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INTERNATIONAL EGONOMIC REVIEW
Vel. 21, Mo !, Febryary, 1980

USING LEAST SQUARES TO APPROXIMATE
UNKNOWN REGRESSION FUNCTIONS*

By HArLBERT WHITE!

I. INTRODUCTION
In econometric practice, maodels of the form
1 Yi=g(Z) + ¢ i=1,.,n

are frequently encountered, where Y; is a dependent variable which one is inter-
ested in explaining, ¢(Z;) is an unknown function of the independent variable Z;
{which may in general be a vector), and &, is a random variable with E(g)=0,
E(ehy=0a2, and E(g,Z;}=0. The properties of g{Z;) are often the main focus of
interest, and the econometrician’s problem is to determine these properties by
some computationally convenient pracedure.

A procedure common in the literature is to ‘‘approximate g(Z;) by a Taylor
series expansion” of suitable degree (usually a first or second order approximation
is chosen) and, “ignoring terms of higher order,” estimate the parameters of the
resulting polynomial. In a recent text, J. Cramer [1969, pp. 79-837 attempts to
provide a mathematically rigorous justification for this procedure. The notion
that ordinary least squares (OLS) provides a Taylor series approximation is
particularly widespread in the literature concerning the estimation of production
functions. TFor example, Denny and Fuss [1977, p. 406] make it the foundation
of their recent article, ““The Use of Approximation Analysis to Test for Separa-
bility and the Existence of Consistent Aggregates,” This notion has also been
adopted and used in Spady and Friedlander [1978], Mincer [1974, p. 901, Aghevli
and Kban [1977] and Atkinson and Halvarsen [19767.

The purpose of the present study is to peint out the severe limitations of the
Taylor series approximation interpretation for OLS and to provide in its place
an approximation interpretation with general validity. The Taylor series inter-
pretation is appealing since it may be used to study the local properties (deriva-
tives, elasticities} of a function ; the results of Section 2 provide some very limited
conditions (from the practicing econometrician’s viewpoint} under which QLS
may be used to this end. In Section 3 we provide general conditions under which
OLS yields a well-defined least squares approximation to an unknown function.
This approximation has optimal prediction properties. Although well-known to
statisticians (for example, see H. Cramér [1946, pp. 302-304]), the nature of least

¥ Manuscript received July 22, 1977, revised September 4, 1978,
* The author has benefitted from the comments of Waiter Oi, Lawrence Olson and two
anonymous referees,
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150 HALBERT WHITE

squares as an approximation is not sufficiently well understood by empirical
econcmists. The properties of the least squares approximation lead to a natural
test for specification error given in Section 4, based on weighted least squares
(WLS). In Section 5, we consider the problem of heteroskedasticity and the
appropriateness and effects of WLS in the presence of possible functional mis-
specification. Section 6 contains a summary and concluding remarks.

2. LBAST SQUARES AND THE TAYLOR APPROXIMATION

The inexactness of the Taylor approximation interpretation is evidenced by a
lack of agreement about the point of expansion. Usually, the approsimation is
considered to be taken at the mean of the explanatory variables (Cramer [1969],
Spady and Friedlander [1978]), but Denny and Fuss [(977] take the approxi-
mation at the value unity. The fact that the parameters estimated by OLS do naot
necessarily correspond to those of the Taylor series expansion at the mean may
be easily seen by the example in Figure [, T(Z,) is the first order Taylor series
expansion of g{Z,} around Z, the mean of the 2. I{Z,) is the ordinary least
squares estimate obtained when Y] is regressed on the Z; and a constant. L(Z;)
has a different slope and intercept and lies below T(Z;), as do most of the obser-
vations, ¥, Nor do the OLS estimates necessarily coincide with the slope at
unity. Although there may be some point at which the OLS estimates and the
slope coincide, locating this point requires a knowledge of the unknown function.

Yi

0 7 Z;

FigURE 1
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(In the many regressor case, or for higher order approximations, no such point
need exist,)

An economic example will help to provide further insight. Suppose obser-
vations are generated by an unknown CES production function, say

() InQ; = — In(e~%nbe 4 2e=3nkYS 1 g i=1,.,#

where Q,, L; and K; are output, labor and capital in period i (or for firm {} and
g, is a random disturbance independent of L, K, and distributed N(0, 2=.01).
Now consider the first and second order approximations in logarithms

3) InQ;= o+ fInki+ fInkK, i=1l.,n
) InQ; = fo + By In L, + f;, In K; + Ba(In Ly)?
+ 54 ln Li-lﬂ Ki + ﬁs(ln KL)2

Equation (3) is the famiiiar Cobb-Douglas production function and equation (4)
is the increasingly popular translog production function introduced by Christensen,
Jorgenson and Lau [1973].

Table 1 provides a numerical contrast between the results of ordinary least
squares applied to (3) and (4) and the values of Taylor series coefficients of (2)
evaluated at the means, E(ln L) and E(In K;}. InL; and In K, are taken to be
distributed uniformly on the unit interval. Thus E(ln L}=E(ln K;)=.5. As
a result of the properties of the true CES production function, the derivatives

i=1,.,n

TABLE 1
CONTRAST OF ORPINARY LEAST SQUARES PARAMETER
ESTIMATES AND TAYLOR SERIES COEFFICIENTS

Dependent Variable: In Q= —In (g7%2% 4 2¢~3taK}54 ¢

Cabb-Douglas
Approximation

Translog
Approximation

Taylar Approximation
at the Means {.5)

const oy _(fégfé) 805
In L (033) (102%) 3333
In K (0359) Hon 8667
(n Ly ' _(:gggg) —220m
In LIn K (:gg% ~L1111
(n Kt ;_-;*ggg —4.4444
5 0184 0122

R 7320 8225

Number of observations: 200 .
. 1 Specification robust standard errors in parentheses, computed from equation (7).
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evaluated at any point where K and L are equal are the same — anly the constant
of the Taylor expansion is affected. Thus, the remarks which follow also apply
to the expansion point chosent by Denny and Fuss [1977].

For the Cabb-Douglas specification, the coefficients of In L and In K are bath
at least two standard deviations away from the value of the Taylor series co-
efficients. The coefficient of ln K in the translog specification is fairly close to the
corresponding Taylor coefficient, but that of In L is algebraically even farther away
than in the Cobb-Douglas case. The coefficients of the second order terms of
the translog specification bear very little resemblance to the Taylor coefficients.
The closest is eighteen standard deviations from the Taylor coefficient, and that
of In L-1n K has a statistically significant sign opposite that of the cross partial
evaluated at the mean! These results indicate that tests of hypotheses based on
Taylor approximation properties (as are those of Denny and Fuss [1977]) may
be seriously misleading.

These examples illustrate the fact that OLS estimates do not necessarily provide
reliable information about the local properties (derivatives, elasticities) of un-
known functions. Results reported by Wales [1977] provide further related
evidence, showing that estimated flexible functional forms such as the translog or
generalized Leontief utility (production) functions do not necessarily provide
good approximations to unknown functions in terms of their ability to satisfy
the regularity conditions (guasi-concavity and monotonicity, which are derivative
properties) required for utility maximization. Similar findings are reported by
Griffin [1978].

If QLS is in general incapable of providing information about local properties
of an unknown function, are there specific situations in which it can? In a
recent article, Myers and Lahoda [1975] discuss aptimal sampie designs for using
least squares to obtain information about the local properties of some particular
unknown response functions. One requirement of these designs is that the re-
gressors be orthogonal. This is cold comfort for the practicing econometrician
who typically cannot design his sample and whose regressors are typically sig-
nificantly correlated.?

Without the ability to control the experiment, the possibility of inferring
properties of the unknown function still exists as Theorem 1 below shows. Un-
fortunately, the conditions of this result are very restrictive, but they are indicative
of how far the Taylor series approximation interpretation may be taken. We
make the following assumptions:

Al. The true model is
YVi=g(Z} + ¢ i=1,.,n
where g is an unknown function and (Z, &) are i.i.d. random 1 x{p+ 1) vectors

such that E(Z,)=0, E(Z; Z,}= M, finite and nonsingular, E(e}=0, E{(s})=062 < w0,

2 With a sufficiently large sample one might be able to “design® the sample by discarding ob-
servations not sufficiently close to the design points, perhaps at the cost of some loss in efficiency.
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E(Zie)=0, and E(9(Z)*)= 0} < 0.

A2, g is twice differentiable such that: Fg(0), the gradient evaluated at the
origin, is bounded; the Hessian P?g(z)={d%g(z){0z,0z,} is positive semi-definite
{p.s.d.) and there exist finite p.s.d. matrices 4 and B such that A—F?%g(z) and
724(z)— B are p.s.d. for 2ll z in the support of F, the joint distribution function
of Z,.

Consider the linear approximation
(5) szzlg +ei = 11"'1”'

where 8 is 2 px 1 vector and define the least squares estimator §=(Z'Z)"'2'Y
where Z is the nx p matrix with rows Z; and Y, is the n x [ vector with elements
¥,. Also, define the p x1 vectors 9, and 7, with elements

o] e
Py = 5— S_MSZJZAz’dF(z) + é— So Szlf-sz’dF(z)

1 o ] [ © 4 ;
Vi = ES—@SZJ‘ZBZ dF(z) + 5 So gzjzAz dF(z) i=5L.,p

where F is the joint distribution function of Z, 4 and B are as defined in A2,
and by convention the first integral corresponds to the j-th element of z and the
secand represents the p—1 iterated integrals cotresponding to the remaining
elements of z. We adopt the notation = to indicate that a given matrix or
vector equals or exceeds another, element by element. It is easily shown that
.21 under A2. The following result provides conditions under which the QLS
estimator can be used to provide information asymptotically about directional
derivatives of the unknown function evaluated at the mean of the regressors.

Tueorem 1. If Al and A2 hold, and if d'M3z520 where d is a px { direction
vector of unit length, then

d'7g(0) + d'Mzy, < plim &8 < d'Pg(0) + d'Mzly,.

For example, suppose we are interested in bounding the j-th partial derivative
evaluated at the mean, g {0). The condition d'Mz} >0 for this direction requires
that the j-th row of Mz} contain only nonnegative elements, a rather restrictive
condition. When this condition fails, a bound need not exist. Note also that
the bound becomes tighter, the ¢loser io zero are the off-diagonal elements of the
j<th row of Mz}, The best possible situation for examining the gradient would
be Mz} diagonal, as in the Myers and Lahoda [1975] designs.

Another limitation of this result is that g is restricted by A2 to a subset of the
concave functions. (A result similar to Theorem 1 is available for F?g negative
semi-definite — a subset of the convex functions). This is perhaps not as serious
a restriction as the requirement that d'AM7}>0, since economic theory often
justifies concavity assumptions. Also, by suitably restricting the range of the
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regressors, local concavity may be obtainable. Another limitation of this result
is that one must have some idea of the matrices 4 and B. However, as we will
see below, as the difference A-B becomes smaller, the bound becames tighter, so
it is not necessarily concavity per se, but differences in concavity which are im-
portant for the bound. To examine the implications of Theorem 1 more easily,
consider the univariate case, p=1 (which also covers the case where Z; has inde-
pendent elements). 1In this case, the bound can be written

g' () + bE(ZH26} + (0 — b)Y, < plim 8 £ g(0)
+ BE(ZH[26% + (a — b)d,
where a and b are the scalar analogs of A and B, a3 =E(Z}) (recall E(Z)=0), and

5 = (zaﬁrlgf 23dF(z)

5, = (203" g 23dF ().

Now suppose the unknown function is quadratic in z, so that a=h. Then §
provides an inconsistent estimate of g’(Q), unless Z; has zero third moment. The
extent of the inconsistency depends positively on the degree of concavity and the
amount of skewness, and inversely on the variance of Z. In general, skewness
will always introduce inconsistency. Now suppose E(Z{)=0. Then &,=-3,
so that the bounds are syminetric, and the bounds hecomes tighter as a—bh—0,
Without skewness, the bounds depend only on differences in concavity, not the
amount of concavity. Finally, note that if we write 4, more explicitly as

3.2 = —ég: 23dF(z) / g: 22dF(z)

it can be shown that 6,(4Z) = $d,(Z,) where ¢>0 is a scale parameter. (Simi-
larly, 8{¢Z)=$56,(Z)). This implies that the precision of the bound improves
as the range of the regressars decreases. This result is entijrely analogous to a
result considered “‘disturbing’ by Wales [1977]: he found that flexible functional
forms do better in mimicking the derivative properties of the unknown function
when the range of the regressors is small. Specifically, as ¢—0, we have §,, §,—0
and bE(Z3)/263—-0; since a — b cannot increase, plim §-g'(0), an entirely natural
result. The efficiency considerations which led Wales to his reaction are only of
secondary importance here.

Theorem 1 is a possibility theorem. Its conditions are sufficient for obtaining
information about the gradient, but, when violated, there is still the chance that
the least squares estimate will not be too far from the gradient. However, as the
examples of this section demonstrate, this possibility is a slender straw ot whlch
to rest 1nfercnce<; about local properties of an unknown function.
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3. THE LEAST SQUARES APPROXIMATION

In this section we will continue to assume Al, but A2 will be dropped. Now
consider the linear approximation

(5) Y, = X8 + u; P=l,.,n

where u;=g(Z,)— X +¢; is a random variable which includes both the error of
the approximation and the true stochastic error. The | xk vector X; has ele-
ments each of which is a function only of Z,, but not necessarily a function of
every element of Z, — some variables may be omitted,

Suppose we wish to approximate (predict) ¥; for an observed vector X, If
the occurrence of ¥ is not the result of a controlled experiment, but is determined
by a random drawing from F, ., the joint distribution function of Z, g, it is
natural to consider minimizing the mean squared error {MSE} of approximation
(prediction)

6) 5*(6) = {[9(2) — 3B + EPdFy (2. O
provided o%(f) exists. To ensure this, we assume in addition to Al
A3, g and x are measurable functions of z.
Also we assume?
Ad.  E(glZ)e)=0, E(Xig)=0, E(XiX;)=M gy, finite and nonsingular.

Define the OLS estimator fiq;s=(X'X)" ' X'Y where X is the n x k matrix with
rows X;. The next result provides conditions under which fq converges asymp-
totically to f*, the vector which minimizes the approximation (prediction) MSE.

TurOREM 2. Under Al, A3 and A4, B o255 B*, the parameter vector which
uniquely solves :

min a(6) = {[g(z) — xp1dF(z) + o
and s* 22, g¥§*) where st=(n—k) ' 3 (Vi X fogs)?.
i=1

The vector B* is the parameter vector of a least squares approximation xf*
to the unknown function g(z) with weighting function d¥F{z). The properties of
this approximation are well known to mathematicians.* [f g(z)=xf,, then g*

? The first two conditions of A4 result in no loss of generality. Since X, need not depend
on all Z;, and since Z, may contain unobservables, we can set ¢;=0.

+ A well developed branch of mathematics known as Approximation Theary deals with general
problems of this kind. The least squares approximation is well treated in Rice [1969, Chapters
2 and 12} : o i i
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=f, for any distribution of the Z,. If g(z)# xf,, p* will depend crucially on the
distribution of Z;. The weighting function ensures that frequently drawn X,
will yield small approximation errors at the cost of larger approximation errors
for less frequently drawn X,. Theorem 2 implies that fq;¢ will share the proper-
ties of f* asymptotically. In particular, 4, 5 will depend upon F when g(z)# xf,,
a fact which provides the basis for a test of functional misspecification considered
in the next section.

The estimated residual variance s? provides a consistent estimator of the mini-
mum approximation MSE, a*($*), which consists of two parts: the MSE due to

the misspeciﬁcétion,g[g(z)-{-x,{i"‘]:dF(z), plus the error variance, o2. s* can

therefore be used to choose among competing models as advocated by Theil
[1971, pp.' 543-5447 and Kloek [1975], since, when the regressors are orthogonal
to &, the smallest possible value for 62(f*%), i.e. 62, occurs when the model is
carrectly specified.’

The approximation result of Theorem 2 is not only more precise, but is much
more general than that of Thearem 1 no restrictions are placed on Mz} as they
are on Mz} by the requirement d'Mz:=0; g is required only to be measurable
rather than twice differentiable with p.s.d. Hessian everywhere; and the re-
gressors X; may be aggregates of underlying Z,, may leave some Z; entirely out of
account, or may measure some Z; subject to error, compared to Theorem 1,
which requires the regressors to be precisely the Z,. Generally, we can obtain
good predictions of the level of Y, using OLS; to get information. about the
gradient appears to require either the ability to design one’s sample, or the severe
restrictions on g and the distribution of Z; imposed by Theorem 1. :

With a large enough sample and an additional condition, fops is approximately
normally distributed, as the next result shows.

TupomeMm 3. Under A1, A3 and A4
ViBors — F*) A N(QO, MgV (B*)Mid)
provided E(Y}X{X)) and E(X}, X(X)), j=1,..., k are finite. Moreover, (X'X[n}
250 Mih and Pos=n"" 3. (Y= XiBors) XiX; 25 V(6*), s0 that

(7) (X' XIn) " Pors(X' X n)™* 225 MidV(B*)Mi}.

Note that the covariance matrix estimator (X' X/n) ' Vo (X X /1)~ differs from
the usual form s%(X’'X/n)~'. This difference arises from the fact that with a
misspecified model, uF=g(Z,)— X *+¢, is only uncorrelated with X, not inde-
pendent, so that V cannot be further factored. s*X'X/n)~* will be consistent if
no misspecification has occurred and if X; is independent of g, in which case
Vors 255 0 M 4y Thus, a large difference between Pops and s2(X'X/n) can be

5 See White and Olson [1979] for a formal test of the hypothesis that two altematwe models
with different regressors have the same prediction MSE.
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evidence for misspecification.®

4. A TEST FOR FUNCTIONAL MISSPECIFICATION

As observed previeusly, the least squares approximation vector f* generally
depends on the weighting function dF(z) when g(z)#xf,. When g(z)=xf,,
f*=f, regardless of the weighting function. The test for functional misspecifi-
cation given in this section exploits these facts., The procedure involves first
obtaining the usua! estimator ;5. Next, choose an arbitrary weighting function
W(Z;) and choose # to minimize

Y (Y~ XPPWZ).
i=1
The solution to this problem is the weighted least squares (WLS) estimator
Bwrs = (X'Q1X)y1X'Q 1Y

where €' is a diagonal matrix with diagonal elements W(Z,). If no misspecifi~
cation has accurred, fiors and fy g should be about the same; the presence of
misspecification is indicated by Bors and fy, s too far apart. Thus a test may
be based on the differences fors— fwes:

To obtain a test statistic we assume

A3. The weighting function Wis a measurable function of z, 0<d < W(z)<M
for all z where 8, M are arbitrary finite constants, and E(W(Z,)Xg)=0.

THROREM 4. If g(2)= xfq, if AL, A3-AS hold, and if E(Y2X,X), E(X%X,X)),
j=1,..., k are finite, then

(8) n(BOLS - ﬁwr_s)"f’_l(ﬁor_s - ﬂms)fé-ﬁ

where

&) § = (XX W X' X[n)™ + (X' QX ) Py o X027 X [0y !
— (X' X OX' Q@ Xin)t — (X’Q‘len)_lﬂ(X’X]n)_l,

Pors = 1! z WEZ)HY, ~ X Pud* XX,

O=nt 21 W(Z)(Y: — Xiflors) (¥; — XBwa XX,
provided a.s. lino f is nonsingular.

If the statistic (R) is larger than the critical value for a y statistic at the « [evel,
then the null hypothesis of no misspecification, g(z)=xf,, must be rejected at
the o level (provided of course that the remaining conditions hold). Note that

& See White [1979] for a formal test of the hypothesis that o:M ;. =p""! f‘, EW¥X I X0
. it=1
If rejected, misspecification is implied. :
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the cavariance matrix ¥ given by (9) is correct under the alternative that g(z)#
xBy. Under the null hypothesis, the estimator ¥ is substantially simpler, as
Hausman [1978] has shown. In this case, OLS is best asymptotically normal
(BAN) while WLS is relatively inefficient asymptotically. Using Hausman’s
result, a consistent estimator is

b= — sHX'Xfn) + S&LS(X’.Q“XM)"(X’Q“’X}n)(X’Q‘leﬁ)“

where s34 g =(n— k)" 20, W(Z}(Yi— X fwrs)?, provided ¢, is independent of X,.
The convenience of this form may outweigh possible small power losses from a
practical viewpoint.

For fixed n, the power of this test will depend on the choice of W(z). In such
a situation it would seem appropriate to experiment with several different chaices
for W({z). This suggestion appears to cause a problem: with different choices for
W(z), the test statistics (8) will not generally be independent, so that the exact
size of the test performed becomes difficult to determine. There are two possible
remedies for this difficulty. First, it is possible to stack the vectors fo1 s~ flwis,s
cees ﬁom—~ﬁw,_sq (corresponding to g different weighting schemes), obtain a giant
covariance matrix which explicitly takes account of covariances between fAg¢
—Bwis, and Bors— PBwise 7: $=1,..., ¢, and obtain a x#, statistic analogous to
(8). The only thing to recommend this brute force technique is its precision.
Alternatively, one may adopt the simpler procedure of accepting the null hypothe-
sis if each of the g tests accepts the null hypothesis at the « level. Aithough the
size of test resulting from this procedure is difficuit to determine precisely, it is
easily shown” to be bounded above by ga. Thus, if any one of five tests rejects
the null hypothesis at the 1% level, the null bypothesis may be rejected averall at
or beyond the 5% level. '

If ge is fixed, one still faces the problem of determining g (or «). Theoretically,
the choice of ¢ should be determined by power considerations: increasing ¢
beyond a certain limit can lower the power of the test with fixed g, since the gain
in power of having yet another check on the specification is paid for by an increase
in the size (ga) of the test (for fixed «). As a practical matter, the exact nature of
this trade-off will be difficult to determine, but, considering the consistency of the
test {power one for sufficiently large samples}, it may be enough with large samples
to try relatively few weighting schemes, say g=2 or 3 in order to obtain sufficient
power.

One possible weighting scheme is to use weighting functions of the form (X 5Y2,
where § is a fixed 1 x k vector.? This amounts to weighting each observation by
(X;8)7! and then performing ordinary least squares. Prais and Houthakker
[1971] perform such a weighted least squares estimation, although they chose
8=fo1g, not a fixed vector. Prais and Houthakker are particularly concerned
with the probilem of finding a good approximation to their demand functions, and
it would be interesting te compare their OLS and WLS estimates using (8).

1 See Lemma 1 of the Appendix.
8 Provided, of course, that this choice satisfies AS.
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Even though they provide a plausible theoretical justification for the hetero-
skedasticity which motivates their weighted least squares procedure, this hetero-
skedasticity was discavered by a thorough examination of the residuals. Less
careful investigators may be tempted to embark on heteroskedasticity searches
without a strong theoretical justification. What is discovered by regressing
functions of the residuals on functions of the X; may be evidence of functional
misspecification rather than heteroskedasticity.? (See Section 5 below.) Further,
when the functional form is misspecified and the g are not truly heteroskedastic,
there is no particular reason to prefer the WLS estimates. At least, the OLS
estimates provide optimal predictions for a randomly drawn X, In situations
where the investigator regresses functions of the residuals on various functions of
the X, it may therefore be useful to compute the statistic (8).

As an example, (8) is computed for two different choices of W(z) using the
Cobb-Douglas and translog production function approximations considered in
Section 2. For the first test, WLS,, we choose W(Z,)=(X 6y where § is taken
ta be the OLS estimator of Table [. The second test, WLS,, takes the weight to
be .001 if In L;<.5, unity otherwise. This is almost the same as dropping the
observation if InL,<.5. Table 2 compares the OLS and WLS, parameter
estimates, and Table 3 compares the OLS and WLS, estimates.

In Table 2 we observe a moderate difference between fop5 and fys, for both

TABLE 2
COMPARISON OF OLS aND WLS; PARAMETER
ESTIMATES -— Wi-—u(XsﬁoLg]“’
Dependent Variahile: In O

OLS WLS, OLS WLS,
Cobb-Douglas  Cobb-Douglas Transiog Translog
—.3020 0530 —.2453 —.0331
const £.0233)t (.0997) (0345} (.1196)
n L 4284 — 0877 4606 2709
{0337 (.1830) (.1028) (4283)
In K .5918 2992 6535 0878
_ (0359) (.2571) {1201) (.3324)
— 4246 — 6646
(nLp . (.0893) (.3488)
7922 1.9363
In Liin & (0871) (4656)
— 4800 —.2641
(n Ky .1071) (.2462)

Parareter difference test for misspecification

2=13.1390 y3=-26.2877

t Specification robust standard errors from equation (7) in parentheses.

* This procedure is suggested by Glejser [1969].
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TABLE 3
COMPARISON OF OLS AND WLS,; PARAMETER
ESTIMATES — W, =.001 [F In L,=.5, UNITY OTHERWISE

Dependent Variable: In @

OLS WLS, OLS WLS,

Cobh-Douglas  Cobh-Douglas Translog Translog

— 3020 — 3166 —.2453 — 6040

const (0233 (.0749) (.0345) (.3967)
In L 4284 2918 4606 1.0939

n (0337 (.0912) (.1028) (1.0159)
n K 5938 8152 6535 9221

n (.0359) (.0389) (.1201) (.2582)
— 4246 —.6214

(In Ly* (,0993) (.6508)
7922 2759

In Lin X (0871) (2634)
— 4800 ~.3392

(n X)* (1071) (1470)

Parameter difference test for misspecification
+8=19,9896 ¥i=7.8084

t Specification robust standard errors from equation (7) in parentheses.

Cobb-Douglas and translog specifications. Appearances are confirmed by the
¥? statistic (8).  For each model, we must reject the null hypothesis that the model
is correctly specified at beyond the a=.5% level. In Table 3 we find WLS, esti-
mates to be rather different from either OLS or WLS,. Basing a formal 2 test
on the difference between forg and f wLsy we find that only for the Cobb-Douglas
madel can the null hypothesis of no misspecification be rejected at standard levels.
If this test were used alone, a type IT error would be committed for the translog
specification.

Following the pracedure suggested above of accepting the null hypothesis if
both tests accept the null hypothesis at the « level leads to a test of size <2«
Thus, combining the results of Tables 2 and 3, we can reject the null hypothesis
of no misspecification at or beyond the 1% level. Taken together, the tests
perform well In detecting the functional misspecification.

For purposes of comparisen, the covariance matrix of the OLS regression
coefficients for the Cabb-Douglas specification is reported in Table 4, calculated
first as s2(X'X)~! and then using the specification robust estimator of Theorem 3,
As previously noted, s%(X'X)! is generally inconsistent in the presence of mis-
specification, Here, differences between the usual and specification robust
covariance estimators are on the order of 10%;, with some elements increasing and
some elements decreasing when (X' X) [T (¥i— X Bors)? X1 X J(X X)1 is used
instead of s3(X'X)~L. In White [1979], a formal test for model misspecification
based on differences in these covariance matrix estimators is constructed. In
this particular case, this test (x%=152.68) reveals a statistically significant differ-
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TABLE 4
CONTRAST OF COVARIANCE MATRICES OF OLS REGRESSIONS
FOR THE COBB-DOUGLAS AFPROXIMATION

1. Covariance matrix calculated as s%( X" X)*

000594 —.000494 — 000496
[ —.000494 001049 —.000074 :|
-.000496 —.000076 001058

1. Covariance matrix calculated as (X'X)“[}“:l: (Y, —X(,@O,_SJEX;Xé] (X'x)*
€=1

: .000542 —.0004]15 —.000448
[ —.000415 Q01132 —.000339 :|
000448 —.000189 001292

ence between the two, so that use of s2(X’'X)7! for testing hypotheses will lead to
errors in inference. (See White [£979] for further discussion and examples.)

5. HBTERQSKEDASTIC ERRORS

When there is no functional misspecification and the errors g; are truly hetero-
skedastic, so that E(se)= Q# g, the WLS estimator

Bows = (X' X XY

is consistent and BAN. Above, we have seen that with misspecification the use
of a weighting function may affect the parameter estimates obtained. In this
section we show that correcting for a particular kind of heteroskedasticity!?® in
the presence of functional misspecification does not impair one's ability to esti-
mate the parameter vector of the least squares approximation, §*,

Specifically, assume

A6. The weights W, are i.i.d. random variables independent of Z,, 0 <d< W,
<M, where 8, M are arbitrary finite constants, and E{W,Xje)=0.

Carrecting for heteroskedasticity involves setting W= 1/g%, where ¢f= FE(c3),
i=1,..., nare scalars independent of Z,. Continuing to define {2 as the diagonal
matrix with diagonal elements W, we have the following result.

THEOREM 5. If Al, A3, A4 and A6 hold, then fy, 25 B*.

The independence of W, and Z, is crucial to the consistency of flys for §*.

In practice, the choice W;=1/g? is uslikely to be known a priori. Usually, o7
must be estimated from the data. This may be successfully done if ¢? depends
only upon factors independent of Z,.  If this is not the case, the determinants of
heteroskedasticity can be confounded with other terms arising from the non-
independence of u} and Z; caused by functional misspecification. To see this,
suppose (for simplicity), that f* is known, but ¢2 is only known to satisfy 62=0,4

" The heteraskedasticity considered here involves ¢; with i.i.d. variances independent of Z,.
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where @; are i.i.d. random variables. If the model were correct, ¢ could be
estimated as Q;4 where 4 is the estimated regression coefficient of the model

S?ZQLAJ{‘UL i= I,...,n

and g=Y-Xf,=¥%.— X,f*. When the model is misspecified, two things
happen. First, the OLS regression for

ut = Q4 + v,

where uf =Y, — X, f*=5+9(Z)— X,f* will yield biased estimates of A when Q,
is correlated with the squared specification error.  Second, even if 1 were known,
dependence of Q; on Z, will affect the least squares approximation when W,=
1/Q;A. Thus, attempting to correct for heteroskedasticity can eliminate even the
modest properties of the least squares estimator as an optimal predictor (in the
MSE sense) for randomly drawn X,

Can anything be done about this difficulty? Short of eliminating the mis-
specification, the answer appears to be no. Haowever, this question presupposes
that something should be done about heteroskedasticity, When the model is
known, elimination of heteroskedasticity improves the efficiency of the parameter
estimates. However, when the maodel is unknown, even a successful correction
for heteroskedasticity (say W;=1/¢? known and independent of Z,) need not neces-
sarily reduce the covariance matrix, M$V(B*)Mx$, because of the special form
of V{F*). In the author’s opinion, a safe strategy is to estimate § by OLS and
WLS, correcting for suspected heteroskedasticity. Perform the specification
test (8) based on a comparison of these two estimators.  If the null hypothesis of
no misspecification is rejected, use the OLS estimates for puarposes of prediction
(approximation). Note that the weights of A6 have no power for the specifi-
cation test (8). If such weights are available, WELS may (but does not necessarily)
improve the prediction (approximation) variance.

6. SUMMARY AND CONCLUDING REMARKS

Functional misspecification is a fact of life — one almost never has information
which justifies a particular linear or non-linear specification. Indeed, most
econometric estimating relationships are intended as approximations, rather than
as the “‘truth.” It is therefore useful to realize the limitations of our approxi-
mations. As predictors they have desirable properties. The parameters esti-
mated converge to the parameters of the least squares approximation, however,
and not to the *‘true’ parameters except when no misspecification occurs. Infer-
ences may be drawn about the parameters of the approximation when performing
least squares in the presence of functional misspecification using the covariance
estimator (X'X{n) 1 Pqus (X' X/n)y"!. The usual estimator s¥X'X/n)~! is not
necessarily consistent in the framework considered here and may yield faulty
inferences. When using weighted least squares it may not be possible to obtain
consistent estimates of the parameters of the conditional error variances, due to
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the presence of the approximation remainder in the estimated ordinary least
squares residuals. A test for specification error, (8), is provided which may be
useful in assessing the extent of these difficulties.

It is worthwhile to emphasize the general usefulness of the least squares ap-
proximation. Its optimality as a predictor holds regardless of omitted variables,
aggregation errar, errors in variables, simultaneous equation error, non-additivity
of the disturbance, or other forms of functional misspecification. This is in sharp
contrast to the very limited ability of least squares to provide information about
partial derivatives or elasticities of unknown functions, as the results of Section 2
suggest. Reliance on the Taylor approximation interpretation is an imprecise
if not totally misleading practice.

University of Rochester, U.S. 4.

MATHEMATICAL APPENDIX

All assumptions and definitions are as given in the text.

Tueonem 1. [f Al and A2 hold, and if d'Mz1=0, where d is a p= | direction
vector of unit length, then

d'Pg(0) + d'Mzly, < plim &8 < d'P g(0) + d'Mz4y,.

Proor. By the finiteness of My, and o2, the Hdlder inequality ensures the
finiteness of E(Z,9(Z})), so that we can write

a o
@) B2y = (20@dFe) + {ze@ar.

—a

Using the mean value theorem and the boundedness of Fg(0), we obtain

S:ﬂjz G(DdF(z) = Sfmgz J[9(0) + 27 9(0) + - 27 2g(2(2)2"1dF (z)
and
(" (20arG) = (2100 + 270) + L 2prg210FC)

where 7(z) and Z(z) lie between 0 and z. By A2, zBz' < zf2g(3(z))z' < z4z' and
2Bz’ < 2P 2g(3(z))z' < zAzZ’ for all z in the support of F. Hence

@.2) So_mg z, [gm) +2Pg@) + + zAz’JdF(z) < SLS 2,9(2)dF(z)
< Siwgzj [9(0) + 27 9(0) + 4 sz‘]dF(z)

and
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@.3) S:Sz ; [9(0) +27g©) + 4 sz'} dF(z) < S:Sz (DAFE)

< S Szj [g(O) +2Pg (@)% 24 ]dF(z),
Combining (a.1), (2.2) and (a.3) and using the fact that E(Z,;)=0 yields

a4) (7 {22ap@ g + 9y < B2 02)

< Bo_omgzjzdf’(z)}?g(ﬂ) + =1, p.

Stacking the relations (a.4) yields
(a.5) MzFg(0) + v, £ My, £ M,,Pg(0) + 3,

where My, = E(Zig(Z)). Since d'Mz}20, the inequalities of (a.5) are not dis-
turbed by pre-multiplication by d'M3z1, so

d'Vg@) + d'Mziy, £ d'Mz5My, < d'Pg(0) + d'Mzly,.
The result follows if plim d’@zd’M;j}_Mzg. This is true since
8 = (ZZin) W Z'Yin)
= @zZpny (7t 3 Zig(Z) + @2y M Y Zis).

Now (Z'Z{n) -2 M ,; by Khintchine's weak law of large numbers and since M,
is nonsingular, (Z’Z/n)‘I —2,Mzi. Also by Khintchine's weak law, n~! 2 Zig(Z)
—£3 My, and n” Z Zig; 250 {since E(Zig)=0 under Al)., Thus

8 2, MzIM7!
and the result follows. 0

THEOREM 2. Under Al, A3 and A4, o255 B*, the parameter vector which
uniquely solves

min a*(8) = {[9(2) — XV F(:) + 2

and 52 2:5 5H((*%) where s*=(n— k)1 i (Y= X fors)

Proor. Define f*=MziMy, where My, = gx §(2)dF(z). The vector §* is

finite since My} is finite and since My, is finite by the Holder inequality under A4,
Consider a compact neighborhood of %, say v. Now ¢?(f) is integrable for f*
€v, and there exist integrable functions #{z), j=1,..., k such that {8[g(z) — xF1?/



UNKNOWN REGRESSION FUNCTIONS 165

&
B =1x;[g(z) —xFll < hy(z) =[x ,9(z){ + 2. {x;%,| - b, where b, is a finite constant
=1

such that |f] < b, for all finv. [t follows from Bartle (1966, Corollary 5.9] that
o(B) is differentiable on v and that

B5%(B)/op = Sx*[g(z) - xB1dF(z).

It is readily verified that do%(f*)/0f=0, and by a similar argument that &2s%{f)/
Ap3f' = Mygy, which is positive definite by A4. Thus p* uniquely minimizes
aXf). Now

Bors = (X' X[ny X' ¥n)
= (XX Y Xig(Z) + XX Iny ! 3 Xie)
i=1 fe=
givenr Al. Since (Z, g) are 1.i.d., Komolgorov’'s strang law of Jarge numbers
implies (X'X/n) 255 Myy, and the nonsingularity of My, guarantees (X'X/r)!

25, Myi. Also Komolgorov's strong law  implies #7! i Xg(Z)25 My,
=]
n1Y Xig 45,0 under A3 and A4, Tt follows that
i=1
Bors 25 MziMy, = B*.
Next,
a*(6) = {907 — 26*x'9() + prx'xp*14F(z) + o
= 07 — 2My MxiMyg, + M5 M IMy, + o}
=6} + 0 — My, MgiMy,.
Now s*=(n—k)! )i‘, (¥, — X fors)* may be written
=1

st = [nfin — K[V Yin — (Y X/ (X' X/ny (X ¥Y/n)] .

By Komolgorov's strong law of large numbers, (Y'¥/n) 255 a7+ a7 given Al and
A4, and, as before, (X'Y/n) 255 My, (X' X[n)y~ ' 255 M3k, Since nf{n—k)—1,

g2 a5, J;‘ + O’f — M%QME%MXQ = 0‘1(,8*)- i

TurorEM 3. Under A1, A3 and A4

JiBors — B4 NO, MEEV(BIM3})

where V(%)= E{[¢(Z)— X ,f*+2]°X X)), provided E(Y3X[X,) and E(X};X X))
j=1,.., k are finite. Mareover, (X'X[n) 1235 M and Vopg255 V(%), where

Dors=n1 Y (Yi— X Bors? XX, so that
i=1
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(X' X)) Vor X X [n)™! 23 MygV(B* )My}
Proor. We may write
Vi Bors — B%) = (X'X[n)y w2 Y Xifg(Z) — X B* + 2).
The random vectors Xi(g(Z;)— X;f*+¢,) are i.1.d. under At with
E(X(g(Z) ~ X% + 2)) = 0
and
E([g(Z) — X.f* + 1P X X} = V(B
given Al, A3, A4, provided V(f¥*) is finite. Thus,

WS Xi(g(Z) — X B* + 5) A NO, V(B

by the multivariatc Lindeberg-Levy central limit theorem. Since the X, are
Lid., (X'X/n)25 M, by Komolgorov’s strong law of large numbers under
Ad; the nonsingularity of My, thus 1mphes (X'X{ny ! exists almost surely
for n sufficiently large, and that (X' X/n)y t 22, ML It follows that given Al,
A3 and A4

VrBous — £*) 4 NQO, MRiV(B*)MzH)
provided V(§¥) is finite. This fact and the strong consistency of Vg s for V(5%)
are proven as follows.
By assumption, E(¥?X;X)) and E(X?}X[X,) are finite. Since S* is finite,
E(X3,p¥2X X)) is finite. Also, since Xu,ﬁ‘JX ;X ; is continuous in f;, there exists
a compact neighborhood v of f* such that E(|X?5? .erJ) L Lm=1..kis

finite for all 8in v. There also exists § with finite elements §; such that ,Gf <f?
for all #in v, so that

[X ;BZXrIXim| |X ﬁszXml j$ l m=1,.., k
and |X}#3X, X .| is integrable with respect to F (the joint distribution function

of the Z,) 1t is a direct consequence of the simple inequality [a +b[2< 2[a|2+2]b|
that there exist finite constants i,,..., A, such that for all # in v

(3.6) |(Y Xl.ﬁ)le!XLm[ = ;"O'YZXllXLm' + z 4; |X BZXILme[

< Al YEX Xl + ZL;LJ[X%jﬁjX!PXIm[ Lm=1,.,k

Taking expectations at fi* in (a.6), the finiteness of E(YlXuXm) and E(X?/%-

X.X.|) guarantees the finiteness of V(5*). The fact that Jo 25 8* (proven in
Theorem (2) under Al, A3 and Ad), the finiteness of E(Y2X,X,,) and E(|X%f52.
X, X)) and (a.6) imply
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nt il (Y: — XiBors)®X i Xi 255 E([9(Z) — X* + 612X 1 X 1)
Im=1,..,%k
by White [1979, Lemma 3.1]; thus, P25 V(8%). [

TuporeM 4. If g(Z) = X B4, if AL, A3-AS hold, and if E(Y;X{X)), E(X};
XXM i=1,..., k are finite, then

nBors — Bars) ¥ Bors — Bwrs) L 43

where
§ = (X Xy Wors(X'X[n)™" + (X'Q X)LV gy (X' Q™1 X )1
— (X' XX O X Iyt = (XX ) O(X X )

Vs = 1! ?_;1 W(Z)NY; — X s XX,

U= nt 3 WEZa (Y~ XBors) (¥ — Xwis)XiX,
provided a.s. lim § is finite and nonsingular.

Proor. If g(Z)=X,f,, we may write
«,/”_(ﬁom - Bwr_s)

= (X'X/0) VY Xie — (XQ X[y Y2y W(Z)X e,
i=1 i=1
Now (X'X/n)~t25 Myh and (X'Q 1X[n) 22, Mz3=E(W(Z)XiX,} by Komol-
gorov’'s strang law of large numbers under Al, A3-AS5. Hence
> W(Z)Xe

1

3 _ H — _
JnBors — Bwis) £ Mhn™'/? z X - Mggn=t/2
b=

= U2 _il MzhXie, — MaiW(Z)Xe,

The random vectors MyiXie;—MzeW(Z)X e, are i.1.d. with expectation zero
given A4 and AS and have covariance matrix
¥ = E((MzkXie — MatW(Z)Xie] [o:.X Mk — W(Z)eX:Mz3])
= M}V(Bo)Mit + MysV(BMzh — MitU(Bo)Mzt — MegU(Bo)Mih
where
V() = B(W(Z)(Y, — X $*XiX)
U(B) = E(W(Z) (Y, — Xif)* X\ Xy).
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It follows by the multivariate Lindeberg-Levy ceutral limit theorem that

\/H(BOLS - ﬁWLs)’éa N, )
provided i 1s fimite. If  is nonsingular then
\/H(BOLS — Bwrs) ¥ HPors — Bwis) L 72
and the result follows immediately if 1.2 1. In fact, =t 25, ~1, This
follows since (XX fny ! 2o ML (X'Q 71X /n)y 125, ML as shown above, since
P ors-25 ¥{(f,) as shown in Theorem 3, and since Py, g-2:55 P(f,) and U 235 U(B,)
under the additional condition AS by arguments identical to those proving Fgrg
255 V(B,) in Theoram 3. These facts imply 2554, and arguments identical to
those of Theorem 3 guarantee the finiteness of . The nonsingularity of

implies the existence of ! almost surely for n sufficiently large; it follows that
12,041 which implies

\/E({?OLS - ﬁWLS}&—j(EOLS - ﬁwr_s)"“{«ﬁ- D
THEoREM 5. If Al, A3, Ad and A6 hold, then By, 25 B*.
ProoF. We may write
Burs = (70 3 WXIX) ot Y WX,
f=1 =1
By Komolgorov's strong law of large numbers
(' S WXiX) 255 BWX(X)
i=1
and
(Y WXGY) 25 B(WX(Y)
n=1
given Al, A3, Ad and A4, Now E(I) is finite,
E(WAXIX,) = E(W)M yx
and
E(WX1Y,) = E(W)My, + E(W.X2)
= E(W)Myx,
given A6. Since E(W) >4, we have
Burs 2% E(W) My E(W)My,
= MpiMy, = % [

LEMMA L. Suppose g statistical tests are performed, and let the event A,

q
denote accepting hypothesis Hy on the hasis of the i-th test. Ler /\ A,c B, the
i=1
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event denating acceptance of hypothesis H, an the basis of the g tests taken
together (i.e., the null hypothesis is accepted on the basis of g tests if each test
accepts the null hypothesis). Then the size of the overall test, PLB| Hy], is such
that

— o4 .
P[BiH,] < zl P{A1 H,]
In particular, if P[A;| Hyl=4a, i=1,..., q, then P[B{H,] < qe.

4q
Proor. The event /™ A;| Hy implies B|H,. Then, by the implication rule
i=1
Lukacs [1975, p. 7])

PLBIHo) < 3 PLAIHG]. O
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