Panel Data and Unobservable Individual Effects

Jerry A. Hausman, William E. Taylor
Econometrica, Volume 49, Issue 6 (Nov., 1981), 1377-1398.

Stable URL:
http://links.jstor.org/sici ?sici=0012-9682%281981 11%2949%3A6%3C1377%IAPDAUIE%3E2 0.CO%3B2-3

Your use of the ISTOR archive indicates your acceptance of ISTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. ISTOR's Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the ISTOR archive only for your personal, non-commercial use.

Each copy of any part of a ISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transtnission.

Econometrica is published by The Econometric Society. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/econosoc.html.

Econometrica
@©1981 The Econometric Society

ISTOR and the ISTOR logo are trademarks of ISTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on ISTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www jstor.org/
Thu Oct 31 09:56:43 2002



Ecanametrica, Vol. 49, No. 6 (November, 1981}

PANEL DATA AND UNOBSERVARLE INDIVIDUAL EFFECTS!

By JERRY A. HaUSMAN aND WiLLIAM E. TayLOR?

An impartant purpose in combining time-series and cross-section data is to control for
individual-specific unohservahle effects which may be correlated with other explanatory
variables. Using exogeneity restrictions and the time-invariant characteristic of the latent
variable, we derive (i) a test far the presence of this effect and for the over-identifying
restrictions we use, (i} necessary and sufficient canditians for identfication, and (i} the
asymptotically efficient instrumental variables estimator and conditions under which it
differs from the within-groups estimator. We calculate efficient estimates of a wage
equation from the Michigan income dynamics data which indicate substantial differences
from within-groups or Balestra-Nerlove estimates—particularly, a significantly higher
estimate of the returns to schooling.

[. INTRODUCTION

AN IMPORTANT BENEFIT from pooling time-series and cross-section data is the
ability to control for individual-specific effects—possibly unobservable—which
may be correlated with other included variables in the specification of an
economic relationship. Analysis of cross-section data alone can neither identify
nar control for such individual effects. To consider a specific model, let

(1.1) YV, =X B8+ 2Zy+a -+, (=1,....,Nye=1, ..., T

where  and y are k& and g vectors of coefficients associated with time-varying
and time-invariant ohservable variables respectively. The disturbance n, is as-
sumed uncorrelated with the columns of (X,Z,a) and has zero mean and
constant variance o, conditional on X, and Z,. The latent individual effect g, is
assumed to be a time-invariant random wvariable, distributed independently
across individuals, with variance o;.

QOur primary focus i1s the potential correlation of «, with the columns of X and
Z. In the presence of such correlations, least squares (OLS) and generalized least
squares (GLS} vield biased and inconsistent estimates of the parameters { 8. y.
o,f.oj), The traditional technique to overcome this problem is to eliminate the
individual effects in the sample by transforming the data into deviations from
individual means.®* Unfortunately, the OLS coefficient estimates from the trans-
formed data (known as “within-groups™ or “fixed effects” estimators) have two
important defects: {1) a// time-invariant variables are eliminated by the transfor-
mation, so that y cannct be estimated, and (2) under certain circumstances, the
within-groups estimator is not fully efficient since it ignores variation across

"Early versions of this paper were presented at the Econometric Society Summer Maetings in
Montreal and at the Fourth World Congress in Aix en Pravence.

*Hausman thanks the NSF far financial suppoart. Rob Engle and Paul Ruud have given useful
comrments.

*This technique carresponds to Madel T of the analysis of variance, ¢.g.. Scheffé [19]. When used
in analysis of covariance, errors in measured variables can create a serious problem since they are
exacerbated by the data transformatian.
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1378 I A HAUSMAN AND W. E. TAYLOR

individuals in the sample. The first problem is generally the more serious since (n
some applications, primary interest is attached to the unknown coefficients of the
time-invariant variables, e.g., to the ceefficients of schooling in the wage equa-
tion below.

Another possible approach in the simultaneous equations model is to find
instruments for those columns of X and Z which are potentially correlated with
a,. However, it may be difficult to find appropriate instruments, excluded from
equation {1.1), which are uncorrelated with @, and, in any case, such procedures
ignore the time-invariant characteristic of the latent effect.

Specifications similar to equation (1.1} have been used in at least two empirical
contexts. In the cost and production function literature where a, denotes the
manageria) efficiency of the ith firm, Hoch [9] and Mundlak [14] have suggested
the use of the within-groups estimator to produce unbiased estimates of the
remaining parameters. If ¥, denotes the wages of the ith individual in the zth
time period, one of the Z’s measures his schooling, and «; denotes his unmeasur-
ahle ahility or ambition, then equation (1.1) represents a standard specification
for measuring the returns to education. To the extent that ability and schooling
are correlated, the OLS estimates are biased and inconsistent. Griliches [4] has
relied on an instrumental variables approach, using family background variables
excluded from equation (1.1) as instruments.* Another approach is the factor
analytic model, pioneered in this context by Joreskog [10] and applied to the
schooling problem by Chamberlain and Griliches [2] and Chamberlain (1]. This
maodel relies for identification upon orthogonality assumptions imposed upon
observable and unobservable components of &,. The method we propose does not
assume a specification of the components of a; and may be less sensitive (0 our
lack of knowledge about the unabservable individual-specific effect.

Instead, our method uses assumptions about the correlations between the
columns of (X,Z) and «,. If we are willing to assume that certain variables
among the X and Z are uncaorrelated with a;, then conditions may hold such that
all of the A’s and y’s may be consistently and efficiently estimated. Intuitively,
the columns of X, which are uncorrelated with « can serve two functions
because of their variation across bath individuals and time: (1) using deviations
from individual means, they produce unbiased estimates of the 8's, and (ii) using
the individual means, they provide valid instruments for the columns of Z, that
are correlated with a;.

One needs to be quite careful in choosing among the columns of X for those
variables which are uncorrelated with «,. For instance, in the returns to schooling
example, it may be safe to assume that ability is uncorrelated with health or age
but less so with unemployment. An important feature of our method is that, in
certain circumstances, the non-correlation assumptions can be tested, so that the
method need not rely on totally a priori assumptions.

* A specification test developed helow suggests that, in gur sample, family background is likely to
he carrelated with the latent individual effect.
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The plan of the paper is as follows. In Section 2, we formally set up the model
and consider the standard estimation procedures. Using these procedures, we
develop and compare three specification tests for correlation hetween a, and the
columns of X and Z, generalizing results of Hausman [6]. In the event of such
correlation, we propose a consistent but inefficient estimator of all the parame-
ters of the model. In Section 3, we find conditions under which the parameters
are identified and develop an efficient instrumental variables estimator that
accounts for the variance components structure of the disturbance. We also
derive a test of the correlation assumptions necessary for identification and
estimataon, applying results from Hausman and Taylor [8]. Finally, in Section 4,
we apply the procedure to an earmings function, focusing on the returns to
schooling. The results indicate that when the correlation of a; with the indepen-
dent variables is taken into account, traditional estimates of the return to
schaoling are revised markedly.

2. PRELIMINARIES

2.1 Conventional Estimation

We begin by developing the model in equation (1.1) slightly and examining
properties of conventional estimators in the absence and presence of specifica-
tion ercors of the form E(e,| X,,,Z) % 0. Thus

Yr't = Xine + Ziy + Eif!

£ =4 + i

(2.1)

where we have reason to believe that E(e, | X, Z,) = E(a,| X,,, Z,) + 0. Note that,
somewhat unconventicnally, X, and Z, denote TN X k and TN X g matrices
respectively, whose subseripts indicate variation over individuals (i =1, ..., ¥}
and time (r =1, ..., T). Observations are ardered first by individual and then
by time, so that o, and each column of Z, are TN vectors having blocks of T
identical entries within each i= 1, ..., N.

The prior information our procedure uses is the ability to distinguish columns
of X and Z which are asymptotically uncorrelated with «, from those which are
not. For fixed T, let

plim L X1 a =0, plim =2z =0,

N | Pt
2.2 Moo Moo N
plim -}b— Koo = by, plim %Zi,-a, — b,

where X, =[X,, X,,] of dimensions [TN X k, - TN X ky), Z,=(2Z,,: Z,] of
dimensions [TN X g, - TN X g,], and the k,, g, vectors A_ h, are assumed un-

equal to zero.
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[t will prove helpful to recall the menu of conventional estimators for ( 8,v) In
equation (2.1), ignoring the misspecification in equations (2.2). Letting ¢y denote
a T vector of ones, two convenient orthogonal projection operators can be
defined as

l f
PL'=[1N®?"'T£T:|1 Qv =Ivr— P,

which are idempotent matrices of rank ¥ and TN — N respectively. With data
grouped by individuals, £, transforms a vector of observations into a vector of
group means: i.e., P.Y, =(1/T)XY¥Y, =Y. Similar[y Q. produces a vector of
deviations from group means: ie, Q. Y, = Y,= Y, — Y. . Moreover, Q, is
orthogonal by construction to any time-invariant vector of observations: Q,Z,
=2 -/ 2, =0.

Transform model (2.1} by Q,., obtaining

QI.’ YH = QL’X{:}S + QVZ;Y + Qlf’ai + QV”H’
which simplifies to
(23} )’;Jf = er’;ﬁ + ﬁ;‘r'

Least squares estimates of 3 in equation (2.3) are Gauss-Markov (for the
transformed equation) and define the within-groups estimator

éw=(xe':QVXr'r)_lX1;QV ( :r u) I‘k’;i‘; }?r';‘

Since the columns of X, are uncorrelated with 1, B,, is unbiased and consistent
for 8 regardless of passible correlation between «; and the columns of X, or Z,.
The sum of squared residuals from this equation can be used to obtain an
unbiased and consistent estimate of of, as we shall see shortly.

To make use of between-group variation, transform model (2.1) by Py,
obtaining

Q4 Y =X B+Zy+a+a,.

Least squares estimates of ,G and v in equation (2.4) are known as between-
groups estimators {(denated ,83 and ¥,) and because of the presence of «;, both !83
and ¥, are biased and inconsistent if E(e;|X,,Z;}7 0. Similarly, the sum of
squared residuals from equatlon (2.4) 4 provides a biased and inconsistent estima-
tor for var(e, + n,.) = a2 + {1/ T)o] when E(o;| X, 2,) # 0.

In the ahsence of mlsspeuflcauon the optimal use of within and between
groups information is a straightforward calculation. From equation (2.1),
cove, | X,n Z) = Q= 0l oy + 021y R epy] = allyy + To Py, a familiar block-
diagonal matrix. Observe that the problem is merely a linear regression equation
with a non-scalar disturbance covariance matrix. Assuming «,,1, to be normally
distributed, the within-groups and between-groups coefficient estimators and the
sums of squared residuals from equations (2.3) and (2.4} are jointly sufficient
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statistics for ( A, v, aj,oﬁ). The Gauss-Markov estimator, then, is the minimum
variance matrix-weighted average of the within and between groups estimators,
where the weights depend upon the variance components. Following Maddala
[13], the sclution can be written as

- ) -s( 29
YoLs Ya 0
where A = (V, + ¥,)"'V,, and V,, V', denote the covariance matrices of the
between and within groups estimators of 8 and y. This is frequently known as the
Balestra-Nerlove estimator. It requires knowledge of the variance components oﬁ
and g, but consistent estimates may be substituted for the variance components
without loss of asymptotic efficiency.’ Of course, if E(e,[ X,,,Z,) % 0, this GLS
estimator will be blased and if A_ or A, 1s unequal to 0, it will be inconsistent,
since it 1s a matrix-weighted average of the consistent within-groups estimator
and the inconsistent between-groups estirnator.

For both numerical and analytical convenience, we can express the Gauss-
Markov estimator in a slightly different form. Let 6 =[] /(a? + Ta2}]'/*. Then:

PropostTioN 2.1 The TN X TN non-singular matrix
Q=8P+ Q= Iy — (1 - 8P,
transforms the disturbance covariance matrix 1 into a scalar matrix.
PrOOE:
Q2072 =8P, + Q][ 6}y + To2P,][0P, + Q)
= 8%(a; + Ta})Py + 0,0y = 0} 17y

This works because the N and TN — N basis vectors of the column spaces of P,
and 0, respectively span the eigenspaces of @ corresponding to the two distinct
cigenvalues o) + To, and o_; see Nerlove [17].

Transforming equation (2.1) by €~ /7 is thus equivalent to a simple differenc-
ing of the observations, as pointed out by Hausman [6].

Q- =7 X B+ QT PZy + 27 e, + Q7 iy,
or
@5 Y- (-6 =[X, - (1~ 8)X.]B+0Zy

+ fla; +[1]‘-, —{l - 3}1;1-,].

*The small sample implications of this substitution are explored in Taylar [20].
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OLS estimates of { 8,v) in equation (2.5) are Gauss-Markov, provided E(a; | X,
Z)= 0. If misspecification is present, the fact that «; appears in equation (2.9)
means that the GLS estimates will be inconsistent.

2.2 Specification Tests Using Panel Data

A crucial assumption of the cross-section regression specification is that the
conditional expectation of the disturbances given knowledge of the explanatory
variables is zera. An extremely useful property of panel data is that by following
the cross-section panel over time, we can test this assumption. Moreover, the fact
that the within, between, and GLS estimators are affected differently by the
failure of this assumption, suggests that we may base a test of it on functions of
these statistics.

The specification tests which we consider test the null hypothesis Hg:
E(e,] X,, 2y =0 against the alternative H : E(e,| X, Z) # 0. If H, is rejected,
we might try to reformulate the cross-section specification in the hope of finding
a model in which the orthogonality property holds. Alternatively, we might well
be satisfied with using an estimator which permits consistent estimation of (8,7v)
by controlling for the correlation between the explanatory variables and the
latent @,. An asymptotically efficient procedure for doing this is outlined below.

From the three classical estimators for A in equation (2.1), we are naturally led
to construct three different specification tests. Let A denote the upper-left & X &
block of A. ) )

(i) GLS vs. within: Form the vector §, = .5 — Ay Under Hy, plimy_ .4,
=0, while under H,,plim,_ .4, = plimy_, . B, s — £ 0. Hausman [6] showed
that cov(d,) = cov{ B,,) — cov( EGLS), so that a x? test is easily constructed, based
on the length of §,. This test has been used fairly frequently and has appeared to
be quite powerful.

(i) GLS vs. between: Form the vector §, = Bers — Bs. Again, under H,
plimy_ .4, = 0, while under H,,plimg, = (/ — &)plim,_, (A5 — B), so that de-
viations of §, from the zero vector cast doubt upon H,. Using the asymptotic
Rao-Blackwell argument in Hausman [6], cov(§,) = cov( B,) — cov( 1), which
gives rise to another x? statistic.

(1) Within vs. between: Form the vector §, = By — 53. Under Hy, plimy_, 43
=0 and under H, plimy__.§,=8— plimy_ B #0. Also. cov(d,) =
cov( By) + cov( f) since the within and between estimators lie in arthogonal
subspaces. Thus the length of §, yields a third x* statistic.

In considering these three tests, Hausman [6] conjectured that the first test
might be better than the third, since cov(g,) Zcov(§,); while Pudney [18]
conjectured that the second might be better than the third because Bors 1s
efficient.® (Actually, cov(d;) Z cov(4,).) However, since fig, s = Afg + (1 = D)By

“Pudney actually cansidered using estimates of ¢, from the three estimators and basing tests upon
the sample covariance X '€, using either the within or GLS estimale of £ to form ¢. However, the tests
are considerably simpler to apply by directly comparing the estimates of £2; Pudney was unaware that
using fig, 5 t0 form € is equivalent to the secand iest.
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where the matrix 4 is non-singular,’ the vectors (4,45, 4,) are all nonsingular
transformations of one another. Thus ¢, = —A4§, and §,= (I — A)g,. If we
denote cov(g,) by ¥, (k =1,2,3),

GiV'qi = pa[AV,a ] T A = Vg,
and
‘?3 vy Iéz = ‘?3(1 - ﬁ)’[(‘r - ‘5) V3(1 - ‘5}’]_ l(‘! - A)‘ﬁ = ‘?3 ¥y lqu:

so that the following proposition holds:

Proposition 2.2: The chi-square stavistics for tests (| —3) are numerically
exactly identical.

2.3 Consistent but Inefficient Estimation

If the specification test of the previous section rejects H,, it may still be
possible to obtain consistent estimates of both # and y from the within-groups
regression. The estimates of the vanance components derived from these estima-
tors will be used below in our efficient instrumental variables procedure.

Let

a‘;i = Y.r" HXJEW =[PV - Xr'- (Xi:QVXi;)_iXI:QV] Y{:

be the TN vector of group means estimated from the within-groups residuals.
Expanding this expression,

@6)  d=Zy+a+[Py~ X (XX, X)]n,

Treating the last two terms as an unobservable mean zero distucbance, consider
estimating y from equation (2.6). Since a; is correlated with the columns of Z,,,
both OLS and GLS will be inconsistent for y. Consistent estimation is possible,
however, if the columns of X ,—uncorrelated with a, by assumption—provide
sufficient instruments for the columns of Z,, in equation (2.6). A necessary
condition for thus is clearly that & Z g,: that there be at least as many exogenous
time-varying variables as there are endogenous time-invariant variables. Note
that this condition figures prominently in the discussion of identification in
Section 3.
The wwo stage least squares (2S1.S) estimator for y in equation (2.6) is

(2-7) ’;w = (Zr'}PA Zr’ ) h lzsrP,t‘fr'

where 4 =X, - Z,] and P, is the orthogonal projection operator onto its

If o2 and o7 are unknown and must he estimated, the above identities hold exactly in finite
samples, since the estimated weight matrix A is non-singular.
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column space. The sampling error is given by
?H—" - Y= {ZIPAZ)_IZIPA[O:{ + {PV - X‘_.(XH‘_:X':_: )_Ifa';}nff:l’

and under the usual assumptions governing X and Z, the 28LS estimator is
consistent for y, since for fixed T, plimpy_ (1/N)4'e, =0 and plim, ., (1/N)
X:n, =0. The fact that the a?r are calculated from the within-groups residuals
suggests that if §,, is not fully efficient, then 4,, may not be fully efficient either.

Having consistent estimates of 8 and—under certain circumstances—y, we
can construct consistent estimators for the variance compenents. First, a consis-
tent estimate of::r,f can always be derived from the within-groups residuals. If 9y
denotes [y — X, (X, X,})” 'X/, we can write the sum of squares of within-group
residuals as

};a’( Q)E Y~if = ﬁ:; Qfﬁr’t = ﬁi’rﬁr}r - ﬁ‘:IX(XF‘f)_ If’ﬁ:’r‘

Thus
o L 5o P
plim = Pl ypr =y e Qe e P e gy B0
= plim S — 7,0,m, = o}
Moo N(T_ 1] = i !

since rank ( Q) = M(T — 1)
Finally, whenever we have consistent estimators for both 8 zknd ¥, 4 consistent
estimator for a? can be ohtained. Let s*=(1/N)Y,. — X, By — ZF) (Y. —
X, By — Z;%y); then
: T__ : 1 ' _ 1 [ 2
pims = plim = (o, + 7. ) (&, + n.) = 0. + x4,
M— oo N— o N T

so that s2 = s* — (1/T)s] is consistent for a;.
3. INSTRUMENTAL VARIABLES ESTIMATORS

3.1 Ildentification

In this section, we discuss identification of some or all of the elements of
( 8,7), using only the prior information in equations (2.2) and the time-invariant
nature of the latent variable. Because the only compeonent of the disturbance
which is correlated with an explanatory variable is time-invariant, any vector
orthogonal to a time-invariant vector can be used as an instrument. In particular,
Q.2 =0 by construction, so that time-invariance provides at least TN - N
linearly independent instruments in equation (2.1}: namely, TN — N basis vec-
tors of the column space of Q..

Unfortunately, as noted in the Entroduction, Q, 1s also orthogonal to Z,, which
violates the requirement that instruments be correlated with all of the explana-
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tory variables.® The familiar results on identification in linear models are easily
extended to cover this case: consider the canonical linear simultaneous equations
model

Gl Y=XB+e

where some of the k& columns of X are endogenous and the matrix Z contains T
observations on all variables for which plim,_,(1/T)Z’e = 0. Project equation
(3.1 onto the column space of Z:

(3:2)  P,Y=P,XA+ Pye.

Now, if A is a & vector of known constants, we have the following lemma.

Lemma: A necessary and sufficient condition for a particular (set of) linear
function(s) X8 to be identifiable in equation (3.1) is that X' be estimable in
eguation (3.2).

The proof follows readily from a result of F. Fisher (3, Theorem 2.7.2, p. 56];
details are available in Hausman-Taylor [7].

Using this result, it is easy to see that without any prior information in
equations (2.2), all of the elements of 8 in equation (2.1) are identifiable. Simply
project equation (2.1} onto the column space of all the exogenous variables—
such a projection operator is Q,—and observe that all linear functions of 8 are
estimable, since X0, X, is nop-singular, No linear functions of y are estimable.?

If prior information is provided by equations (2.2} (i.e., k; > 0, g, > 0), then
the columns of X, and Z, must be added to the list of instruments. Let A4
denote the matrix [Q,: X,  Z,,] and let P, be the orthogonal projection
operator onto its column space. Then, corresponding to the familiar rank
condition, we have the following propesition:

PROPOSITION 3.1: A necessary and sufficient condition that the entire vector of
parameters (1, y) be identified in equation (2.1) is that the matrix

;. PiX.:Z)

f

be non-singular.

Corresponding to the order condition, we have the following proposition:

PROPOSITION 3.2: A necessary condition for the identification of (B,v) in equa-
tion (2.1} is that k| Z g,.

Bln this case, the order condition (s grossly overfulfilled and the rank condition fails.
“This fact underscores the importance of the observation that the disturbance in equation (2.6} is
correlated with Z,, so that prior infarmation from equatians (2.2} is necessary to estimate y.
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Proor: The rank condition follows from the Lemma. For the order condition,
rank[ P, (X, - Z)} = rank[P X,] + rank[P,Z] = k + rank[ P, Z], so that a neces-
sary condition for the matrix in Proposition 3.1 to be non-singular is that
rankf{P,Z;] Z g. Since Z, is orthogonal te @, k| = g, is necessary for rank(£,Z]
to equal g, which completes the proof.

[dentification in structural equations with panel data thus has a number of
noteworthy features. First, given the assumption that a, i1s correlated with the
columns of X and Z, it 1s remarkable to find that the coefficients of the
tme-varying variables are identfied while those of the time-invariant variables
are not. Similarly, one variance component (onl) is identifiable while the other
(a2} is not. The parameters (y,a7) can be identified if the prior information (2.2)
pravides enough instruments—at least one for every endogenous column of Z.
Curiously, the &, exogenous columns of X, which are included in the structural
equation (2.1) are the only candidates for these identifying instruments. This
contrasts with the conventional simultaneous equations maodel in which excluded
exogenous variables—such as family background in the traditional measurement
of the return to education—are required to identify and estimate the parameters
of a structural equation. Intuitively, this works because only the time-invariant
component of the disturbance is correlated with {(X,, Z,}. Since X, = X, +
X,,. ., X,, can be used as an instrument for X, and X,,. can be an instrument
far Z,,.

[er

3.2 Estimation

When the parameters of equation (2.1) are identified by means of a specified
set of variables which can be used as instruments, a consistent and asymptoti-
cally efficient estimator for ( 8, v) can be constructed. Except for the fact that the
disturbance covariance matrix £ is non-scalar, equations (2.1) and (2.2) represent
an ordinary structural equation and a list of exogenous and endogenous variables
from which the reduced form can be calculated. Thus if £ were known, 25LS
estimates of ( 8,y) in
@By Q7Y =07"X B+ Q7 Zy+ Q7 V%

Tt

taking X,,Z, as exogenous, would be asymptotically efficient in the sense of
converging in distribution to the limited information maximum likelihcod estima-
tor.

More precisely, the information in equations (2.1} and (2.2) can be expressed
as a system consisting of a single structural equation and two multivariate
reduced form equations:

— 172 __ - 172 ~ 172 —[/2
Q- =0 VY R+ RV Zy+ Q7 Ve,
(3‘4) Xlit = X]e'tﬂll + zu""lz + QV"HH + ulin
Zy=Xymy + Zymyy + Qpmgy + 0y,

Lér
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This systemn 1s a convenient form for discussing the efficiency of 2SLS estimators
in equations (2.1) and (2.2). Equations {3.4) are triangular (because the bottom
two equations are reduced forms) but not recursive (because v, and v, are
correlated with a;). In addition, the reduced form equations are, of course,
Just-identified. Since the disturbance covariance matrix in equations (3.4) is
unknown, OLS is inconsistent while 3SLS is fully efficient; see Lahiri-Schmidt
[11]. Finally, since the reduced forms are just-identified, 3SLS estimates of (B.y)
in the entire system are identical to 3SLS estimates of ( 8,v) in the first equation
alone (see Narayanan [16]), and these are, of course, just the 2SLS estimates.
Thus 2SLS estimates of ( 8,v) in equation (3.3} are fully efficient in the sense that
they coincide asymptotically with FIML estimators from the system (3.4).

Finally, 2SLS estimates of (8,v) in equation (3.3) are equivalent to OLS
estimates of (8,v) in

3.5y POV, =POTVX B4+ PQTVZy 4 PO,

where P, is the orthogonal projection operator onto the column space of the
nstruments 4 =[ Q- X, - Z, ]. Least squares applied to this equation is com-
putationally convenient: (i} the transformation £~ '/ can be done by (1 - §)
differencing the data as in equation (2.5), (ii) the projection of the exogenous
variables onto the column space of A yields the variables themselves, and {iii} the
projection of the endogenous variables onto the column space of A can be
calculated using only time averages, rather than the entire TN vectors of
observations (see Appendix B).

For € known, then, the calculation of asymptotically efficient estimators is
straightforward; but the only case of practical interest is where  is unknown and
must be estimated. The question that immediately arises is how £ should be
estimated and whether an iterative procedure is necessary for efficient estimation
of (8,7).

Consider the feasible analog of equation (3.5), where 2~ '/? is any consistent
estimator for {, e.g., from Section 2.3:

(36 POV =pPO VX B PGV Zy+ POV,

PROPOSITION 3.3: For any consistent estimator 0 of Q, OLS estimates of (B,v)
in equation (3.6) have the same limiting distribution as OLS estimates in equation
(3.5), based upon a known €.

Proor: For fixed T, it 1s straightforward to verify that \/N[)é(fl) — ﬁ(ﬂ)}—ﬂﬁ;
details are available in Hausman-Taylor [7).

We have thus shown that the 2SLS estimates of the parameters in equation
(3.3)—using any consistent estimate of £—are asyrptotically efficient. These
estimators are identical to OLS estimates of ( 8,v) in equation (3.6); for future
reference, we denote them by (,é*, )
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In Appendix A, we derive the following characteristics of (ﬁ* ¥*), depending
upon the degree of over-identification. If the model is under-identified (k < g;),
B = ,8 and ¥#* does not exist. [f the model is just-identified (&, = g,), 8* = ﬁw
and ¥* = 9, as defined in equation (2.7). If the model is overidentified (,
= gk (f*,9%) differ from and are more efficient than (Bw, ¥4 Finally,
following Mundlak [15], we explore the relationship between A* and the Gauss-
Markov estimator, when the latter exists.

3.3 Testing the Identifying Restrictions

More efficient estimates of 8 and consistent estimates of y require prior
knowledge that certain columns of X and Z are uncorrelated with the latent a;.
An important feature of our procedure is that when the parameters are aver-
identified, all of these prior restrictions can be tested. This 1s an extremely useful
and unusual characteristic: unusual in that it provides a test for the identification
of v, and useful since the maintained hypothesis need contain only the relatively
innocuous structure of equation (2.1). It works, basically, because 3 15 always
identfied and ﬁw provides a consistent benchmark against which all (or some} of
the restrictions in equation (2.2) can be tested by comparing f* with ,Bw The
principles of such tests are cutlined in Hausman [6}, and extended in Hausman-
Taylor [8].

The null hypothesis 1s of the form

Hy:plim L X! a=0 and plim +Zja=0.

N—rao N N—oowo N 1
Under Hy, both A, and ,8" are consistent, while under the alternative, plim B*
7 plim Bw B thus deviations of § = A* - ,Bw from the zero vector cast doubt
on the null hypothesis.
To form a x* text based on 4, premultiply equation (2.1) by 0@~ '/* = [I, —
ZA(Z'Z)"'Z/1%"/* and consider the within-groups and efficient estimators for
8 in the transformed equation. Letting X* = 0,27 '/°X,,

(38)  G=[(XMP XY XNPOp — (XN QXY IXV Q0,107
=DY*

where 0, 0,27 7= @, and Y* = Q7 '/2Y has a scalar covariance matrix. The
specification test statistic is given by

= g[eow )] 4 = §[cov(fu) — cov(B4)] 7§
=3 [ alDD’ ] q‘
where the second equality follows from the asymptotic Rao-Blackwell argument

in Hausman [6} and ( )* denotes any generalized inverse. Following Hausman-
Taylor [8], we have the next proposition.
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ProposiTion 3.4: Under the null hypothesis, G converges in distribution to a

L
x3 random variable, where 6,3 is any consistent estimate of 6, and d = rank(D)
=min[k, — g,, TN — &].

n

Proor: From Propositions 4.1 and 4.2 of Hausman-Taylor [8], we obtain the
limiting distribution of m and the fact that

rank(D} = min[rank(X*’PH )s rank([ — X*(X"QVX*]"'X*’QV )}

where P,, projects onto the orthocomplement of the column space of @, in the
column space of A: i.e., onto the column space of [X,,, : Z,,]. Under the usual
lincar independence assumptions, the second term in brackets equals TN — k.
Far the first term, rank({X* P,) = min[k, rank( Q, Py}, and since P,, = P, P, +
Q7 Py, rank( Q7 Pyy) = (k + 21} = {21 + g2) = (k| — ga)-

This specification test of the identifying restrictions in equation (2.2) has some
noteworthy features. The number of restrictions nominally being tested 18 &, +
£, in the sense that if any of the restrictions in equation (2.2) 1s false, § should
differ from 0. Yet the degrees of freedom for the x? test depend upon the number
of overidentifying restrictions (k; — g;). Indeed, when the model 1s just-identified,
ﬁ' = B (see Section 3.2), so that § is identically zero and the degrees of freedom
are zero. Finally, note that the alternative hypothesis does not require that any of
the columns of X or Z be uncorrelated with «,. Hence afl of the exogeneity
information about ¥ and Z is subject to test by this procedure.’®

4. ESTIMATING THE RETURNS TO SCHOOLING

Measuring the returns to schooling has received extensive attention lately, and
much discussion has focused on the potential correlation between individual-
specific latent ability and schooling. (See Griliches [4] for an excellent survey.)
Since the sample we use does not contain an fQ measure, it would seem likely on
a priori grounds that the schooling variable and «, are correlated. Yet as Griliches
[4] points out, it is not clear in which direction the schooling coefficient will be
biased. While a simple story of positive correlation between ability and schooling
leads to an upward bias in the OLS estimate, a model in which the choice of the
amount of schooling is made endogenous can lead to a negative correlation
between the chosen amount of schooling and ability. In fact, hoth Griliches [4]
and Griliches, Hall, and Hausman [5] find that treating scheooling as endogenous
and using family background variables as instruments leads to a rise in the
estimated schooling coefficient of about 50 percent.!' Since our method does not

'%This test compares ingtrumental variables estimators under nested subsets of instruments: 5%
uses [Qy - X, - Z,] and f, uses [,]. If one wishes to test partjeular columns of X, or Z,
for exogen'eity‘.while maintaining a jusL-jdenLifying sel of instruments, & similar test can be con-
structed by comparing (ﬁ".f") with (Bt ). If the model is averidentified under the main-
tained hypothesis, compare (ﬁ*, +*) using the different instruments. See Hausman-Taylor (8] for
details.

"'Using a specification test of the type Wu [21] and Hausman [6] propose, we find a statistically
significant difference between the [V and OLS estimates. Chamberlain [1] also finds a significant
increase in the schaoling coefficient, comparing OLS with estimates from his two factor madel.
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require excluded exogenous instruments, it 1s of some interest to see if the
estimated return to schocling remains higher than the OLS estimate.

Our sample consists of 750 randomly chosen prime age males, age 25-35, from
the non-Survey of Economic Opportunity portion of the Panel Study on Income
Dynamics (PSID) sample. We consider two years, 1968 and 1972, to minimize
problems of serial correlation apart from the permanent individual component.'?
The sample contains 70 non-whites for which we use a 0-1 variable, a upion
variable also treated as 0-1, a bad health binary variable, and a previous year
unemployment binary variable. The two continuous explanatory variables are
schooling and either experience or age."” The PSID data do not include 1Q. The
National Longitudinal Survey (NLS) sample for young men would provide an 1Q
measure, but problems of sample selection would need to be treated (as in
Griliches, Hall, and Hausman [5]) which would cause further econometric
complications. Perhaps of more importance is the fact that for the NLS sample,
IQ has an extremely small coefficient in a log wage specification (e.g., between
0006 and .002 in Griliches, Hall, and Hausman [5]}; and if it is included in the
specification, it has only a small effect on the schooling coefficient. Thus we use
the PSID sample without an /Q measure, and our results should be interpreted
with this exclusion 1n mind.

Table I gives the results of traditional estimators for our sample. The first two
columns show the OLS and GLS estimates respectively, which assume no
correlation between the explanatory varizbles and a;. The estimates are reason-
ably similar, especially the schooling coefficient, which in both cases equals .067.
The effects of experience and race stay the same, while the remaining three
coefficients change somewhat, though they are not estimated very precisely. Note
that the correlation coefficient across the four year period (o =.623) indicates
that the latent individual effect is important. The finding that an additional year
of schooling leads to a 6.7 percent higher wage is very similar to other OLS
results from both PSID and other data sets.

In the third column of Table [, we present the within-groups estimate of the
wage equation specification. All the time-invariant variables are elimmated by
the data transformation, leaving only experience, bad health, and unemployed
last year. As we have seen, the estimates of these coefficients are unbiased even if
the variables are correlated with the latent individual effect. The point estimates
change markedly from the first two columns: bad health by 26 percent, unem-
ployment by 33 percent, and experience by 59 percent.'* Comparing the within-

"2Lillard and Willis (12} demanstrate within a random coefficients framework that a first arder
altoregressive process remains even after the permanent individual effect is accounted for. Our
estimation technique can easily be extended to account for an autoregressive process, hut for
expasitary purposes we use a simpler case. Note that we are not investigating the dynamics of wages
ar earnings here,

13Experience was used as either experience with present employer or as (age — schooling — 5).
Qualitatively, the results are similar, so we report results using the latter definition. As the results
show. use of age yields very similar results for the schooling coefficient. Unlike Griliches [4], we are
nat attempting to separate the influence of age from that of experience.

14 Percentage changes are calculated as differences in natural logarithms.
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TABLE 1
DEPENDENT VaRIABLE: LOG WAGE

LS GLS Within V/GLS
Experience {it) 4132 0133 0241 0175
(0011 (0017) (.0042) (.0026)
Bad Health (iry —.0843 —.0300 —.038% — 0249
(04123 (0363} {0460} (.0399)
Unemplayed (i) —.0415 — 0402 — 0560 — 0436
Last Year (.0267) (.0207) {.0295) (.0245)
Race (£} — 0853 ~ 0478 — —.0542
(032R) 0518y — {.0588)
Union (£} 0450 0374 — 0733
(0191} ¢.0196) — (0434)
Years of (0 0669 0676 — 0927
Schooling (.0033) {.0052) — {.0191)
Other Variables constant constant constant constant
time time time time
NQEBS 1500 1500 1560 1500
S.E.R. 321 192 160 193
RHO — 623 — —
Specification Test x3 =202 xi=8.70
[astruments father's ed.
mather’s ed.
poor

*Reporeed standard errars are inconsistent since they do nat acesunt far the variance companets.

groups and GLS estimates, using results in Hausman [6], we test the hypothesis
that some of the explanatory variables in our log wage specification are corre-
lated with the latent «,. Under the null hypothesis, the statistic is distributed as
x3, and since we compute s = 20.2, we can reject the null hypothesis with any
reasonable size test. This confirms Hausman's [6] earlier finding that misspecifi-
cation was present in a sirmlar log wage equation.

In the last column of Table I, we present traditional instrumental variables
estimates of the wage equation, treating schooling as endogenous. Family back-
ground variables are used as excluded instruments: father’s education, mother's
education, and a binary variable for a poor househaold. The estimated schooling
coefficient rises to .0927, which echoes previous results of Griliches [4] and
Griliches, Hall, and Hausman {5]. Under the null hypothesis that the instruments
are uncarrelated with a, the point estimates should be close to the consistent
within-groups estimates. Nate that these estimates are somewhat closer to the
within-groups estimates than the original OLS estimates. We might conclude that
the instruments have lessened the correlation of schooling with o, by replacing
schoeling with a linear combination of background variables; yet the result of
the specification test is #2 = 8.70, which again indicates the presence of correla-
tion between the instruments and «. We conclude that family background
variables are inappropriate instruments in this specification, perhaps because
unmeasured individual effects may be transmitted from parents to children.

In the first twoe columns of Table 11, we present the results of our estimation
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TABLE Il
DEPENDENT VARIABLE: LOG WaAGE

HT /Tvn HT/GLS HT/GLS HT/GLS HT/GLS
Experience 0217 0217 — 0268 02410
(it) 0027 (0031 — {0037} (0045}
Experience
Squared — — — — 00012 —
{ir} — — — {.00015) —
Age — — 0147 — —
[E13] — — {.0028) — —
Had Health —.0535 - 0278 — 218 —.0243 — {388
(ir) {.0468) {.0307) (0318} (0318) (.0348)
Unemployment
Last Year — 0556 — 0559 — 0634 — 0634 — 0560
(i) (0311 (02456) {.0265) (.0236) (0279
Race — 0257 — 0278 — 0044 - 0014 — 0175
(i) {0331 (07518) (08243 (0662} (0764}
Unian 1245 1227 1648 1449 2240
(i) (.0560) 0473} 0721 {.0598) (.2863)
Years of
Schooling 1247 1246h A3k NENEL 2169%
i) (0380 (.0434) (.0490) (0319 {0979}
Qcher Variables constant constant constant constant constant
time time time time time
NOBX 1500 1500 1500 1500 1500
S.ER. 352 190 196 189 629
RHO — 661 6478 674 17
Specification
Test — xi=1224 — — xi =040

+Reparted standard errors are inconsistént sinee they da not aceount for the variance companents,
P Treated as iF carrelated with &,

method. We assume that X, contains experience, bad health, and unemployment
last year, all inbally assumed to be uncorrelated with o, Z, is assumed to
contain race and union status, while Z, contains schooling, which is allowed to
be correlated with &, The estimated schooling coefficient rises to .125, which is
62 percent above the original OLS estimate and 30 percent above the traditional
instrumental variables estimate. The effect of race has now almost disappeared:
its coefficient has fallen from —.085 in the OLS regression to —.028. The effects
of experience and union status have risen substantially, while that of bad health
has fallen.

Using the test from Section 3.3, we compare the within-groups and efficient
estimates of the X| coefficients. Observe that the unemployment coefficient 1s
now very close to the within estimate, while bad health and experience have
moved considerably closer to the within-groups estimates from either the OLS or
instrumental variables estimates. The specification test statistic is #t = 2.24 which
is distributed as xf under the null hypothesis of no correlation between the
instruments and «,. While s is somewhat higher than its expected value of 2.0
under H,, we would not reject the hypothesis that the columns of X, and Z, are
uncorrelated with the latent individual effect.
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We next examine how robust these estimates are to small changes in specifica-
tion. Column 3 of Table II replaces experience with age. While experience is
arguably correlated with a, through its schooling component, age can be taken as
uncorrelated unless important cohort effects are present. The results are quite
similar to our previous findings. The effect of schooling is .131, only slightly
higher than the .125 found previously. Race again has little or no effect, while the
coefficients of health and unemployment are similar to those in the specification
with experience. In the next column of Table I, we include experience and
experience squared as explanatory variables."” Again, the results are in general
agreement with the oniginal specification. The schooling coefficient increases
from .125 to .132, and race still has [ittle effect. We conclude that our main
results are reinforced by these alternative specifications.

Our final specification relaxes some of the noncorrelation assumptions be-
tween @, and the explanatory variables. We remove experience and unemploy-
ment from the X, category, allowing them to be correlated with &, Now X,
contains only bad health. The model is just-identified, so that the efficient
estimates of the coefficients of the X, variables are identical to the within-groups
estimates. The specification test of Section 3.3 has zero degrees of freedom, and
no specification test can be performed. The asymptotic standard errors have now
risen to the point where coefficient estimates are quite imprecise, especially the
schooling coefficient. Nevertheless, it is interesting to note that the point estimate
of the schooling coefficient has risen to .217.

Thus all of our different estimation methods have led to a rise in the size of the
schooling coefficient. Removing potentially correlated instruments has had a
substantial effect: the point estimates change and their standard errors increase.
All methods which contral for correlation with the latent individual effects
increase the schooling coefficient over those which do not; and this is certainly
not the direction that many people concerned about ability bias would have
expected.

5. SUMMARY

In this paper, we have developed a method for use with panel data which
treats the problem of correlation between explanatory variables and latent
individual effects. Making use of time-varying variables in two ways—to estimate
their own coefficients and to serve as instruments for endogenous time-invariant
variables—allows identification and efficient estimation of both 8 and y. The
method is a two-fold improvement over the within-groups estimator: it is more
efficient and it produces estimates of the coefficients of time-invariant variables.
[n the wage equation example, it performs better than traditional instrumental
variables methods, which rely on excluded exogenous variables for instruments.

""Neither of these alternative specifications pass the specification test if estimated by QLS and
compared with the appropriate within-groups estimator. In both specifications, the latent individual
effects are correlated with the explanatory variables.
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Perhaps most important, we derive a specification test of the appropriateness of
the identifying exogeneity restrictions in equation (2.2). Since the within-groups
estimates of 8 always exist and are consistent, they provide a benchmark against
which further results-—using the information in equations (2.2)—<can be com-
pared. If this specification test is satisfied, we can be confident in the consistency
of our final results. since the maintained hypothesis embodied in the within-
groups estimator 1s so weak.

Massachusetts Institute of Technology
and
Bell Telephone Laboratories, Inc.

Manuscript received February, [98(; revision received Oetober, 1930

APPENDIX A

i. Special Cases

Depending upan (k; — gy). the depree of over-identification, the consistent and asymptotically
efficient estimatar ¢ 8%, ¥*) exhibits some interesting peculiarities. Since we shall be interested in
estimating S and v separately from equation {3.6), two generic formulae will prove convenient. Let
Y=X8+X8te

LEMMA: The following twa expressions for the QLS estimacor of B are identical: (§) “parse our™ X,
by premuliiplving the model by Oy = [ — X, (X}Xy)7'X3, s thar

Bl ={(X{ QX)) X[y
(iiy remove the QLS estimates of X, B, from Y and regress that on X |, so that

A= (XX X[ = XX QX0 T X500

Now, suppose the parameters in equation (2.1) are under-identified. | .

(a) k, = gy = 0. Here, the set of instruments is only 4 =[] Sinee @~V = [, —(1 - &P,
P12 =y, 5o that §* = B, ] ] ]

th) k, < g,. Here. the [nstruments are (O Z); - X)) which we write as A = (G- H].
Consider equation (3.6). P, 271712, = P01 '/7Z, since 0,27 '/7Z, = 0. When &, < g, Py~ ' 7Z,
is not of full column rank since the dimension of the column space of H is g + &, and Z, has g; + g,
linearly independent columns. Thus there exists a g vector £ such that PASI_'*’ZZ,£= 0. so that v, 1%
not identifiable Asince v and (y + £} are observationally equivalent in equation (3.61}. Ta calenlate 8*,
“parse out” P,{1~'/?Z, in equation (3.6) and run OLS. The column space of £, 2~ 1727, equals the
columy space of H, sa projecting P82 /2K, onto the arthocomplement of P,22"'/*Z, yields Q, X,
Thus 8* = f,, in the generic underidentified case. and there is no consistent estimatar for v.

Consider the just-identified case. . ) .

() ky = g,. Here, again, the rank of P, 0~ /37 equals the rank of H. so that 8* = 8,,. The OLS
estimate of y in equation (3.6) is identical to the OLS estimate of ¥ in

P I’“Y;: - P I’uxuﬁw = P,lé_'l"uze}’ + P,»aﬂ_i"rll‘v';
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by the previous Lemma. since 8, is the OLS estimate of § in equation (3.6). Thus $* can be written
45

_ (Z,’Si" 'f’IP_4ﬁ"’IZ,-)_lZ,‘ﬁ‘ I'“P;[Paﬁ_ uzy” _ P),SAE‘ 1;1)(“5“(]
=(Z/2 P 02y 2 e Y, = X, G
=(Z/P,2)7'2;P,d =3y

since §1- 1427, = 8Z,. For the just-identified case. then, qur instrumental variables estimator coincides
with the within-groups estimator of bath # and +.

Suppose the parameters in equation (2.1} are over-identified.

(d) k3 = g; = 0. Here, A caincides with the explanatory variables in equation (3.6} 50 that the
I5LS and OLS estimators are identical. For &7 /2 it is identical to the feasible GLS estimator in
Section 2.1: for known 772 it is Gauss-Markov.

{e) k| = g;. The column rank of P, G- /37 is now g and the column space of P, G- /17, differs
from that of 4. Thus £* will d1ffer from BW in_the over-identified case. By the Lemma ¥* s
caleulated from the regression of P, Q-1 - P, G- 'leﬁ’ an P4S2 l‘QZ“ so that v* will differ
fram ¥, which we derived from the regression of P, -1y - P25, on PASE"»”JZ

Since (ﬁ“ ¥*} are asymptotically efficient, (ﬁw Yu) are inefficient in the over-identified case.
{ntuitively, this can be explained by regarding the within-groups estimators as 25LS estimators which
ignore the instruments X, . and Z, . Tt is a peculiar feature of thus model that ignoring these
instruments anly matters when the parameters are over-identified.

2 Mundlak's Mode!

A final special case is the model discussed at length by Mundlak [15] in which no time-invariant
observables are present and all explanatory variables are correlated with &,:

(Al Y = XaBB o+ 1,

The relationship between & and X is expressed by Mundlak through the “auxillary" regression
&, = X;.7 + w; where no prior information is assumed about w. Mundlak shows that (i) if & is
correlated with every column of X, (% is unconstrained), the Gauss-Markav estimator for 8 is the
within-groups estimator 8y, and (i) if &, i uncorrelated with every column of X,, (7 = 0), the G-M
estimator fur § is the GLS estimator i, ¢ in equation (2.5}, assuming @ to be known.

Recognizing that case (i) is just-identified (k, = gr=0and case (i) is overidentified (k; = g, =100
the discussion in (c) and (d} above shows that the 2SS estimator ,8’ is identical to the G-M estimator
in bath cases. More to the point, if o, is uncorrelated with some columns of X;. and correlated with
others {7 obeys some linear restrictions), the model is overidentified (, = g2 =0} and case {e) above
shows that 8* is asymptotically efficient relative to 8,,. Thus it is only in the two extremes (i) and (i}
that 8y or fi.; ¢ is appropriate.

We can use this characierization of the G-M estimator, however, to examine the relationship
between ,8" and the G-M estimator, should the latter exist. Suppase & is known, and we premultiply
Mundlzk's model (A.1) by @7 '/? and reparameterize for convenience:

(A2} Q- =07 S5+ Q7 Vi + 0 Ve,
=27 ML+ )

where M, = X, S, £= 57 'f. et =8, + n, — (1 — d}n,. = o} + n? and the non-singular transforma-
tion § is chasen sa that

S(XX,)S = Iy,

Since the X', are random variables in the analysis, the matrix S, being a function of the X,,, will be
random also; since some X, are endogenous § will also be endogenous.
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Let us specify prior information about the correlation between X, and o in a somewhat more
flexible manner than Mundlak's, Let 2, denote the & vectar of probability limits (for fixed T)

U GV S Ry -
E“‘Ta NX”CE‘-E h, = plim NS "M, = S "y,

where h,, denotes the correspanding veetor of (asymptohic) corretations between &, and M,. We cin
express priar information an k_as r(r < k) homogeneous linear restrictions

Rh,=0= RS ~'Sh, = R*h,,

which vield » homogeneous restrictions on #,,. Note that (i) the exogeneity information in equations
(2.2 can be expressed as Rh, = & where each row of R has a single 1 and the rest zeraes; (i} the
previgus results on identfication and estimation go through, taking the calumns of X, R’ as
exogeneous where R (i=1...., r)is a row of R; (iii} hemogeneous restrictions on A, correspond
uniquely to homogeneous restrictions on_» in Mundlak's specification; ie, Rh, =0 =
plim gy, ol L/ NIRCX, X, VXX, )7 X o, => Rw = O where R= R(X/X,.).

In the model {A.2), then. certain linear combinations of the colums of M, are assumed uncorre-
lated with a* and zll of the columns of M, are arthegonal.

ProposITIoN A.l: The 285LS estimaror é“ in equarion {A.2) is Gauss-Markov far £,

Proor: Let F denote the k % % non-singular matrix

F[r 5]
where the calumns of B'(k x k — r) are k — r basis vectors for the column space of [ —
R'CRR')™'R. Now, reparameterize equation {A.2) as

Q'Y = Q7 VM FFT S+ )
=$1-‘”[M”R' M,!B‘]F“£+ &
which we write ag

(A3 o2y =V 8 0TV 4 e

where & = [§) : 851= F~ !¢ Consider 2SLS estimates of § in equation (A.3), using as instrurnents
=[1Qv - Ly,] since plimy,(1/NILj 6" = plir (1 /M IRAM Q27 'a, = 0 by assumption. By con-
struction. 27 YL and Q7 '/1L, are orthogonal, and P, L = L. so the 2SLS estimator

§r=(L,07 'L,y 'L,ey,

coincides with the GLS estimator {for known ). Tt is Gauss-Markov for &, in this model since all
columns of L, are uncorrelated with ¢} and L, is arthogonal to L. Similarly, the 25LS estimataor for

&y 18
81 = (13071120, L) 107 0,07 Y,

since P Ly = Qul,. Sinee Q8" /2= (,.. this simplifies to 87 = (L} Q;-L3) ™ 'LiQy ¥ which is the
withir-groups estimator, Using Mundlak’s result (i} above, 81 is G-M for &, since every column of £,
is correlated with «,. and L, is orthogonal to L. Hence 5+ = [:fr’ : 55’]’ is G-M for & and since Flisa
non-singular, non-stochastic matrix, g = F5* is Gauss-Markaov far 73 = £. This completes the proof.

Two related questions immediately emerge. First, is ,é“ = Sé’ Gauss-Markov for 4. since S is

non-singular? Secondly, what became of the intuition that 2SLS estimates were biased and thus not
Gauss-Markaov?
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PROPOSITION A.2: The 25LS estimator Ié" cotnecides with § é* bur ,é* is biased for 3 and not
Gauss- Markov.

Proar: Calculate ,é“ directly using 28L5 in the model
POV, =P X A+ PO,

where A =[ Q. L, is the appropriate set of instruments here, as well as in equation (A.3). Then

§ ‘Ll - “lvin- -
gr=(x:0 1p 0172 | 'x0-1p 01 0y,

= s[sx-a-'7p,0- ' xs] sxa-p,0 2y
= Sé*_
Thus ﬁ* s a non-singular transformation of the G-M estumaror gt: e
f*=S&*  and B =St

50 that ﬁ’ -f8= S(g" — £}. However, recall that § is a function of the matrix X, : it is endagenous
and in calculating moments of f* — 2, we cannot condition on it. Hence, in general, E{f* - il
= ES(d* — 4+ SE(E* — &) = 0, and cov[f* — 8] = cov[S(4* — &) = Slcov(i* — £)]5° where
coviE® — £) attains the Cramer-Rao bound.

A final anomalous property of 8* follows from these propositions. Suppose the original design
matrix X, were arthogonal, so that X;X, = [, Then the 2SLS estimator §* using [ O, : X, R'] as
instruments would be both unbiased and Gauss-Markov. One rarely finds a G-M estimator in a
simultaneous equations problem: one does in this model because 2SLS estimates when aff the
explanatory variables are correlated with a, are identical to the within-groups estimators, and these
are unhiased in finite samples. This (s because the set of instruments in this model is just the columns
af Q.. which are orthoganal 10 «; in the sample, not just in expectation or as a probability limit.

APPENDIX B

Computational Deraily

We now consider the estimation method proposed in Section 3.2 from the standpoint of
computational convenience. Equation (3.6) and Propaosition 3.3 state the basic theoretical results.
Given initial consistent instrumental variables estimates of { £, ¥), we can estimate £} and transform
the variahles by #-differencing the data. The model now is of the form of equation {3.6} and OLS
estimates will be asymptoucally efficient.

The main difficulty that arises i1s computational: how to do instrumental variables when the data
matrix (of order T % N} may exceed the computational capacity of much econometric software. [f
this occurs, using equation (3.4), calculate predicted values of X, and Z, from their reduced forms.
The predicted 2, are formed from a sample size N regression of Z,; on the columns of X|,. and
2,,. For the X, rather than doing a sample size 7 X N regression, an equivalent procedure is to
form Xy, = X4, — Xy + Xy, . The last term, Xy, . is caleulated from the sample size N regression of
Xy on Xy, and Z,,. Then the caleulated X,, and Z, are used with the X, and the Z, in an OLS
regression to obtain consistent estimates of both 8 and v.'% A similar technique works with the
transformed variables in equation (3.6} which yields asymptotically efficient estimates of 8 and v.
The reason that calculating X, in this manner is equivalent to the more cumbersome approach of a
T % N sample regression of X, on instruments as indicated in equation (3.4} is that . is orthogonal

'"®One note of caution, however. The estimates of the variance from the secand stage are
inconsistent, for the same reason that doing 2SLS in two steps yields inconsistent variance estimates
in the second stage. (ne must use the estimated coefficients and equation (2.1} without the estimated
variables an the right hand side.
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to any time-invariant variable. Thus parsing qut Q. in the second and third equations of (3.4} is
equivalent to premultiplying them by Py, and X, . and Z;; can be calculated from the sample size ¥
regressions an Xy, and Z, . To get X,,. we must add Qpa,, to X,;., so that Xy, is given by
XQJ'r + 'YZa- -

It computational capacity is not a difficulty, 2 standard instrumental variables package can be
used, with X, X . X, and Z,, as instruments. The variables which are time invariant have T
identical entries for each individual . So long as Proposition 1.1 is satisfied, the parameters are
identified and the number of columns of X ;. is at least as great as the number of columns of Z,;
(e, & £ g4). Note again how the columns of X, serve two roles: both in estimation of their own
coefficients and as instruments for the columns of Z,;.
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