A Simple General Approach to Inference About the Tail of a Distribution

Bruce M. Hill

Annals of Statistics, Volume 3, Issue 5 (Sep., 1975), 1163-1174.

Stable URL:
http://links.jstor.org/sici 7sici=0090-5364%28197509%293%3A5%3C1163%3AASGATI%3E2.0.CO%3B2-Y

Your use of the ISTOR archive indicates your acceptance of ISTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. ISTOR's Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the ISTOR archive only for your personal, non-commercial use.

Each copy of any part of a ISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transtnission.

Annals of Statistics 1s published by Institute of Mathematical Statistics. Please contact the publisher for further
permissions regarding the use of this work. Publisher contact information may be obtained at
http://www _jstor.org/journals/ims.html.

Annals of Statistics
©1975 Institute of Mathematical Statistics

ISTOR and the ISTOR logo are trademarks of ISTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on ISTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www jstor.org/
Sun Nov 3 12:31:08 2002



The Annals of Slatistics
1975, Yol. 3, No. 5§, 1163-1174

A SIMPLE GENERAL APPROACH TO INFERENCE
ABOUT THE TAIL OF A DISTRIBUTION

By Bruce M. Hirr
University of Michigan

A simple general approach to inference about the tail behavior of a
distribution is proposed. It is not required to assume any global form for
the distribution function, but merely the form of behavior in the tail where

© it is desired to draw inference. Results are particulacly simple for distri-
butions of the Zipf type, i.e., where G(y) =1 — Cy~= for large y. The
methads of inference are based upon an evaluation of the conditjonal likeli-
heod for the parameters describing the tail behavior, given the values of
the extreme order statistics, and can be implemented from both Bayesjan
and frequentist viewpoints.

1. Introduction and summary. In certain situations it is of interest to draw
inference about the behavior of a distribution function in the tails without as-
suming that a particular parametric form for the distribution function holds
globally. The examples that gave rise to this article concerned a random sample
Z,, .., Z, from adistribution ¥ on the unit interval with #{x) ~ Cx*as x — 0,
[1],[2], [3]. Tt was desired to draw inference about a without making assump-
tions about the form of F elsewhere. A similar situation occurs in connection
with inference about the parameter « of a Zipf or Pareto Law 1 — F{x) ~ Cx~
as x — oo, where it is desirable to assume that the Zipf form holds only for
large x, not globally [1], [2], [3]. A simple general form of inference, which
can be implemented from either Bayesian or classical approaches, is proposed
here for such situations.

Suppose that a sample Y,, - .-, ¥,, is drawn from a population with distribu-
tien G, and let V"' = ¥V® = ... = ¥® be the order statistics. (Here and
throughout the usual definition of order statistics is reversed in order to simplify
formulas in applications.}) On the basis of theoretical arguments or previous
data it is believed, or at least the hypothesis is tentatively entertained, that G
has a known functional form, say, G(y) = w(y; 8), for y sufficiently large, where
& is a vector of parameters. The simplest case is that in which a number D is
known such that for y = D this functional form is valid. Here, D need not be
the smallest value for which this is true, and thus might be chosen quite con-
servatively in some situations. When the global form of ¢ is unknown, so that
ordinary parametric methods are unavailable, it is then perhaps intuitively plau-
sible to base inference about & on the values of those order statistics that exceed
D, since it is only these that lie in the region where G is believed to have the
specified form. Thus the values of such order statistics might be taken as a
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conditioning event, or data, for the purpose of inference about 4. There is, of
course, a certain degree of arbitrariness in the choice of such a conditioning
event. For example, if Y9 = D > Y+®, then it might be argued that it
would be more appropriate to condition not only upon the values of the r 4 1
largest order statistics, but also upon the event ¥+ < D. Here, as elsewhere
in statistics, questions as to choice of conditioning events are subtle, and answers
will be heavily colored by philosophical outlook. Such questions will be dis-
cussed in Section 4, where an attempt is made to justify the proposed procedures
from a Bayesian viewpoint. To some extent, however, such questions are rather
academic. Thus in typical applications D will not be known precisely, and it
will be necessary to select a subset, consisting say of the F + | largest order
statistics, on the basis of prior knowledge and a combination of various data
analytic techniques. Such an # will often depend upon the data in a highly
complicated way, and questions as to the precise form of conditioning event
become of lesser importance than the choice of /. The approach advocated here
1s to consider the inference based upon the values of the r + 1 largest order
statistics, for r = 1,2, etc., until upon the basis of data analytic guides and
prior knowledge a stopping point 7 is reached, beyond which it seems unwise to
proceed. This approach is illustrated in Section 5, where the Zipf model is used
for city size data.

In Section 2 conditional likelihood functions for & are derived for inference
about the lower tail behavior of a distribution F on the positive reals. This is
done both when conditioning only upon the values of the r + 1 smallest order
statistics, and also when conditioning in addition upon the event Y®*—"- > 4.
Such conditiona] likelihood functions form the basis for both Bayesian and clas-
sical inference. (Strictly speaking, all likelihood functions are conditional;
however, the adjective is used here to emphasize that different subsets of the
data are conditioned upon.) By means of such conditioning a possibly bighly
complex nonparametric problem is reduced to a relatively tractable parametric
form. In the special cases F(x) = Cx*asx — 0, or 1 — F(x) = Cx™* as x — 0,
the conditional likelihood functions and the conditional maximum likelihood
estimates of @ and C take on particularly simple forms for both types of con-
ditioning events. In these cases it is seen that inference is rather insensitive to
the precise nature of the conditioning event, provided that a modest number of
order statistics fall in the region where the functional form is valid. Indeed, for
inference about « alone, it would ordinarily suffice to condition merely upon
ratios of consecutive order statistics.

In Section 3 it is shown how upper tail behavior of the Zipf form can be de-
duced from lower tail behavior of the type discussed in Section 2, the general
form of inference for upper tails is obtained, and varjous other applications of
the basic approach are suggested.

Recent related discussions of inference based upon extreme order statistics
have been given by Johnson [4], who derives asymptotic properties of the
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likelihood function, and by Pickands [6], who proposes a method of inference
using sample quantiles.

2. Lower tail inference, LetZ,,..., Z, be a sample froma continuous strictly
increasing distribution F, with F(0) = 0, and let Z% > Z® = ... > Z®* be
the order statistics. By the Renyi representation theorem [7]

21 zo=Flepe (S O g ],
-1 Pt T T
for i=1,2,...,k,
where here and throughout the e, are independent exponentially distributed
random variables, each with expectation 1. Then
(22) e, =(k—j+ {InFZ") —In F(Z)], for j=1,2, ...k,

where by definition F(Z) = 1.

Now suppose that F(x) = w(x; #) for x < d, where w is a specified function,
d is known, and ¢ is an unknown parameter vector. From (2.2) it follows that
for Z4#- < 4,

(k — j + DInw(Z4"; 8) — lnw(Z5; 6)] = e, ,

(2.3) for j—k—r4+ 1, k—r+2, .-k,
—k1n Z“k'—”;ﬂ = k(& €, e €or )1
w( ) T Tt +—r+1

and so these equations determine the probability of any event for which
Ze=n < 4, If the observed values of the extreme order statistics are 26 — ztit

forj =4k —r k—r+41,... & with z¢-" < d, then the conditional likelihood
function for # is
(2.4) L(8) oc [J] exp] — 317, i(In w(z—5; 8) — In w(zt~i+1; §))]

X p(—k o w(z*=71;5 6))

where the Jacobian J is easily verified to be proportional to [[71 (d In w(z/*-*+;
8))/dz*=*1, and p is the density function of k(e fk + - + e,_ J(r + 1)), i.e.,
of a linear combination of independent exponentially distributed random vari-
ables. The density p can easily be evaluated as follows. Let B(a, ) denote a
random variable having the beta distribution with parameters ¢ and b. If
F(x}) = x, for 0 £ x < 1, then it is well known that Z% is djstributed like
Bk — i+ 1, 1), so that from (2.1), pisin fact the density function of a random
variable having the distribution of —k [n B(» +- 1, k — r). Hence

P(x) o exp] —(r 4 Lxfk][1 — exp(—x/k)]*! for x>0,
and the factor p in (2.4) reduces to
[w(zu;_r;; 5)}”1[1 _ w(sz-n; 3)]1:—;-—1 .

It is easy to show that if the conditioning event used above to obtain L(#) is
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supplemented by the additional condition Z%-*-! > d, so that exactly r + 1 of
the order statistics are < 4, then the resulting conditional likelihood function is

(2.5) ' Ly(B) oc LO)[(1 — w(d; 0))[(1 — w(z="; g))Je-r-1
o |J|[l — wid, ﬂ)lk—r—l 12 W(Z‘k_{“‘; 9) .

These likelihood functions can be used either to obtain conditional maximum
likelihood estimates: for #, or, in conjunction with a prior distribution for 4,
conditional posteriofi‘ distributions for #. The essential point is that by virtue
of the conditioning, a highly complicated nonparametric problem has been
reduced to parametric form. Although in general the conditional [likelihood
functions and maximum likelihood estimators may themselves be quite compli-
cated, the reduction to the typically small number of parameters contained in
# would appear to be a substantial reduction in the scope of the inferential
problem.

In the special case w(x; ) = Cx*forx < d,s0 8 = (a, C), witha > 0,C > 0,
the above likelihood functions take on particularly simple forms. Indeed, sup-
pose that we were to condition only upon Z%*~7 < 4, and upon the values ¢, of
the random variables 7; = {[ln Z*~% — In Z®*~*D|fori = 1,2, ..., r. Tt would
follow immediately from (2.2) that the conditional likelihood function for a is
then L{a) oc a*exp(—a 337 ¢,). In this case the conditional maximum-likelihood
estimate of « is

& = 1o 1) = [Inzé=r! — =t 2t [l zte-u]t,

The properties of &, as an estimator of « in the frequentist sense can easily be
derived, conditional upon Z*-"' < 4. From (2.2), {2.3), and the independence
of the ¢, it follows that the conditional distribution of &,, given Z%*-" < 4, is
that of r/X(r), where X(i) denotes a random variable having the gamma distri-
bution with density proportional to x*~'exp —x, for x >> 0. Hence

(2.6) E@ )| Z* " <dy=raf(r— 1), for r>1, and
var (&,| 2% £ d) = (re)¥[(r — 1YX(r — 2)], for r>2.

From a frequentist point of view, taking a conditional framework, the above con-
ditional distribution of &, given Z%*~' < d, might be regarded as an appropriate
basis for inference about «, i.e., estimation, confidence intervals, hypothesis
testing. This would be analogous, for example, to conditioning upon marginal
totals for inference about contingency tables ([5], page 145). Alternatively, for
fixed r and large &, Pr [Z%*~"' < d] will be nearly I, and the conditional moments
should approximate the unconditional moments.

From a Bayesian or likelihood point of view it is not necessary even to con-
sider Pr [Z*~"" < d], since conditioning upon Z*, . .., Z*~7, for example, with
Z#r < d, implies that Pr[Z%*" < d|Z®, ..., Z* "] is either 0 or 1, does
not depend upon any unknown parameters, and thus cannot affect the likelihood
function. However, it is necessary for a Bayesian to justify the ignoring of
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certain portions of the data that is implicit in basing inference upon the kinds
of conditional events considered above. Such questions will be discussed in
Section 4. Accepting for the time being that a conditional likelihood function
such as Lj(a) can be justified, Bayesian inference in this case would consist of
multiplying L(«) by a prior density function, and interpreting the product as
proportional to the posterior density for @. Although the gamma family of prior
densities would be particularly convenient, there is no need to restrict attention
to this family. Finally, from a design point of view, a Bayesian might wish to
take observations sequentially, stopping when there are sufficiently many obser-
vations < d for his needs. As usual, the stopping rule employed will have no
effect upon Bayesian inference, provided that it depends only upon the data.
Consider next the conditional likelihood function La, C) given by (2.5),
which can be viewed as resulting from conditioning upon Z%#-r! = z¢%=r < d,
and Z**~*-4 > 4, in addition to the values of the 7,. Both maximum likelihood
estimation and Bayesian inference are simplified by transforming the parameter
Cto § = F(d) = Cd=, where 4 is the fixed prespecified value below which the
functional form is assumed valid. In terms of (a, §) the likelihood function is

2.7) Lia, f) cc a™texp—a[(r + )Ind — T7_,In zt%-9]

X Bl — gyt for a>0, 0< B8],
The conditional maximum likelihood estimates from (2.7) are then
(2.8) & =(r+ J(r + Dlnd — 31,Inz%#],

lél =(r+ 1)/k . and éj - ﬁjldgﬂ .

The conditional distributions of these estimators are easily obtained.

For Bayesian inference a convenient and reasonably rich class of prior densi-
ties for {a, f) arises by letting « have a gamma distribution, while, conditional
upon «a, 8 has beta distribution B(a(er), b(a)), in which the parameters of the
beta distribution are allowed to depend upon a. (Note that the parameter 8
could be replaced by the value of F at any fixed x < d; however, in conjunction
with (2.7), 4 is most convenient.) If the prior density for (a, 8) is taken pro-
portional to

e exp—fa]p=[1 — g1 =T (aa) + be)[T(@(@)T(Ba)]

where " is the usual gamma function, then multiplying by Li{a, §), it is seen that
the posterior density is of a similar form. Particularly simple results are obtained
when a(a) = a and d(«) = bdo not depend upon «, so that a priori a and § are
independent. In this case they are also independent a posteriori, and the posterior
expectations of a, 8, and C, i.e., the Bayes estimates for squared error loss, are

& = (¥ s+ l)/[(." + Dind — 31, In zte—it +f1,
29) f=(+a+Ya+b+k, and
¢ = ﬁ[l + atnd/(r + s 4 O] e,
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A similar Bayesian analysis is possible using L (a, C) from (2.4). The maxi-
mum likelihood estimates in this case are

(2.10) & = [(r + 1)frla, and C, = [(r + V][],

It is to be noted that when a, b, f, s — 1, and z%-r~1' _ zt:-7) gpe small, with
- < g < U and if 7 is not too small, then both the Bayes estimates
(2.9), and the maximum likelihood estimates obtained under the various forms
of conditioning, are all approximately equal. Thus a certain degree of robust-
ness, both to the parameters of the prior distribution, and to the type of con-
ditioning event, can often be anticipated. Although the prior distribution upon
which (2.9) is based will sometimes be reasonable as an approximation, it was
used here primarily to illustrate the form which Bayesian inference takes in
this problem.

3. Upper tail inference and applications. Consider first a sample ¥, ..., Y,
of positive random variables with distribution function G(y) = 1 — Cy== for
y 2 D, where D is known. The simplest way to draw inference about « and C
Is to observe that if Z, = ¥,7', then Pr[Z, < x]=Pr[¥, = x'] = Cx*, if
x £d = D", so that the theory developed in the preceding section is directly

applicable. Conditioning upon the values Y — yo, { — 1,2, ... r + 1, of the
r + | largest observations, where y"*" = D, yields
3.1 & =(r+ Y [Dny® —rlny*9]  and

C = [y + 1)k,

as the maximum likelihood estimates of & and C, based upon (2.10) for the z,,
and expressed in terms of the yt,

This simple method of inference for an upper tail of the Zipf form was ob-
tained by noticing a suitable transformation of the data in order to reduce the
problem to the form considered earlier. As another illustration of such a trans-
formation, suppose that the random variable X has a distribution F of the
Weibull form, 1 — F(x) = exp[ —(rx)’] for large x. Transformingto ¥ = exp X*
yields Pr[Y > y] = y~' for large y, which thus reduces to Zipf’s Law with
a = r'. These examples illustrate how the results of Section 2 for lower tails
can be exploited by means of transformations of the variables to deal with upper
tails. An alternative general approach following the lines of that in Section 2
for lower tails is to assume that G(y) has a known form in the upper tail, say,
G(y) = w(3; 9), if y = D. Then, conditional upon Y+ > D, from (2.2),

e, =(k — i+ D[lnw(Ye=U,8) — Inw(¥Y; 8)],
3.2) for (=2,...,r41, and
e, = —klnw(¥Y; 8).

It is worth noting that (3.2) is not quite symmetrical to the corresponding (2.3)
for lower tails. Conditioningupon Y = yp* =1, ..., r 4+ 1, as data, where
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Yt = D, the conditional likelihood function for & is
(3.3)  Ly8) oc [lexplk lnw(y®; 8) — 1., (k — i) In[w(p®; 8)/w(p'+0; 6)]]
where the Jacobian J is proportional to J]5} (d [n w(y®; 8))/dyt.

i=1

It is interesting to observe that the identities which can be obtained, on the
one hand by using (3.3), and on the other hand by making use of transforma-
tions as illustrated above, are often by no means obvious.

For other applications of the basic approach in this article, observe that
although the discussion so far has concerned the tails of distributions, the
relationships given by (2.3) and (3.2) can in fact be employed for any pair of
consecutive order statistics. Thus if the functional form F(x) = w(x; 8) were
believed valid in some interval containing a middle subset of the order statis-
tics, for example, if F were believed to be approximately normal excepr in the
tails, then a slight modification of the approach presented here would allow
inference about location and scale parameters.

Still another application arises when F is a distribution on the real line and
both the upper and lower tail behavior of F are of interest. The above approach
would enable symmetry of F (at least in the tails) to be tested; or, if F was
known to be symmetric, it would lead to pooling of the information from the
upper and lower order statistics, to yield more precise inference about the tail
behavior of F.

Finally, the method of inference suggested here can be of use even in cases
where some global specification of the model seems appropriate on theoretical
grounds or on the basis of experience. Thus if it were thought that the under-
lying distribution was a stable [aw with index a, then a comparison of the esti-
mate of a based upon the global stable law model with the estimates based upon
the much weaker assumptions of the present approach, could be used in part to
decide upon the adequacy of the global model. Even when the latter is appro-
priate, the present simple estimates of « might be used as initial values to aid
in the difficult computational task of obtaining maximum likelihood estimates
under the stable law model.

4. Bayesian comments. Maximum likelihood estimators such as those derived
above seem to have some justification from a classical view of inference, both
in conditional and unconditional frameworks. However, from a strict Bayesian
viewpoint, the posterior distribution should be based upon all the data. Thus,
in the example of Section 2, the posterior distribution for « using Ly(«) as likeli-
bood function would be justified only if it were known to yield a satisfactory
approximation to the marginal posterior distribution of a, given all the data.
However, in order to evaluate such a marginal posterior distribution, it would
be necessary to specify F globally, and thus to choose a parametric form for F,
say, in terms of additional (nuisance) parameters 2 and finally to integrate out
these nuisance parameters in the joint posterior distribution of @ and 2. Except
in some rather special situations, where a particular global specification seems
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appropriate, there is at present no satisfactory way of carrying out such a pro-
gram. Hence, reduction of the data to the values of the T, or Z%*~*¢Y, although
undesirable, seems necessary in order to deal with the problem at all. Further-
more, there are reasons to anticipate that when prior knowledge of the global
form of F'is vague, then the posterior distribution for e based upon L(a) should
approximate the “true” marginal posterior distribution for @. Thus, suppose
pla, i) = p(a)p,(4) is the prior density for («, ). Then the likelihood function
for («, 1), given all the data, could be written as L{a, ) oc L(a)L*(a, 1), where
Lo*(a, ) is the likelihood function based upon the data 27, ..., 7z, The
marginal posterior distribution for a, given all the data, would then be propor-
tional to
@) § Ly*(a, )p2) d2 ..

But with p,(1) of a diffuse nature, the integral will typically be a gentle function
of @ relative to Ly(«), and thus via a stable estimation argument, one anticipates
that p(a)l o) may provide a satisfactory approximation. This argument of
course depends crucially upon the assumed knowledge of the functional form of
F for x < d. Needless to say, a similar argument could equally well have been
made for basing inference upon L (e, C) or La, C), so this discussion should
not be construed as a justification for using L (a) in preference to the other
conditional likelihood functions. Rather, it is an attempt to make it clear that
any actual use of Bayesian methods of inference is implicitly based upon pre-
cisely such a stable estirpation argument, together with a hopefully judicious
choice of just what to include as data for the analysis. Although in principle
Bayesian methods condition upon alf available data, so that the only data that
can be ignored in connection with a specific problem of inference or decision-
making is that which itself, together with all of its underlying parameters, is
regarded as independent of the parameters of interest, in practice such a full
analysis is impossible, and any actual Bayesian analysis of data makes the neces-
sary approximations. Whether it is wise to ignore certain aspects of the data in
a particular application must be judged in the light of what can be done with,
as opposed to without, formal analysis of such aspects. When such a formal
analysis simply cannot be made, or even when it is merely very difficult and of
dubious validity, then there is little choice but to condition upon that part of
the data that can be effectively dealt with, and rely upon some form of the stable
estimation argument. Such information as is lost by this procedure (and there
is some reason to expect it is relatively little) could not, in any case, have been
utilized satisfactorily.

In so far as choice between Lya), L{a, C), and Lye, C), is concerned, one
would anticipate from the general argument given above, that it would make
little difference which of these is employed for inference about «, or which of
the last two is employed for inference about C, provided that 4 is reasonably
well know a priori, and that there are a substantial number of observations < 4.
This is borne out by the close relationships between the maximum likelihood
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estimators derived from these various likelihood functions. On the other hand,
when d is only vaguely known, or when there are very few order statistics for
which one can be reasonably sure that the relationship F(x) = Cx* holds, then
it is necessary to employ certain crude but effective data analytic techniques as
a guide to the choice of an appropriate value of r.

My own preference is for L(a, C), and thus conditioning upon the values of
the 7 + 1 smallest order statistics, but not upon the event Z%*-r-4 = ¢, This is
based upon the following considerations. In practice not only will 4 usually be
unknown, but the relation F(x) = Cx®, will be at best an approximation for
any x. The crucial question becomes whether or not the approximation can be
justified for a particular set of order statistics, say, 2, - - -, z%-}, and such a
question could be answered, for example, on the basis of the usual bias versus
precision considerations. But in such a context 4 loses the precise (but highly
artificial) meaning it has heretofore held. Indeed, it should be recalled that
even before this question of approximations was brought up, 4 was not assumed
to be the largest value for which the functional form was valid. Given this
indeterminacy as to the precise meaning of 4, which could be resolved, but only
in a highly artificial manner, it seems ordinarily preferable that 4 should not
appear explicitly in the inferential formulae. In the next section it is shown
how inference can be made using L (a, C), for increasing values of r, until on
the basis of certain guides, a particular value ¥ is chosen.

5. Data analysis. The methods proposed above depend upon a subjective
choice of & or D. In situations where such a choice is difficult, or for other
reasons deemed inappropriate there are a variety of data-analytic techniques
which can be useful in the choice of r upon which to base L,(«, #). Consider
again the case of a sample Y, - - -, ¥, from a distribution ¢ with G(y) = 1 — Cy~*
for y = D, but no longer assume that D is known. Let ¥, = In{¥Y®yYt+0], for
i=1, ..., r. From (2.2)it follows that, conditional upon Y“t" = D, aiV, =
€, for i = 1, -«  r, where the e, are again independent exponentially distri-
buted random variables, each with expectation 1. Hence if r has been chosen
sufficiently small so that y"*" is in fact = D, or to put it another way, so that
the approximation of G(y) by I — Cy~* is satisfactory for y = y*!, then the
iV, should in all respects behave like a random sample from an exponential dis-
tribution with parameter «, at least for i = 1, - .., r. On the other hand, if 7
has been chosen too large, so that y"*» and perhaps other of the larger order
statistics have values where the approximation is poor, then the iV, should
exhibit certain systematic discrepancies from their known behavior under the
exponential distribution. This observation forms the basis for a variety of
methods for choosing an appropriate r. Thus from a frequentist view one ¢an
simply test the hypothesis that the iV, have an exponential distribution for i =
1, -+, 7, using any of the standard test procedures, for example, the chi-square
goodness of fit test. If the hypothesis is accepted for a particular r, then one



1172 BRUCE M. HILL

can increase 7 step by step, until eventually the hypothesis is rejected. Such a
procedure would be analogous to the practice of fitting an nth degree polynomial
to a set of data in a regression analysis, and then testing, step by step, whether
the degree can be reduced. Some other interesting test statistics, which can
alternatively be viewed simply as measures of discrepancy, are

Hin — ﬁoﬂ Z£=1 (IVL _ &0—1): &ﬂd
K" = S [In (V) — r* S, VP,

where &, = &,(r) = [, iV.] " =[5 In Y& — rin YU+U}! is just the &,
of Section 2 expressed in terms of the ¥, The distributions of such statistics,
conditional upon Y*Y = D, are easily derived. For example, the conditional
distribution of H'" is that of 3.7, (¢, — é)*/é’, where & = (35, ¢;)/r. It can be
shown that the conditional expectation and variance of H'"' are approximately
r— I and 8(r — 1), respectively.

From a Bayesian point of view it would be preferable to incorporate prior
knowledge about the departures G might exhibit from its presumed form in the
upper tail, and on the basis of such considerations, for example, to estimate «
by a weighted average of the form [}t }is, V™', where 5, = 0, X ¥ }s, = 1,
and with the weights decreasing with i and nearly 0 for i near & — I, so that
most weight is given to the largest observations, where it is more likely that the
model is appropriate. Such estimators, compromising between bias and preci-
sion, are of course very natural from a risk function point of view. It is not
clear, however, just how much would be gained by such a more refined analysis,
as opposed to merely selecting a value # by inspection of the iV, or the measure
of discrepancy H, and using this value # to form L,(a, ).

The approach discussed in this article was developed as a means of examining
the adequacy of a theoretical model for Zipf's Law proposed in [1], {2], and [3].
In that model the parameter « plays a distinguished role and therefore it was of
importance to draw reliable inference about « under minimal assumptions about
the global form of the distribution G. In[2] the model was used to describe city
sizes, this being an area for which Zipf’s Law is generally regarded as appro-
priate. Table I gives the sizes of the 30 largest cities in the United States in 1940,
where the cities are defined by political boundaries. Several of the statistics pro-
posed in this article are also displayed as functions of r for r = 1,2, .- -, 29.

It is interesting to note that the standard deviation of ,(29), as given by (2.6),
is .20a, and the fluctuations of &(r) seem, if anything, too slight. This is also
reflected in H*', which stays somewhat surprisingly close to r — 1, considering
the magnitude of its variance. The fact that H'” is almost always smaller than
r — 1, with a substantial discrepancy for r near 19, is perhaps indicative of a
correlation amongst the iV,. A chi-square goodness of fit test on the 29 values
of the iV, using the class intervals 0 to .5, .5 to 1, and > [, yields a value of
.3 for chi-square with 1 degree of freedom. On the whole the fit of the model
seems embarrassingly good.
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TABLE 1t
Rank Size % 10-4 Vi &o(r) alr) H® kCy(r)
I 7,455 79 1.27 2.54 8.3 x 101
2 3,397 1.13 1.04 1.57 .06 2.1 x 0%
3 1,931 .52 1.23 1.64 .28 6.3 % 101
4 1,623 30 1.46 1.82 .81 9.2 x IO
5 1,504 2.69 .92 1.10 3.05 2.2 % 1¢7
6 878 .13 1.08 1.26 5.07 2.0 x 108
7 859 36 (.18 (.35 6.47 7.7 x 108
8 816 .45 (.25 (.41 7.5 1.8 x 100
9 771 1.24 1.18 1.31 6.90 4.5 x 100
(0 672 13 1.29 1.42 8.99 2.0 x 100
I 663 47 1.34 (.46 9.80 3.5 x 100
12 635 .94 1.3t 1.42 9.45 2.0 x 10°
13 587 .25 1.38 1.49 10.99 5.2 x 100
14 576 2.12 1.21 (.30 11.16 3.8 x 108
5 495 .09 1.29 1.38 13.45 1.1 % 109
16 492 1.22 1.25 1.32 12.82 5.3 % 108
17 456 1.00 1.23 1.30 12.52 3.8 x 108
18 430 1.35 1.19 1.25 12.03 1.9 x 108
19 399 58 1.21 1.27 12.53 2.4 % 108
20 387 .10 1.26 1.32 14.50 5.2 % 108
21 385 95 (.25 £.31 (4.27 4.2 x (08
2 368 2.73 (.13 (.18 16.10 7.0 x 107
23 325 21 (.16 1.21 (7.81 1.2 % 108
24 372 22 1.20 1.25 19.52 (.9 x 108
25 319 1.04 1.19 (.24 19.19 1.6 x 108
26 306 .09 1.23 1.28 21.42 2.8 % 108
27 305 .24 1.26 1.31 23.09 4.3 % 108
28 302.3 .01 1.31 1.36 25.81 7.9 x 108
29 302.2 10 1.35 1.40 28.23 1.4 % 109
30 301.2

' The data is taken from Statistical Abstract of the United States, 1950, page 37.

Although it would be possible to make some arbitrary definition of the popu-
lation from which these city sizes were drawn, and of the sample size &, it is
perhaps preferable not to become involved with such delicate questions in this
article. The values of kC,(r) are presented for illustrative purposes.
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