# Time series applications in R install.packages("dynlm") require(dynlm) library(dynlm) gas<-read.table("~/Documents/Schoolwork-UIUC/Econ 508 Fall 2012 TA/R Session/gasq.data",header=TRUE) summary(gas) #define global variable p<-gas$p p=gas$p z<-gas$z y<-gas$y #classify variable as time series p<-ts(p,start=1947, freq=4) y<-ts(y,start=1947, freq=4) z<-ts(z,start=1947, freq=4) dym<-dynlm(d(p)~L(p,c(1,2))) #L(p, 1:4) summary(dym) dym2<-dynlm(d(p)~d(L(p)),start=c(1950,1),end=c(2008,2)) summary(dym2) lp<-lag(p,-1) lp4<-lag(p,-4) dp<-diff(p) model<-dynlm(y~L(y,1)+d(L(y,1:2))+z+p+d(L(z,1:2))+d(L(p,1:2))) #loops beta0=0.2 beta1=0.3 alpha1=-0.5 alpha2=0.2 R=100 delta<-rep(0,R) delta[1]=beta0 delta[2]=beta1+alpha1*beta0 for (i in 3:R){ delta[i]=alpha1*delta[i-1]+alpha2*delta[i-2] } Delta=cumsum(delta) par(mfrow=c(1,2)) plot(1:R,Delta,type="l",main="cumulative effects") abline(h=(beta0+beta1)/(1-alpha1-alpha2),col="red") plot(1:R,delta,type="l",main="Impulse Response")