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A note on the selection of data transformations

By D.F. ANDREWS
Bell Telephone Laboratories, Murray Hill and Princeton University

SUMMARY

Recently Box & Cox (1964) and Fraser (1967) have proposed likelihood functions as a
basis for choosing a transformation of data to yield a simple linear model. Here a simple,
exact, test of significance is proposed for the consistency of the data with a postulated trans-
formation within a given family. Confidence sets can be derived from this test. The power
of the test may be estimated and used to predict the sharpness of the inferences to be
derived from such an analysis. The methods are illustrated with examples from the paper
by Box & Cox (1964).

1. INTRODUCTION

Box & Cox {1964) considered the choice of a transformation among a parametric family
of data transformations to yield a simple, normal, linear model. They investigated two ap-
proaches to this problem and derived a likelihood function and a posterior distribution for
the parameters of the transformation. Draper & Cox (1969) have found approximations for
the precision of the maximum likelihood estimate.

Fraser (1967) derived a different likelihood function which yields quite different inferences
from those of Box & Cox (1964) in extreme cases where the number of parameters is close
to the number of observations.

Likelihood methods require repeated computations using a number of transforms of the
original data. This can be troublesome if there is a multiparameter family of transforma-
tions. A further defect of the likelihood methods is that confidence limits and tests hased on
them have only asymptotic validity; the numher of parameters must he small compared
with the number of observations. This will not be the case for small data sets, paired com-
parison experiments and extreme cases.

In the present paper, a method is proposed which has three possible advantages over
direct calculation of likelihoods. Its main disadvantage is that it does not lead to such a clear
graphical summary of eonclusions as is given by a plot of a likelihood. The advantages are:
(i) an ‘exact’ test of significance is obtained from which ‘exact’ confidence limits can be
caleulated;; (ii) the amount of calculation is reduced if only one or a few transforms are to be
tested; (iil) the precision with which the transformation can be estimated is capable of
theoretical caleulation.

2. TEST OF SIGNIFICANCE
Consider A = {4}, a parametric class of transformations

Ay—=yY (AeA),
and suppose that for some A the transformed response y* may be described by a linear model

yd = XB + e, (2-1)
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where X is a # x p matrix of independent variables with rows %}, f is a p x 1 vector of un-
known parameters, ¢ is an unknown scale parameter and e is a vector whase elements are
independent standard normal deviates,

The model for ¥ is nonlinear; nevertheless a simple F test may be derived to test the hypo-
thesis A = A, a given value of A. The derivation of this test is analogous to those of Williams
{1962) which are based on locally linear expansions of the nonlinear terms in the model.
The present paper extends this method to cases where terms in the expansion depend on the
response ¥.

Assume that the transformation y involves ¢ functionally independent parameters
A = (A, ..., A)) and is sufficiently regular to be approximated by a linear expansion about the

true value A: Y = P v, (hg—2A)

and so y(?\n) — XB_}_ V 7\0-—-1)+0'e,
where Ny [ By
7oLy e

The matrix V depends on y and must be modified to yleld a simple test. The model (2:1)
fitted to ya y1e1ds fitted values for y, given by §? = ti Thus the matriz V may be ap-
proximated by V¥ caleulated using these fitted values:

by = [a{ym}] .
d Ay Ja—ng5-9
A test of the hypothesis A = &, may now be constructed from the modified model

¥o = XB + V(A,— ) +ae.

The F statistic to test the hypothesis A = 2, is based on the regression of the Iea,st squares
residuals r = y@-ﬂ—Xp on, U {I— X(X"X)“lX’}v The mdependenee of r and B implies
the independence of r and U sinee U depends on y only through B Thus the F statistic
calculated in this way has a standard F distribution. It is important to note that the pre-
cision of the above approximations may affect the efficiency of the above test but it will not
affect the exactness of this distribution; for a detailed development of this result see Milli-
ken & Grayhill (1970).

3. Two EXAMPLES

In this section the foregoing theory is applied to two examples of Box & Cox (1964).
They considered a family of transformations depending on a real parameter A, equivalent to

2
gl A40)
logy (A =0).
For this class of transformations the matrix of derivatives is a vector v which may be esti-
matedby %= A3 xifIn (xif).

Box & Cox (1964) consider in some detail a biological and a textile example.

The biological experiment was a 8§ x 4 factorial experiment in which the factors were
poisons and treatments and the data were 48 survival times of test animals.

There were some general reasons for analysing rates, which correspond to A, = — L.
The significance level associated with this hypothesis is 0-15. Had these authors chosen, say,
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Ay = 1, the significance level would have been 0-01. Note that the calculations required for
this test involve only one regression operation for each transformation tested.

The textile example was a single replicate of a 33 design in which the data consisted of 27
observations on the number of cycles to failuxe of yarn under repeated loadings. It was
natural to try analyzing log y, Ay = 0. The significance level associated with the hypothesis
Ag = 015 0-6. The significance level associated with A, = —0-25, say, is 0-003,

4, CONFIDENCE SETS
The significance test of §2 may he used to generate a confidence set for A defined by
O(y) = A afd) > e},
Since the test has exact size «,, the confidence intervals generated in this way are exact with

confidence coefficient I —a,. The amount of calculation required to determine these eon-
fidence sets is much. greater, although no maximization is required.

5. EXAMPLES

The confidence intervals for the two examples discussed by Box & Cox (1964) may be
readily obtained graphically from Table 1. In Table 2 these are compared with the approxi-
mate intervals derived by Box and Cox based on the asymptotic properties of the likelihaoad
funetion.

Table 1. Significance levels for various values of A
A. Bialagicsal example
A ~-1-25 —1-05 —0-55 —0:06 0-45 0:95
o 003 011 0-89 025 0-04 0-01
B. Textile example

A — 45 — 015 —0-05 0-05 0-15 0-25
o 0-003 409 0-74 0-30 -3 0002

Table 2, Ninety-five per cent confidence sets for the two examples:
the significance and the likelihood methods compared

Confidence interval
A

Method Biologieal Textils
Significance —1-18 < A < 0-40 —0-2 < A < 012
Likelihood —113 < A < ~0-37 —0-18 < A < 0-08

6. GENERAL REMARKS

Tukey (1949) proposed a test for non-additivity with one degree of freedom. This one
degree of freedom is chosen to be sensitive to second-order terms in E(y), the expected
response. The test is based on the F statistic associated with fitting one additional variable,
a vector whose elements are (x’f.s.)2 = #%. This criterion could also be used to test & hypo-
thesized transformation and to generate exact confidence intervals.

The ‘exact’ test is of a similar form and corresponds in general to a test of non-additivity
with p degrees of freedom. These degrees of freedom are selected to be sensitive to small
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changes in the transformation, one degree of freedom for each independent transformation
parameter. For the one-parameter family of power transformations this test is based on the
F statistic associated with fitting one additional variable, a vector whose elements are
v, = (%) In (% B) or 9;log #,. By writing #; = #1 +d,) and noting that the F statistic will
be unchanged under scalar multiplication of v or addition of any linear combination of
the columns of X to v, we see that V is equivalent, for test purposes, to a vector with
components ¢, = (1+d,;)log (1 +d;) or
v = (L+dy) (d;— §di+4di—..),

v =3t —hdi+ ...,
since d lies in the linear space generated by X. If d; < 1, then v;is approximately equivalent
tov; = d?or v; = §1, the components of the vector used in the test with one degree of freedom
for non-additivity. It is not surprising then that the exact and the non-additivity tests yield
very similar results in these examples. The two tests may lead to quite different results in
some cases, particularly where some d, > 1 or when the family of transformations involves
p > | independent parameters.

This discussion indieates that much of the information in the exact tests derives from the
assumption of additivity. Indeed, in the biological example with the completely non-
additive model specifying 12 independent cell expectations, U = O and the test does not
exist. Often this should be the most important basis for the selection of a transformation.

However, an examination of Fig. 6 of Box & Cox (1964) reveals that, for the biological
example, the likelihood inferences are almost the same, assuming an additive or a non-
additive model. In this case the likelihood is determined hy other features of the data,
primarily homogeneity of variance. This may explain the narrower confidence interval
given by the likelihood method in this example (Table 2).

To investigate how sensitive the likelihood and exact methods are to outliers, one obser-
vation in the biological example was changed. The respanse 0-23 for poison II, treatment
A, corresponding to the largest residual when A = — 1, was changed to 0-13. The maximum
likelihood estimate and the estimate obtained by minimizing the exact test criterion are
given in Table 3 together with. 75 9, confidence limits calculated by both methods for the
original and the perturbed data.

or

Table 3. The effect of one outlier on estimates of A

QOriginal data, With one outlier modified
Likelihood method
75 %, confidence interval —098 < A < —0-08 —03 < A < 005
Maximum likelihood estimate — 075 —15
Significance method
75 9%, confidence interval —09 < A < 005 —-12 < A < 00
Minimum F' estimate —0-5 —0:5

The maximum likelihood estimate was affected mueh more than the minimum F estimate.
The confidence limits of hoth methods were affected. The perturbed observation so inflated
the residual sum of squares for small A that the lower exact confidence limit for confidence
coefficients > 0-9 was very small,

This points to perhaps the most important difference hetween the two methods. The
F statistic and hence the ‘exact’ method is relatively ingensitive to some departures from
normality which will remain in the transformed data where they can, perhaps, be detected
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and the model or data modified accordingly. The likelihood method is sensitive to such de-
partures from normality. In data transformed by this method these departures will be
harder to identify but their effect will be smaller,

The choice of the method used will depend in part on (i) the relative weights to be given
normality and the simplicity of model; (i) the interpretability of a particular transform-
ation; (iii) the sample size, and through it the relevance of the asymptotic properties of
the likelihood function; and (iv) the possible treatment of outliers and other departures
from normality. There will he instances where one, the other, and both methods should be
investigated.

7. PowEeR

In this section the power of the test is approximated and used to predict the size of the
confidence intervals.

The test described in § 2is an F test. If the linear expansions of § 2 were not approximations,
the nonnull distribution of the statistic would be noncentral F. In the following, the ap-
proximation of the nonnull distribution by noncentral F will be made. The power of the
test is then a function of the noncentrality parameter of the ¥? distribution of the numerator
of the F statistic. This noncentrality parameter may be obtained by replacing y with its
expectation in the calcylation of this term. When this is done the sum of squares entry
associated with fitting U after X is just (A—2,) U U(JL 2,). The noncentrality parameter

is approximated by 92 = 5-AA—12y) U’fJ(l— Ay, (7-1)

where &2 is an unbiased estimate of ¢ obtained from the residual sum of squares. The size
of the confidence interval may be predicted by

(i) finding the noncentrality parameter, y2, associated with power, say ;

(ii) replacing $2 with y*in (7-1) and solving for (& — &,) to obtain an ellipsoid.

In the absence of any approximation, points lying on this surface would lie outside the
confidence set with probability equal to the power used, here .

The exact test is based on the regression of the least squares residuals on the matrix
U= U(Q) The power of this test is conditional, given an independent variable # whose
distribution is known. In principle the unconditional power may be calculated although this
seerns a very difficult task.

8. ExaMPLES

The noncentrality parameter associated with power % is v2 = 4 for both examples. Thus
|A—A,4| may be found from Yraft o (A Ao)ﬁU U/

using the original data (A = 1), in the caleulation of U. The corresponding values of |A — A,
are given in Table 4 for A; = 0 and Ay = 1. These are compared with the half width of the
ohserved 959, confidence intervals given in Table 2.

Table 4. The critical difference |A — Xy| estimated with using two values of A
Differance | A — Ag|

4 IS
Estimated using: Biological Textile
A=1 0-8 413
A=0 -8 014

Actual from Table 2 07 0-12
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The close agreement between the predicted critical difference for power £ and the observed
width of the related confidence interval obtained by detailed calculation suggests that the
ahove procedure may well be used to identify those instances for which a detailed calcula-
tion will yield only broad and hence not vital inferences about A.

The estimated size ig almost invariant under changes in A (see Table 4). Thus its use does
not require @ priori knowledge of the true value.

The author gratefully acknowledges the comments of Professor D. R. Cox, Colin Mallows
and the referees, which were most helpful in revising this note.
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