Some Tests of Specification for Panel Data: Monte Carlo Evidence and an
Application to Employment Equations

Manuel Arellano, Stephen Bond

The Review of Ecoromic Studies, Volume 58, Issue 2 (Apr., 1991), 277-297.

Stable URL:
http://links.jstor.org/sici ?s1ci=0034-6527%28199104%2958%3A2%3C2T7 %3 ASTOSFP%3E2.0.CO%3B2-2

Your use of the ISTOR archive indicates your acceptance of ISTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. ISTOR's Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the ISTOR archive only for your personal, non-commercial use.

Each copy of any part of a ISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transtnission.

The Review of Economic Studies 15 published by The Review of Economic Studies Ltd.. Please contact
the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained
at http://www_jstor.org/journals/resLhtml.

The Review of Economic Studies
©1991 The Review of Economic Studies Ltd.

ISTOR and the ISTOR logo are trademarks of ISTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on ISTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www jstor.org/
Sun Nov 3 12:15:09 2002



Review of Economic Studies (1991} 58, 277-197 0034-6527/91/00180277$02.00
© 1991 The Review of Economic Studies Limited

Some Tests of Specification for
Panel Data:
Monte Carlo Evidence and an
Application to Employment
Equations

MANUEL ARELLANO
London School of Economics

and

STEFPHEN BOND
University of Oxford

First version received May 1988, final version accepted huly 1990 ( Eds.)

This paper presents specification tests that are applicable after estimating a dynamic madel
from panel data by the generalized method of maments {GMM)}, and studies the practicai
performance of these procedures using bath generated and real data. Our GMM estimatar
optimally exploits all the linear moment restrictions that follow from the assumption of no serial
carrelation in the errors, in an equation which contains individual effects, lagged dependent
variables and no strictly exogenous variables. We propase a test of serial correlation based on
the GMM residuals and compare this with Sargan tests of aver-identifying restrictions and
Hausman specification tests,

1. INTRODUCTION

The purpose of this paper is to present specification tests that are applicable after estimating
a dynamic model from panel data by the generalized method of moments (GMM) and
to study the practical performance of these procedures using both generated and real data.
Previous work concerning dynamic equations from panel data {e.g. Chamberlain
{1984), Bhargava and Sargan {1983)) has emphasized the case where the madel with an
arbitrary intertemporal covariance matrix of the errors is identified. The fundamental
identification condition for this model is the strict exogeneity of some of the explanatory
variables {or the availability of strictly exogenous instrumental variables) conditional on
the unobservable individual effects. In practice, this allows one to use past, present and
future values of the strictly exagenous variables to construct instruments for the lagged
dependent variables and other non-exogenous variables once the permanent effects have
been differenced out. Bhargava and Sargan {1983) and Arellano {1990) considered
estimation and inference imposing restrictions on the autocovariances, but the assumption
that the model with unrestricted covariance matrix is identified was never removed.
However, sometimes ane is less willing to assume the strict exogeneity of an explana-
tary variable than to restrict the serial correlation structure of the errors, in which case
277



278 REVIEW OF ECONOMIC STUDIES

different identification arrangements become available. Uncorrelated errors arise in a
number of environments. These include rational expectations models where the disturb-
ance is a surprise term, error-correction madels and vector autoregressions. Moreaver,
if there are a priori reasons to expect autoregressive errors in a regression model, these
can be represented as a dynamic regression with non-linear common factor restrictions
and uncorrelated disturbances (e.g. Sargan (1980)). In these cases and also in models
with moving-average errors, lagged values of the dependent variable itself become valid
instruments in the differenced equations corresponding to later periods. Simple estimators
of this type were first proposed by Anderson and Hsiao (1981, 1982). Griliches and
Hausman (1986) have developed estimators for errors-in-variables models whose iden-
tification relies on assumptions of lack of (or limited) serial correlation in the measurement
errors. Holtz-Eakin, Newey and Rosen {1988} have also considered estimators of this
type for vector autoregressions which are similar to the ones we employ in this paper.

An estimator that uses lags as instruments under the assumption of white noise errors
would lose its consistency if in fact the errors were serially correlated. It is therefore
essential to satisfy oneself that this is not the case by reporting test statistics of the validity
of the instrumental variables (i.e. tests of lack of serial correlation) together with the
parameter estimates. In this paper we consider three such tests: a direct test on tne
second-order residual serial correlation coefficient, a Sargan test of over-identifying
restrictions and a Hausman specification test. The operating characteristics of these tests
are different as well as their number of degrees of freedom. In addition, depending on
alternative auxiliary distributional assumptions concerning stationarity and heterogeneity,
different forms of each of the tests are available. These alternative versions of a given
test are asymptotically equivalent under the less general set of auxiliary assumptions but
they still may perform quite differently in finite samples. We have therefore produced a
number of Monte Carlo experiments to investigate the relative performance of the various
tests. Finally, as an empirical illustration we report some estimated employment equations
using the Datastream panel of quoted U.K. companies.

The paper is organized as follows. Section 2 presents the madel and the estimators.
For a fixed number of time periods in the sample, the model specifies a finite number of
moment restrictions and therefore an asymptotically efficient GMM estimator is readily
available. The discussion is kept as simple as possible by concentrating initially on a
first-order autoregression with a fixed effect. Exagenous variables and unbalanced panel
considerations are subsequently introduced. Section 3 presents the various tests of serial
correlation and their asymptotic distributions. Section 4 reports the simulation results.
Section 5 contains the application to employment equations and Section 6 concludes.

2. ESTIMATION

The simplest model without strictly exogenous variables is an autoregressive specification
of the farm

Ya=ePintmto., jaf<l (1)

We assume that a random sample of N individual time series (y,,..., yir) is available.
T is small and N is large. The v, are assumed to have finite moments and in particular
E(u,)= E(v,v,)=0 for t#s That is, we assume lack of serial correlation but not
necessarily independence over time. With these assumptions, values of y lagged two
periods or more are valid instruments in the equations in first differences. Namely, for
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T =3 the model implies the following m=(T —2)(T —1)/2 linear moment restrictions
E[(#:—afie-))yuepnl =0  (G=2,...,(-1);¢=3,...,T) (2}

where for simplicity J, = ¥ — Yi—y. We wish to obtain the optimal estimator of a as
N -« far fixed T on the basis of these moment restrictions alone. That is, in the absence
of any other knowledge concerning initial conditions or the distributions of the v, and
the n;. Note that our assumptions also imply quadratic moment restrictions, for example
E(5,8,,-5) =0, which however we shall not exploit in order to avoid iterative procedures.

This estimation problem is an example of those analyzed by Hansen (1982} and
White (1982), and an optimal GMM or two-stage instrumental variables estimator should
be available. The moment equations in (2) can be conveniently written in vector form
as E(Z}0;) =0 where §, = (§,; - - * §;p) and Z, is a (T — 2} x m black diagonal matrix whose
sth block is given by (y;, « - - yi).!

The GMM estimator & is based on the sample moments N'Y [, Zi5,=N""'Z'§
where 6=F—aj_,=(01,...,8%) is a N(T—-2)x1 vector and Z=(Z{,...,Z%) i5 a
N(T-2)x m matrix. & is given by

YL ZANZ'S

& =argmin, (FZYAN(Z'8) == ——
g ( JAN( ) . ZANZ'5.,

(3)
Multivariate standard CLT implies that V/*N~Y?Z'5 is asymptotically standard normal
where V= N"'Y E(Z!55.Z) is the average covariance matrix of Zi5. Under our
assumptions, V can be replaced by VN =N'Y, Z’u,u Z; where the ©; are residuals from
a preliminary consistent estimator &,. The one-step estimator &, is obtained by setting
An=(NT'Y,ZIHZ) " where H is a (T—2) square matrix which has twos in the main
diagonal, minus ones in the first subdiagonals and zeroes otherwise. A consistent estimate
of avar {&) for arbitrary Ay is given by

¥ ZANVNANZ T,
(FLZANZ'F,Y

avar(@)=N (4}
The optimal choice for Ay is V' (e.g. see Hansen (1982)) which produces a two-step
estimator &, &, and &, will be asymptotically equivalent if the v, are independent and
homoskedastic both across units and aver time.

It is useful to relate these estimators to the Anderson-Hsiao (AH) estimator which
is commonly used in practice. Anderson and Hsiao {1981) proposed to estimate o by
regressing y on y_, using either y_, or y_, as instruments. Since both y_, and y_, are
linear combinations of Z the resulting estimators will be inefficient. Note that under
stationarity, namely when E{ yuyi,—«)) = Ca for all ¢, the estimator that uses Z; = diag (y,)
(t=1,..., T-2)is asymptotically equivalent to the one based on the stacked vector y_,,
whose computation is much simpler (since A, becomes irrelevant). However neither of
the two is asymptatically equivalent to &, or &,, not even under stationarity.

The extension of the previous results to the case where a limited amount of serial
correlation is allowed in the u, is straightforward. Suppose that v, is MA (g) in the

1. In this paper we represent this type of matrix by Z; =diag{y;,,...,y.}), (5=1,..., T-2).

2. An alternative choice of Ay is (N7'E, Z’,-(lZ,-]‘l with = N"'T, &,5/. The resulting estimator does
nat depend on the data fourth-order moménts and is asymptaotically equivalent to 4, provided the v, are serially
independent. Note that in this case E{Z|5,6:Z) = E(2}{1,Z;} and limp .. N~ YE, ELZHY, - Qn) Z] =0 (see
White (1982}, p. 492).
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sense that E(v,v,_i,) #0 for k=4 and zero otherwise. In this case « is just identified
with T'=¢g+3 and there are m, =(T —g—2{ T — g —1)/2 restrictions available.

Models with exogenous variables

We now turn to consider an extended version of equation (1) where (k—1) independent
explanatory variables have been included

J”ir=a}’i(.-ml)'f'ﬁ’x;‘;'*'"?i'f'Ui::ﬁ'xif'f"?i'*'Uir (5)

where x;, = (-1, x%) is kx 1 and the v, are not serially correlated. Suppose initially
that the x¥ are all correlated with ;. In this context the form of the optimal matrix of
instruments depends on whether the x% are predetermined or strictly exogenous variables.
If the x¥ are predetermined, in the sense that E{x¥*v,) # 0 for s<t and zero otherwise,
then only x%, ..., x¥,_;) are valid instruments in the differenced equation for period s
so that the optimal Z, is a (T -2} x(T-2)[(k— 1 T+ 1)+ (T —1)1/2 matrix of the form
Z, =diag (py - - yux& - - x¥iyy), (s=1,..., T—=2). On the other hand, if the x¥ are
strictly exogenous, i.e. E(x%v,)=0for all £, 5, then all the x*'s are valid instruments for
all the equations and Z, takes the form Z; =diag (y;, - -y xF - - x¥), (s=1,...,T-2).
Clearly, x¥ may also include a combination of both predetermined and strictly exogenous
variables. In either case, the form of the GMM estimator of the k x 1 coefficient vector
81is

§=(X'ZANZ' RV 'R’ ZANZ'§ (6)
where X is a stacked (T —2) N x k matrix of observations on %,, and 7 and Z are as
above for the appropriate choice of Z,. As befare, alternative choices of Ay will produce
one-step or two-step estimators.’

Turning now to the case where x¥ can be partitioned into (x§,x%,) and x¥, is
uncorrelated with ,, additional moment restrictions exploiting this lack of correlation
in the levels equations become available. For example, if x¥, is predetermined and letting
w, =mn;+v,, we have T extra restrictions. Namely, E(u,,x¥ ) =0 and E{u,x%) =0, (t=
2,...,T). Note that all remaining restrictions from the levels equations are redundant
given those previously exploited for the equations in first differences. Define u;, =
(tts - - - wipY, let v7 be the [(T-2)+(T—1}]x1 vector »] =(Fiuf) and let v"=
(o]’ -+ o) =y = X"8 The optimal matrix of instruments Z; is block diagonal and
consists of two blocks; Z; which is as in the predetermined x¥ case above (assuming that
x¥, is also predetermined), and Z7 which is itself block diagonal with {x¥, x¥},) in the
first block and x¥,, s=13,..., T in the remaining blocks. The two-step estimator is of
the same form as (6) with X*, y* and Z* replacing X,y and Z respectively, and
An=[N7'Y, Z[876{'Z7]"". Onthe other hand, if x¥, is strictly exogenous, the abserva-
tions for all periods become valid instruments in the levels equations. However, given
those previously exploited in first differences we only have T extra restrictions which in
this case can be conveniently expressed as E(T™" Z:;l ux¥)}=0{(=1,...,T). Thus,
the two-step estimator would just combine the (T — 1} first difference equations and the
average level equation.*

3. Nate that if E{v!) is unrestricted (i.c. v, is MA{g) with T < g+3) but x7% is strictly exogenous, the
model is identified with Z; = diag {x%' - - - x¥), (s =1, ..., T—2), in which case the two-step estimator coincides
with the generalized three-stage least squares estimatar proposed by Chamberlain (1984).

4. Nate that when x{;, variables are available it may be possible ta identify and estimate coefficients far
time-invariant variables on the lines suggested by Hausman and Taylor (1981), Bhargava and Sargan {1983)
and Amemiya and MaCurdy (1986).
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Models from unbalanced panel data

By unbalanced panel data we refer to a sample in which consecutive observations on
individual units are available, but the number of time periads available may vary from
unit to unit as well as the historical points to which the observations correspond. This
type of sample is very common particularly with firm data which is the context of the
application reported below. Aside from often allowing one to exploit a much larger
sample or to pool more than one panel, the use of unbalanced panels may lessen the
impact of self selection of firms in the sample. In fact nothing fundamental changes in
the econometric methods provided a minimal number of continuous time periods are
available on each unit, and one assumes that if period-specific parameters are present
the number of observations on these periods tend to infinity. Of course, the essential
assumption is that the observations in the initial cross-section are independently dis-
tributed and thatsubsequent additions and deletions take place atrandom (see Hsiao (1986),
Chapter 8).

The previous notation can accommodate unbalanced panels with minor changes.
We now have T, time-series observations on the ith unit, and there are N individual
units in the sample. The matrices X and Z, and the vectors ¥ and § are made of N
row-blocks, the ith block containing (T; —2) rows. Note that now the number of non-zero
columns in each Z; may vary across units. For example, in the first-order autoregressive
specification above, the number of columns in Z; is p={7—-2)(r—1)/2 where r is the
total number of periods on which observations are available for some individuals in the
sample, and Z; =diag {y;,,...,¥s), {s=1,...,7—12), only if 7 observations are available
on i For individuals with T, < 7, the rows of diag (y;,..., y.) corresponding to the
missing equations are deleted and the missing values of y;, in the remaining rows are
replaced by zeroes. The twa-step GMM estimator of « for this choice of instruments® is
the same as in (3) using Ay =(N 'Y, Z!55/Z)"" where 2, is (T,—2)xp and &, is
(T;—2)x 1.

3. TESTING THE SPECIFICATION

In order to keep the notation simple we now drop the bars from variables in first differences,
so that the first-difference equation for the unbalanced panel is now

y=X &8+ v €))]
n=l nxk k=l nxl
where n =Y, (T, ~2). We also assume that the x}; are all potentially correlated with .
The n %1 vector of residuals is given by

f=p—Xé=v—-X(5-5)

where 8 can be any estimator of the form (6) for a particular choice of Z and Ap. Let
§_, be the vector of residuals lagged twice, of order g =Y, (T, —4) and let v, be a g x1
vector of trimmed » to match v_, and similarly for X . Since the v, are first differences
of serially uncorrelated errors, E(v,0;,_,,) need not be zera, but the consistency of the
GMM estimators above hinges heavily upon the assumption that E(,0,,-2)=0. In an

5. This is the optimal choice amongst the estimators that can be obtained by stacking the equations for
all periods and individuals. An alternative estimator would minimize the sum of the GMM criteria for each of
the balanced sub-panels in the sample. Although the latter is strictly more efficient when the number of units
in all sub-samples tend to infinity, it may have a paorer finite-sample performance when the variaus sub-sample
sizes are not sufficiently large.
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unbalanced panel (r—4) such covariances can be estimated in total, in principle with
varying number of sample observations to estimate each of the covariances. Provided
one assumes that all sub-samples tend to infinity, a (r—4) degrees of freedom test can
be constructed of the hypothesis that the second-order autocovariances for all periods in
the sample are zero. However, a considerably simpler procedure will look at the average
covariances ¢, = t{, ,+. These averages are independent random variables across units
with zero mean under the null although with unequal variances in general. So a straight-
forward one degree of freedam test statistic can be constructed to test whether E(¢;) is
zero ar not.

The test statistic for secaond-order serial correlation based on residuals from the
first-difference equation takes the form

A

8.8, .
my= =" A N(0, 1) (8)

under E(tyby,—2) =0, where 6 is given by
B=F N 0l Boviebi 28X (X' ZANZ' X) " X' ZAN(E L | Zi550Bi—2)
+8',X, avhr (8) X, b_,. (9)

Note that m; is only defined if min T, = 5. A proof of the asymptotic normality result is
sketched in the Appendix.

It is interesting to notice that the m, criterion is rather flexible, in that it can be
defined in terms of any consistent GMM estimator, not necessarily in terms of efficient
estimataors, either in the sense of using optimal Z or Ay or both. However, the asymptotic
power of the m, test will depend on the efficiency of the estimators used.

The m, statistic tests for lack of second-order serial correlation in the first-difference
residuals. This will certainly be the case if the errors in the model in levels are not serially
carrelated, but also if the errors in levels follow a random-walk pracess. One may attempt
to discriminate between the two situations by calculating an m, statistic, on the same
lines as m,, to test for lack of first-order serial correlation in the differenced residuals.
Alternatively, notice that if the errors in levels follow a random walk, then both OLS and
GMM estimates in the first-difference model are consistent which suggests a Hausman
test based on the difference between the two estimators.

We now turn to consider two other tests of specification which are applicable in the
same context. One is a Sargan test of over-identifying restrictions (cf. Sargan (1958,
1988), Hansen (1982)) given by

s=0'Z(Y], ZIWHZY ' Z'Ba x7-n (10)

where §=y — X4, and §isa two-step estimator of & for a given Z. Notice that Z need
not be the optimal set of instruments; here p just refers to the number of columns in Z
provided p> k. Also notice that while we are able to produce a version of the serial
correlation test based upon a one-step estimator of & which remained asymptotically
normal on the null under the more general distributional assumptions, no robust chi-square
Sargan test based on one-step estimates is available. Under the null a statistic of the form

| _ -
SI:EU'Z(EEIZEH,-Z,-} \2'5

where © are one-step residuals, will only have a limiting chi-square distribution if the
ervors are indeed i.i.d. over time and individuals. In general, the asymptotic distribution
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of 5, is a quadratic form in standard normal variables. Critical values can still be calculated
by numerical integration but this clearly leads to a burdensome test procedure.

On the other hand, there may be circumstances where the serial correlation test is
not defined while the Sargan test can still be computed. As a simple example, take the
first-order autoregressive equation at the beginning of Section 2 with T =4, in this case
the Sargan statistic tests two linear combinations of the three moment restrictions available,
namely E(§1v;,) = E(8.,0:) = E(D4¥i2) = 0, but no differenced residuals two periods apart
are available to construct an m, test.

A further possibility is to use Sargan difference tests to discriminate between nested
hypotheses concerning serial correlation in a sequential way. For example, let Z; be a
nx p, matrix containing the columns of Z which remain valid instrumental variables
when the errors in levels are first-order moving average, and let 5; be a two-step estimator
of & based on Z; with associated residuals ,, then

5= ﬁ:Z;(Efil Z'Hﬁﬁa;fzﬁ)hlz'}a;& Xi-,Hk
if the errors in levels are MA {0) or MA (1). In addition
ds=5—5;: Xn—p, (11)

if the errors in levels are not serially correlated. Moreover ds is asymptotically independent
of 5; (see Appendix).

. A’\closely related alternative is to construct a Hausman test based on the difference
(8; — &) (cf. Hausman (1978) and Hausman and Taylor (1981}). This type of test has
been proposed by Griliches and Hausman (1986) in the context of moving-average
measurement errors. A test is based on the statistic

h= (8~ 8)[avér (&;) ~avir (§)]7(8, ~8) s x7 (12)
where ¥ =rank avar (5, - 5) and ( )~ indicates a generalized inverse. The value of r will
depend on the number of columns of X which are maintained to be strictly exogenous.

In particular, if the only non-exogenous variable is the lagged dependent variable then
r=1

4, EXPERIMENTAL EVIDENCE

A limited simulation was carried out to study the performance af the estimation and
testing procedures discussed above in samples of a size likely to be encountered in practice.
In all the experiments the dependent variable y, was generated from a model of the farm

Yu = ayu'(r—lj+ﬁxi: + Th‘“ Uie, (f = la R | N; = la ety T+ 10)
B =a|'t(£l't+¢§i(r—l))’ ‘O-I?rz 8{]+le=2': (13)

where 7, ~i.i.d. N(0, a2), &, ~ii.d. N(0, 1) and y,,=0. The first ten cross-sections were
discarded so that the actual samples contain NT observations,
With regard to x;,, we considered the following generating equation

Xie =px|'(.r—l)+ £ (14)

with g, ~i.i.d. N(0, o?) independent of 1, and v, for all 1, s and kept the observations
on x;, fixed over replications. As an alternative choice of regressors we used total sales
from a sample of quoted U.K. firms where large variations across units and outliers are
likely to be present. In both cases, x, is strictly exogenaus and uncorrelated with the
individual effects. However, since we are interested in the performance of estimators that
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rely on lags of y;, for the identification of a and B, the over-identifying restrictions arising
from the strict exogeneity of x,, and the lack of correlation with 5, were not used in the
simulated GMM estimator. Thus, we chose®

Z, =[diag (yis - - - yis) (X3 Xr)] (s=1,...,T=-2)

which is a valid instrument set provided ¢ =0.

In the base design, the sample size is N =100 and T=7, the g, are independent
over time and homoskedastic: §,=¢=0,8,=a’=1,02=1,8=1,p=0-8 and a2 =09,
Tables 1 and 2 summarize the results for & =0-2, (-5, 0-8 obtained from 100 replications.
Results for other variants of this design were calculated (N =200, T=6,0"=2, 5,
al =0, p=0], and are available from the authors on request. However the conclusions
are the same as for the results reported here.

Table 1 reports sample means and standard deviations for one-step and two-step
GMM estimators (GMM1 and GMM2 respectively), OLS in levels, within-groups, and

TABLE 1

Biases in the estimates

Robust
Within- One-step  One-step  Two-step
GMM1 GMM2 OLS  groups AHd AHI ASE ASE ASE
e=05p8=1
Coeflicient: o
Mean 0-4384 0-4920 0-7216 (3954 —2-4753 0-3073  0-0683 0-0677 0-0604
St. Dev. 0-0671 0-073 0-0216 0-0272 459859 (-0821  0-0096 0-0120 0-0106
Coeflicient: 8
Mean 10053 0-9976 0-7002 1-0409 0-162% 09996  0-0612 0-0607 0-0548
St. Dev. 0-0631 0-0668 0-0484 0-0480 9-8406 0-0650  0-0031 0:0055 0-0052
a=02,A=1
Caefficient: «
Mean 0-1937 0-1979 (-5108  0-0957 0-2025 0-2044  0-0410 0-0602 0-0533
5t. Dev. 0-0597 0-0670 0-0340 00309 01973 0-0661  0-0045 0-0066 0-0060
Coefficient: 8
Mean 1-0048 0-9960 0-7030 1-0430 09973 0-9991  0-0620 0-0615 0-0553
5t. Dev. 0-0630  0-0687 0-0526 0-0474 0-0818 0-0654  0-0028 0-0058 0-00452
=08 8=1
Caefficient: a
Mean 0-7827 0-7810 {-8997 0-7160 0-8103 0-8038  0-0529 0-0527 0-0470
5t. Dev. 0-0582 0-0609 0-0090 00206 01313 0-2677  0-0069 0-0082 0-007%
Coefficient: 8
Mean 1-0001 0-9926 0-7754  1-0137 L-0000 09980  0:0609 0-060! 0-0544
St. Dev, 0-0622 00671 0-0423 0-0461 0-0789 0-0893  0-0035 0-0056 0-0056
Notes.

(i) N =100, T =17, 100 replications, g’ =a2 =1.

(ii) Exogenous variable is first arder autoregressive with p =0-8 and o2 =0-9.

(iii) GMMI1 and GMM2 are respectively one step and two step difference—IV estimators of the type described
in Section 2. Both GMM use Z =[diag(y;, - -y, }:i{%q- - )] (s=1,..., T -2}

(iv} AHd and AHI are the Anderson-Hsiao stacked—IV estimators of the equation in first differences that use
Apier—n and Yy, 5y as an inscrument for Ay, respectively.

{v} One Step ASE and Robust Qne Step ASE are estimates of the asympiotic standard errors of GMM]. The
former are only valid for i.i.d. errors while the latter are robust ta general heteroskedasticity over individuals
and over time. Two step ASE is a robust estimate of the asymptatic standard ercars of GMM2.

6. The optimal instrument set for the system of fest difference equations would be z =
diag (p1y " * Visa X1y - X ke
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two AH estimators. The AHd estimator is given by

&
( ‘) Z(Z:V 2:—=4 AzirAw;r)"lz:\[z:’m‘ AZ,‘{ A‘J"'ir (15)
ﬁ AHd
where w, ={ Vi, X2} and z, ={¥i._s, x,). The AHL estimator replaces Az, with

(¥icc-2y, Ax,)" and the summation goes from =3 to T. The next two columns report
sample means and standard deviations for two alternative estimates of the asymptotic
standard errors of the one step GMM estimator. The first ane is only valid for i.i.d. errors
while the second is robust to heteroskedasticity of arbitrary form. The last column
corresponds to estimates of the asymptotic standard errors of the two-step GMM estimator.

The tabulated results show a small downward finite-sample bias in the GMM
estimators of o« (of about 2 to 3%). Not surprisingly, the OLS and the within-group
(WQ) estimators of @ exhibit large biases in opposite directions (i.e. upward bias in QLS
whose size depends on o2 ; downward bias in WG whose size depends on T). The
behaviour of the AH estimators is more surprising. Concerning AHd, there is evidence
of lack of identification for o =0-5 and negligible biases, though coupled with large
variances, for ¢ =0-2 and 0-8. On the other hand, the standard deviation of AHI is small
for @ =0-2 and @ =0-5 but it more than doubles that of AHd for & = 0-8. These results
are consistent with the calculations of asymptotic variance matrices for the AH estimators
reported elsewhere {cf. Arellano (1989}). As explained in that note, in a model containing
an exogenous variable in addition to the lagged dependent variable, there are values of
a and p between 0 and 1 for which there is no coarrelation between Ay, _; and Ay, s,
in which case Ay, _,; is not a valid instrument and AHd is not identified. In our first
experiment, AHd is close to such a singularity which explains the result. In contrast,
AHI has no singularities for stationary values of @ and p but can nevertheless be even
less precise than AHd for large values of a.

An interesting result is that the standard deviation of the GMM estimators of @ is
about three times smaller than that of AHd for 2 =0-2 and 0-8 and between four and
five times smaller than that of AHI for « = 0-8 (although the standard deviation of AHI
for « =02 and « =05 is of a similar magnitude as for the GMM estimators). This
suggests that there may be significant efficiency gains in practice by using GMM as
opposed to AH, aside from overcoming potential singularities as in our first experiment.

Concerning GMM, the two alternative estimators of their asymptotic standard errors
behave in a similar way, althaugh the robust alternatives always have a bigger standard
deviation. Their sample mean is always very close to the finite-sample standard deviation
in column one, suggesting that the asymptotic approximation is quite accurate for the
simulated designs. On the other hand, the estimator of the asymptotic standard errors
of GMM?2 in the last column shows a downward bias of around 20 percent relative to
the finite-sample standard deviations reported in the second column.

Table 2 reports the number of rejections together with sample means and variances
for the test statistics discussed in Section 3. The first three columns contain two alternative
versions of the one step m, statistic and the two step m, statistic (see the notes to the
table). The Sargan tests are tests of the over-identifying restrictions based on minimized
criteria of the GMM estimators of Table 1. The difference-Sargan tests are based on the
difference between the minimized GMM criteria and the restricted versions of these that
remain valid when the errors are MA (1), The Hausman statistics test the distance between
the GMM and the restricted GMM estimates of a.

With only 100 replications we cannot hope to provide accurate estimates of the tail
probabilities associated with the test statistics; our results can only be suggestive. The
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robust m, statistics, which depend on the fourth-order moments of the data, both tend
to reject too often at the 10% level, suggesting that they have a slower convergence to
normality by comparison with the other test, but they are still to be recommended when
heteroskedasticity is suspected. Overall all three m, tests seem to be quite well approxi-
mated by their asymptotic distributions under the null, with no abvious indications of
the need for systematic finite-sample size corrections. The same is true for the Sargan,
difference-Sargan and one step Hausman tests. However, the two-step Hausman statistic
appears to over-reject consistently in these experiments.

Table 3 repeats the exercise for two models with MA (1) serial correlation (¢ =0-209
and 0-333) and two other experiments with heteroskedastic errors. The m, statistic will
reject the null more than half the time at the 10 per cent level when the correlation
between v, and v,y is anly 0-2. However when the autacarrelation rises to (-3, the
null will be rejected in 95% of cases. The Hausman test has considerably less power than
the difference-Sargan test or the m. statistics, and with increasing autocorrelation the
difference in power becomes wider.

The last two panels of Table 3 investigate the effects of departures from homoskedas-
ticity of the error distribution on the probabilities of rejection of the tests. Both experiments
have 8,=0 and 8, = 1. In the first, the x;, are generated AR (1) data as in the previous
experiments, while in the second the x,, are U.K. sales data. This has a dramatic effect
on the one-step tests which are not robust to heteroskedasticity. On the ather hand, the
robust m, statistics and the two-step difterence-Sargan test show no serious departures
from their nominal size. The two-step Sargan test tends to under-reject and the two-step
Hausman test over-rejects, especially in the last experiment where the variance of x,, is
much greater. We suspect that the two-step Hausman statistic is very sensitive to the
presence of autliers.

5. AN APPLICATION TO EMPLOYMENT EQUATIONS

In this section we apply the strategy for estimation and testing outlined earlier to a model
of employment, using panel data for a sample of UK. companies. We consider a dynamic
employment equation of the form

My = oWyt ok, gt B(L)x;, + A+ m + oy (16)

Here n;, is the logarithm of U.K. employment in company i at the end of year ¢, the
vector x;, contains a set of explanatory variables and (L} is a vector of polynomials in
the lag operator. The specification also contains a time effect A, that is common to all
companies,® a permanent but unobservable firm-specific effect 9; and an error term v,.

Equation (16) will admit more than one theoretical interpretation. Suppose first that,
in the absence of adjustment costs, a price-setting firm facing a constant elasticity demand
curve wauld choose ta set emplayment according to a log-linear labour demand equation
(see, for example, Layard and Nickell (1986))

nE = yot ¥ W T Yok T Va0 ) (17}

where v, <0, ¥, 0 and v, =0. Here w, is the log of the real product wage, k, is the log

7. Nate that the time period is taken to be the 12-month period covered in the company’s accounts
(*'accounting year™) and so differs across companigs in the sample.

8. These time effects relate ta calendar years and 4 company’s accounting year is allocated to the calendar
year in which it ends.
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of gross. capital, of, is a measure of expected demand for the firm's product relative to
potential output, and the intercept may contain a firm-specific component 7n}. If employ-
ment adjustment is costly then actual employment will deviate from n¥ in the short run.
This suggests a dynamic labour demand model of the farm of (16}, where x; contains
ki, w, and a'?,, and unrestricted lag structures are included to model this sluggish
adjustment. We include the log of industry output ( ps,) to capture industry demand
shocks, and aggregate demand shocks are also included through the time dummies. The
resulting employment equation is a skeleton version of those estimated on U.K. time
series data by Layard and Nickell (1986) and on micro data by Nickell and Wadhwani
(1989). The short-run dynamics will compound influences from adjustment caosts, expecta-
tions formation and decision processes.

Alternatively, if adjustment costs take the standard additively-separable quadratic
form (l/2a)(N,-,—N,-(,_”]2, where N, denates the level rather than the logarithm of
company employment, then Dolado (1987), following Nickell (1984), derives a log-linear
approximation to the Euler equation for a firm maximising the present discounted value
of profits as

E,_{n) =812+ r}n,-(,_” -1+ r)ni(:—2}+ afl+ -")[”n:.-—u - "ﬁ.‘—L}]' (18)

Here r is a real discount rate, assumed constant, and r¥ is given by (17). Replacing the
conditional expectation by its realisation and introducing an expectational error v, vields
a model with the form of (16), though with strong restrictions on the dynamic structure
in this case. In particular the rational expectations hypothesis suggests a theoretical
motivation for the assumption of serially-uncorrelated errors in this kind of madel.

The principal data source used is the published accounts of 140 quoted companies
whose main activity is manufacturing and for which we have seven or more continuous
abservations during the period 1976-1984. The panel is unbalanced both in the sense
that we have more observations on some firms than on others, and because these
observations correspond to different points in historical time. We allocate each of our
companies ta one of nine broad sub-sectors of manufacturing according to their main
product by sales, and use value-added in that sector as our measure of industry output.
Qur wage variable is a measure of average remuneration per employee in the company,
which we deflate using a value-added price deflator at the industry level. Finally we use
an inflation-adjusted estimate of the company’s gross capital stock. More information
about the sample and the construction of these variables is provided in the Data Appendix.

In Table 4 we report GMM estimates of these dynamic employment equations.” We
begin by including current-dated variables and unrestricted lag structures. Calumns (al)
and (a2) present the one-step and two-step results respectively for the most general
dynamic specification that we considered. Three cross-sections are lost in constructing
lags and taking first differences, so that the estimation period is 1979-1984, with 611
useable observations. Here all variables other than the lagged dependent variables are
assumed to be strictly exogenous, although nane of the aver-identifying restrictions that
follow from this assumption are exploited.

Caomparing columns {al) and (a2) shows that the estimated coefficients are quite
similar in all cases. Both models are well determined and have sensible long-run properties
for a labour demand equation. However the asymptotic standard errors associated with
the twao-step estimates are generally around 30% lower than those associated with the

9. Estimation was performed using the DPD progeam written in GAUSS, deseribed in Arellano and Bond
{1988a) and availabie from the authars on request.
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TABLE 4
Employment equations
GMM estimates {all variables in first differences}

Dependent variable: In (Employment),, Sample Period: 1979-1984 (140 companies)
Independent Instrumenting wages and capital*
variables {al) {a2) (b) {e) {d)
i) 0-686 (0-145) 0-62% (0-090) 0-474 (0-085) 0-800 (0.048) 0-825 (0.056)
M- —0-085 (0-056}  —0-065(0-027} —0-053{0-027) —0-116{0-021) —0-074 {0-010)
W, —0-608 {0-178}  —0-526(0-054) —0-513{0:049) —0-640{0:054) —
Wigy_1) 0-393 (0- 168} 0-311 (0-094} (4-225 (0-080) 0-564 (0-066) 0-431 {0-076)
” 0-357 (0-059} 0-278 (0-045) 0-293 (0-039) 0-220 (0-051) —
LR —0-038 (0-073) 0-014 (0-053) — — —0-077 (0-045)
Kiim2) —0-020 (0-033}  —0-040(0-026) — — —
Sy 0-608 (0.172} 0-592(0-1186) 0-610 (0-109) (-850 (0-098) —
¥Si1) —0-711{0-232) —0-566(0-140}  —0-446 ((-125) —0-875(0-105)  —0-1L5(0- LOO}
Yio-n 0-106 (0-141) 0-101 {0-113) — — 0-096 (0-091)
"y —{316 —0-434 —0-327 ~0-610 —1-25%
Sargan test 65-8(25) 31-4 (25) 30-1 (25} 63-0 (50) 683 (51)
Difference-Sargan 41-9(8§) 15-4 {6} 10-0{6} 28-6 (20} 31-6 (20}
Hausman 581} 14-4 (1) 13-4{1) 2-0¢1) 29(1)
Wald test 408-3¢10) 667-0(10) 372-0(7) 779-3 (7 623-9(8)
No. af observations 611 611 611 611 411

* A subset of valid moment restrictions involving lagged wages and capital ate exploited—see note {vi).
Additional instruments used are the stacked levels and first differences of (firm rea] sales),,_;, and (firm real

StOCkS)(r_z} .
Notes

(i} Time dummies are included in all equations.

{ii} Asymptotic standard errors robust to general crass-section and time series heteroskedasticity are reported
in parentheses.

{iil) The GMM estimates reported are all two step except column (al].

(iv} The m,, Sargan, difference-Sargan and Hausman statistics are all two step versions of these tests except
in column {(al}. In column (al) the m, and Hausman statistics are asymptotically robust to general
heteroskedasticity, whilst the Sargan and difference-Sargan tests are anly valid in the case of i.i.d. ercors.
All Havsman statistics test only the coefficient on n,,,_,,. Degrees of freedom for ¥ statistics are reported
in parentheses.

(v} The Wald statistic is a test of the joint significance of the independent variables asymptotically distributed
as y> under the null of no relationship, where k is the number of coefficients estimated {excluding time

dummies).
{vi) The basic instrument set used in calumns (a1}, (a2} and (b) is of the form
My Mg 0 0 0 - 0 - 0 axt,] 1979
2 O 0 my Ky n; 1] ] Axis| 1980
O 0 0 0 0 - oy o By Axly| 1984

where x;, is the vector of exogenous variables included in the equation. For example, the equation for
1979 in first differences can be written as
Any=a Ayt asdn,tAx B+ Ay,

For companies on which less than 9 observations are available, the rows of Z; corresponding to the missing
equations are deleted and the missing values of # in the remaining rows are replaced by zeroes.

In columns (¢} and (d) Z; is modified ta take the form

Z, =[diag {n;, - - - niswi(s—i)wiski(s—l)ku}E(&x:] - Axl)] (s=2,...,7

where x,, is now the vector of explanatory variables excluding wages and capital but including stacked
lagged sales and stocks.
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one-step estimates, with the discrepancy being even larger in some cases. We suspect
that most of this apparent gain in precision may reflect a downward finite-sample bias
in the estimates of the two-step standard errors as indicated by the simulation results in
Table 1, suggesting that caution would be advisable in making inferences based on the
two-step estimator alone in samples of this size.

Turning to the test statistics, neither of the robust m, statistics nor the two-step
Sargan test provide evidence ta suggest that the assumption of serially uncorrelated errars
is inappropriate in this example. The one-step Sargan and difference-Sargan statistics do
reject the overidentifying restrictions but our simulation results showed a strong tendency
for those tests to reject toa often in the presence of heteroskedasticity. The two-step
difference-Sargan test is more marginal but does reject at the 5 per cent significance level.
Both Hausman tests also reject but these too show a tendency to aver-reject in our
simulation experiments. One possibility is that this instability across different instrument
sets reflects the failure of the strict exogeneity assumption for wages and capital, rather
than serial carrelation per se.

In Table 5 we present some alternative estimates of this same model for comparison.
Columns (e} and {f) report two instrumental variable estimates of the differenced equation
using simpler instrument sets of the AH type. In column (e) we use the difference Any,_s,
to instrument Any,_,;, losing one further cross-section, whilst in column (f) we use the
level n;(,_4, as the instrument. Inboth cases the coefficient estimates are poorly determined,
indicating a massive loss in efficiency compared to either GMM estimator in. this applica-
tion. Using bath Ang, s, and ny, .4, as instruments (not reported) helped a little, but the
estimates remained very imprecise. In column (g} we repart OLS estimates of the
employment equation in levels. In this case the 1978 cross-section is available and the
longer estimation period has been used here. Compared to the GMM estimates there is
a serious upward bias on the lagged dependent variable, which suggests the presence of
firm-specific effects. Calumn (h) reports the within-groups estimates, which are close to
GMM in this example. In fact the WG estimate of the first-order autoregressive coefficient
is bigger than the corresponding GMM estimates, although the comparison between WG
and GMM in this case is obscured by the likely endogeneity of wages and capital.

Returning to the GMM estimates in Table 4, column (b) omits insignificant dynamics
with little change in the long-run properties of the previous model. In columns (b)-(d)
we report only the two-step estimates though the one-step coefficient estimates were
invariably similar. In column (b) the two-step difference-Sargan test now marginally
accepts the hypothesis of no serial correlation, but the two-step Hausman statistic remains
an outlier. In column {c) we relax the assumption that the real wage and capital stock
are strictly exogenous and instead treat them as being endogenous. We therefore use
lags of w and k dated (r—2) and earlier as instruments for w;, wy, -, and k,. We also
use lagged values of the company’s real sales and real stocks as additional instruments.
Given the size of our sample, not all the available moment restrictions were used. The
precise form of the instrument matrix is described in note {vi} to Table 4. The results in
column (c) suggest that it is inappropriate to treat wages and capital as strictly exogenous
in this model. In this case none of the test statistics indicate the presence of ris-
specification.

The coefficient estimates for our preferred specification in column (¢) suggest a
long-run wage elasticity of —0-24 {standard error=0-28) and a long-run elasticity with
respect to capital of 0-7 (S.E.=0-14}. There is a strong suggestion that industry output
enters the model in changes rather than levels, which is appealing since o in (17)
measures demand shocks relative to potential output. Layard and Nickell (1986) interpret
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TABLE 5§
Employment equations
Alternative estimates

Dependent variable: In (Employment},,

Independent (e} (f) {g) {h)
variables AHd AHI OLS Within-groups
Rim1y 1-423 2308 1-045 -734
(1-001) (1-055) (0-051) (0-058)
Mifioz) —0-165 —(-224 -0-a77 —{-141
(0-128) (0-117) {0-048) (0-077)
Wy, —0-752 —0-810 —0-524 -0-557
{0-230) {0-283) (0-172) (0-155)
Wite-1 0-963 1-422 0-477 0-324
: {0-76R) (0-R51) (0-169) (0-143)
k, 0-322 6253 0343 0-385
{0-1085) {0-110) (0-048) (0-056)
L —0-325 —(-552 —0-202 —0-084
{0-386) (0-357) {0-064) {0-033)
L —0-095 —--213 —0-116 —0-025
{0-123) (0-145) {0-035) {0-042)
V8, 0-766 0-991 0-433 0-521
{0-311) (0-338) {0-176) {0-193)
Pi—ty ~1-362 ~1-938 ~0-768 ~0-659
(0-881) (0-992) (0-248) (0-208)
VSigimmy 0-321 G-487 0312 4-001
{0416) (0:425) {0:130) {0:139)
Hy —0-781 -0-919 —1-029
Wald test 199-3 {10} 1G1-1 (10}
R’ 0-994 0-689
MNumber of observations 471 611 751 751
Naotes.

(i) Time dummies are included in all equations.

(i} Asymptotic standard errors robust 10 general cross-section and time series heteraskedasticity
are reported jn parentheses.

(iii} The m, and Wald tests are asymptotically robust to general heteroskedasticity.

(iv) Columns (e} and () report Anderson-Hsiao-type estimates of the equation in firsi differences:
Am,,y, is treated as endogencus and the additional instruments used are An,,_ in {e),
and #;,_s, in {f}, so that one further cross-section is lost in {e} and the effective sample
period becomes 1980-34.

{v} Column (g} reports OLS estimates of the equation in levels, where the effective sample period
hecomes 1978-1984,

(vi} Column (h) reports within-groups estimates, These are OLS estimates of the equation in
deviations fram time means.

the short-run effect of product demand fluctuations on labour demand as reflecting the
practice of narmal cost pricing.

Finally in column (d) we report estimates of the Euler equation model given in (18}).
Here again we treat wages and capital as endogenous variables. Although the tests for
serial correlation remain below their critical values, the coefficient estimates are not
favourable to the Euler equation interpretation. The coefficients on capital and industry
output are poorly determined, whilst those on the lagged dependent variable imply a real
discount rate of around —100%. Very similar results were obtained for versions of the
Euler equation model allowing for an MA (1) error process and estimating in levels as
opposed to logs. It appears that the process of employment adjustment is not well
described by this model.
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The results of this empirical application are generally in agreement with those of
our Monte Carlo simulations. The GMM estimator offers significant efficiency gains
compared to simpler IV alternatives, and produces estimates that are well-determined in
dynamic panel data models. The tendency for non-robust test statistics to over-reject is
confirmed. The robust m. statistics perform satisfactorily as do the two-step Sargan and
difference-Sargan tests, but the two-step Hausman test must be considered suspect in
samples of this size.

6. CONCLUSION

In this paper we have discussed the estimation of dynamic panel data models by the
generalized method of moments. The estimators we consider exploit aptimally all the
linear moment restrictions that follow from particular specifications, and are extended
to caver the case of unbalanced panel data. We focus on models with predetermined but
not strictly exogenous explanatory variables in which identification results from lack of
serial correlation in the errors. A test of serial correlation based on the GMM residuals
is proposed and compared with Sargan tests of over-identifying restrictions and Hausman
specification tests.

Ta study the practical performance of these procedures we performed a Monte Carlo
simulation for 100 units, seven time-periods and two parameters. The results indicate
negligible finite sample biases in the GMM estimatars and substantially smaller variances
than those associated with simpler IV estimators of the kind introduced by Anderson
and Hsiao (1981). We alsao find that the distributions of the serial-correlation tests are
well-approximated by their asymptotic counterparts.

We applied these methods to estimate employment equations using an unbalanced
panel of 140 quoted U.K. companies for the period 1979-1984. The GMM estimators
and the serial correlation tests performed well in this application. A potentially serious
problem, suggested by both the experimental evidence and the application, concerns the
estimates of the standard errors for the two-step GMM estimator which we find to be
downward biased in our samples. Further results on alternative estimators of these
standard errors would be very useful.

APPENDIX
A. The asymptotic normality of the m, statistic
Following the notation of Section 3, under the assumption that (X' 8,/ N} = 0,(1) we have
NG 6= N7V 200, — (0, X, f NINYX(E - 5)+ 0,(1) as N>
and also
N7V 6, = N2 0, — 2 N~ 20+ 0, (1),
where
=0 X (X ZANZ' X' X' ZA .

Then a multivariate central Limit thearem for independent observations ensures

Fr—172ar—172 ﬂ’—lﬂ* d
ILIVN N Z’u il N(O, Ip"'l}‘l
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whete W, is the average covariance matrix of (;, £1)":
- 1 1 e TTT
WN=_2115(¢; ¢.§:)=("_*~ '{N),
N dd dn U
and £ = Zu,. Therefore

SNV N{0,1) (AL)
where
Oy =N — 28NN T2 Vagn
ot
_ 1 L
Sy ZF[EL E(l2)004 Vixti-n) ~ N0y X WX ZANZ X) ' X' ZANT]. | E(Z vl 00.))
+{v',X,)avar (S\)(X,',, _4)]
with

avar (8) = N(X'ZAnZ' X ) (X' ZANVNANZ XN X' ZANZ X ).

A cansistent estimate of 8, can be obtained by replacing population average expectations of errors by sample
averages of residuals. Finally, noticing that under our assumptions (A1) remains valid after this replacement,
the result follows.

For a one-step 5, we can also consider an alternative m, criterion (“one step m,") which relies on more
restrictive auxiliary distributional assumptions. Assuming that the errors in the madel in levels are independent
and identically distributed across individvals and time, we have

1
g =§‘72}:?‘=1 E(ﬂ:(—z]Hl’ 4'(»—2))

where H,. 1s a (T, —4) square matrix which has twos in the main diagonal, minus ones in the ficst subdiagonals
and zeros otherwise. Moreover

- 1
Un =g T L BQZIH b))

Hun
Hi= H.
and Huw is a 2%(T; ~4} matrix with minvs one in the (2, 1) position and zeroes elsewhere. Under such
conditions § can be replaced by

G=82Y | Sl nHol yX (X' ZANZ'X) X' ZAy ( N z;H,.,a,.(_n) ¢

where H,, is a (T, —2)x (T, — 4) matrix with

i=l
+ 8, X, avir(§) X5,

where 47 is an estimate of o’.

B. The Sargan difference test

Nate that 5 in (10) can be re-written as

§Z4 (1 )"z*'ﬁ
= —Y._ ZFEH2ZY ] ——,
TUN (NE‘=1 CEREL] UN
where Z* = ZH and H iz a px p linear transformation matrix such that
Z¥=(Z| Zy)

with

%z:‘; 2088, 255" 0.
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Letting
o~ Iy - — '
(EZM zy¥ viﬂiz?‘) =CnCly

where C,, is p X p nonsingular, and noting that

Z*’lt][ z*'x[x'z* . z’**x}“xz*c o } z*y
JN 1P NN VYN N NN UN
we have
yZ* ) ~ + ' Z¥u
S=7§CN[IIO—G(GG) lG]CN IN
where '
ZrX
G=C} .
”( N )

Following the usual argument one ¢an show that s =7 &' Me -Xf,_,,, where £~ N{0, ) and M is of the form.
I~ D{DXD}y~' D" with 1ank p — k. O On the same lines we can write
ﬁ'zl

se= 5y Cinlls ~ GGG GIC

:N\/N‘

where

and
IR [ a-T] o f
EE;=| Z 8,81, 2y, =CinChin.

Let G* contain the top p; tows of G Notice that G*— G; —7 (.

Therefare
p) deM ( ! 0)
= § — -— E—&E £
s =5—35 £ 6 0

where M, = I, — Dy(D\D;) D} and tank (M) = p; — k with D'= (D¥| D};).

Finally natice that
[M ( r )]
a 0

is symmetric and idempotent with rank p—p; and also

(2 D10 9

from which (11) follows.

DATA APPENDIX
(a) Sample

The principal data source used is company accounts from Datastream International which provide accounts
records aof employment and remuneration {i.e. wage bill) for all U.K. quoted companies from 1976 onwards,
We have used a sample of 140 companies with operations mainly in the UK., whose main activity is
manufacturing and for which we have at least 7 continuous observations during the period 1976-1984. Where
moare than 7 observations are available we have exploited this additional information, so that our sample has
the unbalanced structure described in Table Al
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TABLE Al
Number aof recards Number af
on each company compaties
7 103
8 23
9 14

As well as requiring at least 7 continuows abservations, companies were excluded from our sample for a
number of reasons. We required complete records on. a set of accounting variables including gross fixed assets,
investment, inventories and sales as well as employment and remuneratian. Companies that changed the date
of their accounting year end by more than a few days were excluded, sa that our data all refer to 12 month
periads. We also excluded companies where either employment or one aof aur constructed measures of real
wages, real capital, real inventories or real sales jumped by more than a factor of 3 from one year to the next.
This filter will remove both those companies where data has been recorded erroneously and those companies
that have experienced major mergers. Finally we restricted our attention to companies that we could allocate
to one of 9 broad sub-sectors of manufacturing industry using Datastream’s breakdown of total sales by product
available from 1980 onwards.

{h) Variables
Employment
Number of U.K. employees (Datastream variable 216)

Real Wage

A measure of average annual remuneration per employee was constructed by dividing U.K. remuneration
(Datastream variable 214) by the number of U.K. employses. This was adjusted to take into account changes
in average weekly hours worked in manufacturing industries (manual and non-manual employees, 18 years
and aver, male and female, all occupations—source: Department of Employment Gazette, various issues). A
measure of real average hourly remuneration was then abtained by deflating using an implicit value-added
price deflator, These implicit price deflators were caleulated for each of our sub-sectors of manufacturing
industry, using the current price and constant price GDP data published in various Blue Books.

Gross Capital Stack
Denoting the histaric cost boak value of gross fixed assets (Datastream variable 330) by HCK,, we obtain an
estimate of the inflation-adjusted {or replacement cost) value of gross fixed assets (RCK,) using the formula

i

P
RCK,=HCK,X( — )
P(nA

where P! is a price index for investment goads and A is an estimate of the average age of gross fixed assets.
An implicit price deflator for gross fixed investment by manufacturing industry was calculated using the current
price and constant, price gross fixed investment data published in Ecanomic Trends Annual Supplement (1986,
p. 56). For the purpose of this exercise a value of A of 6 years was assumed. Our estimates of the gross capita!
stock at replacement cost are then expressed in constant prices using our investment goods deflator.

Indusery Output

An index of value-added output at constant factor cost was constructed for each of our 9 sub-sectors of

manufacturing industry, using data published in the Blue Book (1986, Table 2.4). The 15 sub-sectors of

manufacturing for which this data is reported were combined into 9 using the weights given in the Blue Book.
Further details on this data set can be found in Arellano and Bond (1988h).
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