax policy will increase the supply of smaller apartments of a size below the cutoff, which can ultimately lead to higher urban density. Another exciting research question would be to consider the
tax-induced variation in urban density to analyze its impacts on labor markets and urban characteristics such as innovation rate, local climate, and energy consumptions.

7 Tables and Figures

Table 1: Rental Income Tax Schedule

<table>
<thead>
<tr>
<th>Bracket (000 Rials)</th>
<th>Marginal Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 30,000</td>
<td>15%</td>
</tr>
<tr>
<td>30,000 - 100,000</td>
<td>20%</td>
</tr>
<tr>
<td>100,000 - 250,000</td>
<td>25%</td>
</tr>
<tr>
<td>250,000 - 1,000,000</td>
<td>30%</td>
</tr>
<tr>
<td>Over 1,000,000</td>
<td>35%</td>
</tr>
</tbody>
</table>

Note: Taxable rental earnings are shown in thousands of Rials, with the IRR to USD exchange rate varying from 15,000 to 39,000 during these years. For owners of rental properties with a combined total size over 150 m^2, each bracket cutoff is associated with a jump in the marginal tax rate.

Table 2: Summary Statistics for Rental Transactions

<table>
<thead>
<tr>
<th></th>
<th>Number of Observations</th>
<th>Mean Annual Rent (000 Rials)</th>
<th>Mean Age (Years)</th>
<th>Mean Size (Sqr. Meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire Sample</td>
<td>243,144</td>
<td>3,046</td>
<td>11</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.74)</td>
<td>(0.02)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>In the range (140 , 150]</td>
<td>3,951</td>
<td>3,635</td>
<td>14.4</td>
<td>146.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(25.9)</td>
<td>(0.20)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>In the range (150 , 160)</td>
<td>1,813</td>
<td>3,853</td>
<td>13.7</td>
<td>154.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(38.09)</td>
<td>(0.27)</td>
<td>(0.06)</td>
</tr>
</tbody>
</table>

Note: This table presents the summary statistics for the sample of residential units that were rented between March 2012 to September 2014. Rent values are deflated to reflect 2015 prices using the Statistical Centre of Iran Housing Price Index. Data is obtained from Rahbar Informatics Service Corporate (RISC). The IRR to USD exchange rate was between 15,000 and 39,000 during these years.
Table 3: Existing Stock of Housing

<table>
<thead>
<tr>
<th>Year</th>
<th>Properties built before 2004</th>
<th>Properties built after 2004</th>
<th>Share of existing stock (before / (before + after))</th>
<th>Difference (%) in Properties between bin 150 and 155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2 2012 - Q2 2013</td>
<td>52,322</td>
<td>25,940</td>
<td>66.9%</td>
<td>49.3%</td>
</tr>
<tr>
<td>Q2 2013 - Q2 2014</td>
<td>49,958</td>
<td>49,444</td>
<td>50.3%</td>
<td>51.9%</td>
</tr>
<tr>
<td>Q2 2014 - Q3 2014</td>
<td>30,585</td>
<td>34,895</td>
<td>46.7%</td>
<td>56.1%</td>
</tr>
<tr>
<td>Total</td>
<td>132,865</td>
<td>110,279</td>
<td>54.6%</td>
<td>52.2%</td>
</tr>
</tbody>
</table>

Note: The table presents the breakdowns of the number of properties by year and time of construction. Sharper shrink in the number of properties above the kink-point is associated with a reduced share of existing stock of housing.

Table 4: The Effects of Taxation on Rent

<table>
<thead>
<tr>
<th>SizeKink : β_1</th>
<th>Entire Sample</th>
<th>Excluding (140-160)</th>
<th>Only(140-160)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td>$238.62***$</td>
<td>(26.04)</td>
<td>(29.84)</td>
<td></td>
</tr>
<tr>
<td>3.78^{**}</td>
<td>(0.57)</td>
<td>(0.63)</td>
<td></td>
</tr>
<tr>
<td>$(Size - 150) : \beta_3$</td>
<td>-3.90^{***}</td>
<td>-4.36^{***}</td>
<td>-4.19^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.21)</td>
<td>(0.20)</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the total annual real rent. Regressions are based on equation (19) using the entire sample (March 2012 to September 2014). SizeKink is a dummy variable equal to one for properties larger than 150 m^2. Models 2, 4 and 6 include the interaction of SizeKink and size-threshold. All specifications include 5-digit ZIP Code, year, and seasonal fixed effects. Standard errors in all columns are clustered by 5-digit ZIP Code, and stars indicate statistical significance level. * = 10 percent level, ** = 5 percent level, *** = 1 percent level.
Table 5: Estimates of Responses of Rental Housing Size

<table>
<thead>
<tr>
<th>Segment</th>
<th>Response of Housing Demand</th>
<th>Response of Housing Supply</th>
<th>Response of Housing Demand</th>
<th>Response of Housing Supply</th>
<th>Pass-Through Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measure from the entire sample</td>
<td>Measure the Newly-built apartments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
<td>Model 4</td>
<td>Model 5</td>
<td></td>
</tr>
<tr>
<td>Segment (145-155)</td>
<td>-0.015 (0.002)</td>
<td>-0.172 (0.052)</td>
<td>1.368 (0.555)</td>
<td>0.884 (0.001)</td>
<td></td>
</tr>
<tr>
<td>Segment (145-160)</td>
<td>-0.017 (0.002)</td>
<td>-0.211 (0.068)</td>
<td>1.794 (0.769)</td>
<td>0.889 (0.017)</td>
<td></td>
</tr>
<tr>
<td>Segment (140-155)</td>
<td>-0.024 (0.003)</td>
<td>-0.302 (0.098)</td>
<td>2.913 (1.301)</td>
<td>0.902 (0.001)</td>
<td></td>
</tr>
<tr>
<td>Segment (140-160)</td>
<td>-0.025 (0.003)</td>
<td>-0.365 (0.113)</td>
<td>3.765 (1.579)</td>
<td>0.0907 (0.001)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table presents estimates of responses of the rental housing size demand and supply using the measure of bunching from the entire sample in models 1 and 2. Models 3 and 4 present the same estimates using the measure of bunching from the market of newly built properties. Model 5 presents the pass-through rates based on the estimates from models 3 and 4. Each row shows the results for a different choice of bunching segment. Standard errors are presented in parentheses.
Table 6: Summary of Housing Characteristics

<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment</th>
<th>Mean Difference</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(140,150)</td>
<td>(150,160)</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Stories in the building</td>
<td>4.79</td>
<td>5.14</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.46)</td>
<td></td>
</tr>
<tr>
<td>Properties in each floor</td>
<td>2.11</td>
<td>1.96</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.13)</td>
<td></td>
</tr>
<tr>
<td>View</td>
<td>0.228</td>
<td>0.253</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.86)</td>
<td></td>
</tr>
<tr>
<td>Floor number</td>
<td>2.71</td>
<td>2.79</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.47)</td>
<td></td>
</tr>
<tr>
<td>Bedrooms</td>
<td>2.81</td>
<td>2.90</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.47)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>12.17</td>
<td>12.25</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>0.88</td>
<td>0.88</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.27)</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>0.87</td>
<td>0.90</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.42)</td>
<td></td>
</tr>
<tr>
<td>Balcony</td>
<td>0.54</td>
<td>0.51</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.92)</td>
<td></td>
</tr>
<tr>
<td>Pool, Sauna, or Jacuzzi</td>
<td>0.1</td>
<td>0.14</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.47)</td>
<td></td>
</tr>
<tr>
<td>Yard</td>
<td>0.235</td>
<td>0.277</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.42)</td>
<td></td>
</tr>
<tr>
<td>Elevator</td>
<td>0.547</td>
<td>0.61</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.99)</td>
<td></td>
</tr>
<tr>
<td>Kitchen Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal, Half-Wooden, High Gloss</td>
<td>0.11</td>
<td>0.08</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.74)</td>
<td></td>
</tr>
<tr>
<td>MDF</td>
<td>0.80</td>
<td>0.85</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.76)</td>
<td></td>
</tr>
<tr>
<td>High-end</td>
<td>0.081</td>
<td>-0.071</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.55)</td>
<td></td>
</tr>
<tr>
<td>Flooring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpet</td>
<td>0.40</td>
<td>0.36</td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.03)</td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>0.025</td>
<td>0.036</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.99)</td>
<td></td>
</tr>
<tr>
<td>Parquet</td>
<td>0.099</td>
<td>0.105</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.27)</td>
<td></td>
</tr>
<tr>
<td>High-end stone</td>
<td>0.422</td>
<td>0.451</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.86)</td>
<td></td>
</tr>
<tr>
<td>Building Facade Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone</td>
<td>0.77</td>
<td>0.76</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.49)</td>
<td></td>
</tr>
<tr>
<td>Roman design</td>
<td>0.038</td>
<td>0.046</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.60)</td>
<td></td>
</tr>
<tr>
<td>Bricks</td>
<td>0.076</td>
<td>0.092</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.87)</td>
<td></td>
</tr>
<tr>
<td>Cement</td>
<td>0.036</td>
<td>0.029</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.41)</td>
<td></td>
</tr>
<tr>
<td>Granite</td>
<td>0.031</td>
<td>0.034</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.26)</td>
<td></td>
</tr>
<tr>
<td>Kenitex</td>
<td>0.025</td>
<td>0.019</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.65)</td>
<td></td>
</tr>
<tr>
<td>Travertine - Composite</td>
<td>0.014</td>
<td>0.012</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-0.26)</td>
<td></td>
</tr>
</tbody>
</table>

Observations 552 323

Note: Parking, storage, balcony, pool, sauna or jacuzzi, yard, and elevator are indicator variables that take the value of one if the unit has the corresponding characteristic and zero otherwise. The variables under the panels of kitchen materials, flooring and building facade materials are also indicators variables that take the value of one if the unit has the corresponding characteristic. DMF under kitchen materials is an abbreviation for Medium-Density Fiberboard used in kitchens. \(t\)-statistics in parentheses.
Figure 1: Average Annual Tax

Note: This figure shows the average annual tax liabilities by property size for the entire sample. The vertical dashed line shows the point where taxation begins. Owners of rental properties with a total combined size over 150 m² are exposed to the rental income tax. The vertical dashed line itself is in the tax-zero side of the kink. Rent values are deflated to reflect 2015 prices using the Statistical Centre of Iran Housing Price Index. The IRR to USD exchange rate was between 15,000 to 39,000 during the years 2012 - 2014.
Figure 2: Spatial Distribution of Observations

(a) Rental Market

(b) Owner-occupant Market

Note: Panel 2a shows the number of rental observations by districts for time period March 2012 – September 2014. Panel 2b shows the number of purchasing observations in each district for the same time period. Labels in 2a and 2b are in thousands.
Figure 3: Bunching at the Size Kink

Note: This figure illustrates the impact of a size kink on owners’ profits and their decisions on their properties’ size. Red curved lines show the production functions. Black solid lines show the Iso-profit curves in the absence of the tax. Blue dashed lines show the Iso-profit curves in the presence of the size-kink. Owner HA is the marginal bunching individual who would choose a property with size $s^* + \Delta s$ in the absence of size-threshold. In the presence of the size kink, she is indifferent between s'_{HA} and s^*. Individual LA, who is not affected by the size kink, chooses a property with size s^* both in the absence and presence of the size kink.
Figure 4: Renters’ Budget Set Diagram

Note: This figure illustrates the impact of a size kink on renters’ budget sets and their properties choices. Dashed curved line shows renter’s L indifference curve. Solid curved lines show renter’s H indifference curves.
Figure 5: Mean Annual Rent Around the Kink

Note: This figure shows the mean annual real rent and 90% confidence intervals for rental transactions from March 2012 to September 2014. The vertical dashed line shows the point where taxation begins. The line is in the zero-tax side. The dashed line on the left is the linear fit for properties with a size smaller than 140 square meters. The dash-dotted line on the right of the same figure is the linear fit for properties with a size larger than 160. The solid line in the figure is the linear fit using the full range. The IRR to USD exchange rate was between 15,000 and 39,000 during the years 2012 to 2014.
Figure 6: Properties Distribution and the Taxation Point

(a) Entire Sample from 2012 - 2014

(b) Newly Built Apartments

Note: The figure displays the histogram of properties’ size (by 5 m2 bins). Panel 6a includes all observations from March 2012 to September 2014 for segment (120m2, 180m2). Panel 6b is reduced to include only newly built apartments. The dashed vertical line shows the starting point of taxation. The line belongs to the tax-zero side of the kink. The numbers next to the dashed line are the percentage reduction in the number of apartments that occurs by moving from the bin (145m2, 150m2] to the bin (150m2, 155m2].
Figure 7: Dynamics of Bunching Behaviors

(a) Q2 2012 – Q2 2013
(b) Q2 2013 – Q2 2014
(c) Q2 2014 – Q3 2014

Note: Histogram of properties’ size for three consecutive years, separately. The dashed vertical line shows the starting point of taxation. The line belongs to the tax-zero side of the kink. The numbers next to the dashed line are the percentage reduction in the number of apartments that occurs by moving from the bin $(145m^2, 150m^2]$ to the bin $(150m^2, 155m^2]$.
Figure 8: Apartments Distribution in the Owning Market

Note: This figure shows the density of newly built and old properties for the owner-occupant market by 5 m² bins. The sample of newly built apartments is reduced to include only observations from 2014. The dashed line displays the polynomial fit of degree five for newly built apartments. The solid vertical line shows the starting point of taxation. The line is on the tax-zero side of the kink.
Figure 9: Empirical and Counterfactual Distributions Around the Size kink

Note: The figure illustrates the empirical and counterfactual distributions of apartments in Tehran for years 2012 to 2014. The counterfactual distribution is estimated for each panel separately based on equation (17), by fitting a fifth-order polynomial to the empirical distribution and excluding the bunching segment. The vertical line shows the starting point of taxation. The line is on the tax-zero side of the kink. The excess bunching B is the difference between the observed and counterfactual densities in the small interval below the size kink in proportion to the average counterfactual distribution right above the cutoff.
Figure 10: Apartment Distributions by Property Age

Note: This figure illustrates the empirical and counterfactual distributions of apartments in Tehran for years 2012 – 2014. Panel 10a includes rental apartments that were built at least 5 years before the tax regulation. Panel 10b presents the same graphs for older rental apartments by trimming the dataset further to include only apartments that were built at least 15 years before the regulation. The counterfactual distribution is estimated for each panel separately based on equation (1.16) by fitting a fifth-order polynomial to the empirical distribution and excluding the bunching segment. The solid line shows the starting point of taxation. The line itself is on the tax-zero side of the kink. The excess bunching B is the difference between the observed and counterfactual densities in the small interval below the size kink in proportion to the average counterfactual distribution right above the cutoff.
Figure 11: Apartment Distributions across Different Neighborhoods

Panel 11a includes only properties that are located in postal regions with average rent above the median, and Panel 11b includes the rest of the observations. The counterfactual distribution is estimated for each panel separately based on equation (1.16) by fitting a fifth-order polynomial to the empirical distribution and excluding the bunching segment. The solid line shows the starting point of taxation. The line itself is on the tax-zero side of the kink. The excess bunching B is the difference between the observed and counterfactual densities in the small interval below the size kink in proportion to the average counterfactual distribution right above the cutoff.

Note: This figure illustrates the empirical and counterfactual distributions of apartments in Tehran for years 2012 to 2014. Panel 11a includes only properties that are located in postal regions with average rent above the median, and Panel 11b includes the rest of the observations. The counterfactual distribution is estimated for each panel separately based on equation (1.16) by fitting a fifth-order polynomial to the empirical distribution and excluding the bunching segment. The solid line shows the starting point of taxation. The line itself is on the tax-zero side of the kink. The excess bunching B is the difference between the observed and counterfactual densities in the small interval below the size kink in proportion to the average counterfactual distribution right above the cutoff.
References

Appendices

A Derivation of Equation (7)

\[A_h^{1+\eta} = \frac{\bar{s}}{p^\eta} \left(\frac{1 + \eta}{\eta} \right)^\eta = \frac{\bar{s}}{p^\eta} \left(\frac{1}{\delta} \right)^\eta \]

(20)

Plugging this expressions in equations (5) and (6), we get:

\[\pi_0 = p_0 \bar{s} - \left(\frac{s}{A_h} \right)^{1+\frac{1}{\eta}} - r \]
\[= p_0 \bar{s} - \frac{s^{1+\eta}}{A_h^{1+\eta}} - r \]
\[= p_0 \bar{s} - \frac{s^{1+\eta}}{\bar{s}^\eta} p^* \delta - r \]
\[= p_0 \bar{s} - \delta \bar{s} p^* \left(\frac{s}{\bar{s}} \right)^\frac{1}{\delta} - r, \]

(21)

and

\[\pi_1 = (1 - \delta) \delta^\eta A_h^{1+\eta} (1 - \tau) p_1^{1+\eta} - r + \tau \bar{s} p_1 - (1 - \gamma) f \]
\[= (1 - \delta) \frac{\bar{s}}{p^\eta} (1 - \tau) p_1^{1+\eta} - r + \tau \bar{s} p_1 - (1 - \gamma) f \]
\[= (1 - \delta) \bar{s} p^* \left(\frac{(1 - \tau) p_1}{p^*} \right)^{1-\frac{1}{\eta}} - r + \tau \bar{s} p_1 - (1 - \gamma) f. \]

(22)

Equating expressions (21) and (22) we get:

\[\bar{s} (p_0 - \tau p_1) + (1 - \gamma) f = (1 - \delta) \bar{s} p^* \left(\frac{(1 - \tau) p_1}{p^*} \right)^{1-\frac{1}{\eta}} + \delta \bar{s} p^* \left(\frac{s}{\bar{s}} \right)^\frac{1}{\delta} \]
\[\frac{\bar{s} (p_0 - \tau p_1)}{\bar{s} p^*} + \frac{(1 - \gamma) f}{\bar{s} p^*} = (1 - \delta) \left(\frac{(1 - \tau) p_1}{p^*} \right)^{1-\frac{1}{\eta}} + \delta \left(\frac{s}{\bar{s}} \right)^\frac{1}{\delta} \]

Finally, we can return to our original notation to get the relationship between price elasticity of housing size supply, rent responses, filing costs, and bunching as:

\[\frac{s}{\bar{s}} \left[\frac{p_0 - \tau p_1}{p^*} + \frac{(1 - \gamma)f}{\bar{s} p^*} \right] = \frac{1}{1 + \eta} \left(\frac{(1 - \tau) p_1}{p^*} \right)^{1+\eta} + \frac{\eta}{1+\eta} \left(\frac{s}{\bar{s}} \right)^{1+\frac{1}{\eta}} \]
If \(p^* = p_0 \), then

\[
\frac{s}{s} \left[1 - \frac{p_1}{p_0} + \frac{(1 - \gamma)f}{ssp_0} \right] = \frac{1}{1 + \eta} \left(\frac{(1 - \tau)p_1}{p_0} \right)^{1+\eta} + \frac{\eta}{1 + \eta} \left(\frac{s}{s} \right)^{1+\eta}
\]

B Derivation of Equation (14)

In the absence of the size kink, individual \(h \) would choose a property with size \(\bar{s} \), which implies \(\alpha_h = \bar{s}p^* \). Replacing \(\alpha_h \) in equations (12) we get

\[
u = y - sp_0 - \frac{\epsilon}{\epsilon - \epsilon} \alpha_h p_1^{1-\epsilon}
\]

\[
= y - sp_0 - \frac{\epsilon}{\epsilon - \epsilon} \bar{s}^1 p^* \bar{s}^{1-\epsilon}
\]

\[
= y - sp_0 - \frac{\epsilon}{\epsilon - \epsilon} p^* s \left(\frac{s}{s} \right)^{1-\epsilon}.
\]

Similarly for equation (13) we get

\[
\bar{u} = y - \alpha_h p_1^{1-\epsilon} - \gamma f - \frac{\epsilon}{\epsilon - \epsilon} \alpha_h p_1^{1-\epsilon}
\]

\[
= y - \bar{s}p^* p_1^{1-\epsilon} - \gamma f - \frac{\epsilon}{\epsilon - \epsilon} \bar{s}p^* p_1^{1-\epsilon}
\]

\[
= y - \bar{s}p^* \left(\frac{p_1}{p^*} \right)^{1-\epsilon} - \gamma f - \frac{\epsilon}{\epsilon - \epsilon} \bar{s}p^* \left(\frac{p_1}{p^*} \right)^{1-\epsilon}
\]

\[
= y - \frac{1}{\epsilon - \epsilon} \bar{s}p^* \left(\frac{p_1}{p^*} \right)^{1-\epsilon} - \gamma f
\]

Equating expressions (1) and (2) we get:

\[
sp_0 + \frac{\epsilon}{\epsilon - \epsilon} p^* s \left(\frac{s}{s} \right)^{1-\epsilon} = \frac{1}{\epsilon - \epsilon} \bar{s}p^* \left(\frac{p_1}{p^*} \right)^{1-\epsilon} + \gamma f
\]

\[
\frac{sp_0 - \gamma f}{\bar{s}p^*} = \frac{1}{\epsilon - \epsilon} \left(\frac{p_1}{p^*} \right)^{1-\epsilon} + \frac{\epsilon}{\epsilon - 1} \left(\frac{s}{s} \right)^{1-\epsilon}
\]

which simplifies to:

\[
\frac{s}{s} \left[p_0 - \frac{\gamma f}{\bar{s}p^*} \right] - \frac{1}{\epsilon - \epsilon} \left(\frac{p_1}{p^*} \right)^{1-\epsilon} = 0
\]