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Recent Advances in Quantile
Regression Models
A Practical Guideline for Empirical Research

Moshe Buchinsky

ABSTRACT

This paper provides a guideline for the practical use of the semi-paramer-
ric technigue of quantile regression, concentrating on crass-section appli-
cations. It summarizes the most important issues in quantile regression ap-
plications and fills some gaps in the literature. The paper (a) presents
several alternative estimators for the covariance matrix of the quantile re-
gression estimates; (b} reviews the results for a sequence of quantile re-
gression estimates; and (c) discusses testing procedures for homoskedastic-
ity and symmetry of the ervor distribution. The various results in the
literature are incorporated into the generalized method of moments frame-
work. The paper also provides an empirical example using data from the
Current Population Survey, raising several important issies relevant tq
empirical applications of quantile regression. The paper concludes with
an extension 1o the censored guantile regression model,

L. Introduction

The semi-parametric technique of quantile regression has recently
re¢eived a lat of attention in both theoretical and empirical research. A number of
papers suggest new estimatars that deal with various extensions of the original quan-
tile regression model. Other papers deal with practical estimation problems such as
the estimation of the covariance matrix for the quantile regression estimates, the
performance of the varicus estimates in small samples, and such like, More impor-
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tantly, empirical researchers have successfully applied the model, and its various
madifications, to a wide range of issues in ecanomics. The goals of this paper are
to: (a} summarize some of the most important issues in quantile regression applica-
tions; (b) offer some further tools for facilitating various stages of the analysis; and
(c) provide a useful guideline for empirical researchers.

The quantile regression model intraduced by Koenker and Bassett (1978b), ex-
tends the notion of ordinary quantiles in a location model to a more general class
of linear models in which the conditional quantiles have a linear form. A well known
special case of quantile regression is the least absolute deviation (LAD} estimator
(Koenker and Bassett 1978a), which fits medians to a linear function of covariates.
LAD estimation is potentially attractive for the same reason that the median may
be a better measure of location than the mean.

In an important generalization of the quantile regression model, Powell (1984 and
1986) introduced the censored quantile regression model. This model consistently
estimates conditional quantiles when observations on the dependent variable are cen-
sored. For example, in the Current Population Survey (CPS) data set many of the
variables are top coded for confidentiality.

Useful features of the quantile regression and censored quantile regression madels
can be summarized as follows: (a) the models can be used to characterize the entire
conditional distribution of a dependent variable given a set of regressors: (b) the
quantile regression model has a linear programming representation (EP) which
makes estimation easy; (¢) like the LAD minimand, the quantile regression objective
function is a weighted sum of absolute deviations, which gives a robust measure of
lacation, so that the estimated coefficient vector is not sensitive to outljer observa-
tions on the dependent variable; (d) when the error term is non-normal, quantile
regression estimators may be more efficient than least squares estimators; (e) poten-
tiafly different solutions at distinct quantiles may be interpreted as differences in the
response of the dependent variable to changes in the regressors at various points in
the conditional distribution of the dependent variable; (f) L-estimators, based on a
linear combination of quantile estimators (for example, Portnoy and Koenker (1989)
adaptive L-estimator) are, in. general, mare efficient than least squares estimators,

The purpose of this paper is to facilitate the practical use of quantile regression
models by making recent theoretical developments operationally feasible. Where the
literature is ambiguous, T attempt to clarify important ideas. Where there are gaps
in the literature, T attempt to fill them. In the process I incorporate results obtained
in different studies into the same generalized method of moments (GMM) frame-
work, and provide the various asymptotic results based on this framewaork. The paper
concentrates on cross-section applications, where the observations are assumed to
be independently and identically distributed (i.i.d.}.!

In addition, I discuss an empirical example—the estimation of a log wage regres-
sion—using data from the CPS for several representative years. The emphasis in
this example is on the analysis of changes in the retusns to education at distinct
points of the log wage distribution for several age groups. I provide several tests
that help characterize the form of dependence between the error term and the re-

1. Relatively little literature considers quantile regressions in the context of time series, for exampie Weiss
{1991} and Bai (1995).

89



80

The fournal of Human Resources

gressors. Finally, several sensitivity analyses are provided, in which I evaluate the
performance of various alternative covariance matrix estimators.

The paper is organized as follows. Section II motivates the empirical example
provided in this paper and describes the data used. Section III reviews the basic
quantile regression results and fits them into the GMM framework. Section IV pre-
sents and discusses several alternative estimators for the cavariance matrix of the
guantile regression estimates. In particular, it provides alternative estimators which
are valid under different assumptions on the nature of the dependence between the
error term and the regressors. Section V reviews the results for a sequence of quantile
regression estimates, Section VI of the paper discusses procedures for testing homao-
skedasticity and symmetry of the error distribution via the minimum distance (MD)
framework. Section V1I presents detailed results of the empirical example introduced
in Section I, raising several important issues relevant to empirical applications of
quantile regression. Section VIII describes an extension of the quantile regression
model to the censored quantile regression model. The censoring preblems discussed
are of a different nature and therefore require different solutions.

II. An Empirical Example—Analysis of Weekly
Earnings '

A. Motivation and Background

It is well known in the labor economic literature that the 1.5, wage structure weni
through enormous changes over the past few decades. One of the most well known
observed phenomenon is the increase in wage inequality, even after controlling for
individual’s characteristics. Another important phenomenon is the increase in the
return. to skills (namely, education and experience) since the early 1980s.

These two exarples indicate that some major changes occurred across the wage
distribution. Therefore, it is essential to examine such changes at different points of .
the distribution. T'o show the importance of this analysis, Figure 1 depicts the weekly
earnings for individuals with 15 years of experience at various quantiles of the earn-
ings distribution.* As can be seen from this figure, earnings generally increased at
all quantiles as the education level rose. Nevertheless, there are some major differ-
ences in the increases at the various quantiles of the distribution across the four
years. For example, we can see that there was a much steeper increase in the return
to education at the higher quantiles of the distribution in 1992 than in 1979. In fact,
very little increases occwrred at the lower part of the distribution, Note also that
the mean of weekly earnings is consistently above the median of weekly eamings,
indicating that the wage distribution is right-skewed, and more so in the latter years.

This example illustrates the potential importance of investigating changes in earn-
ings at different points of the distribution. Clearly, it is not enough to investigate
changes in the mean when the entire shape of the distribution changes dramatically.
In this paper I provide an empirical example for the estimation of a log wage regres-

2. The exact explanation of the data used to form these graphs and the variables used in the analysis is
provided below.
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sion.” T estimate the regressions at five interesting quantiles of the log wage distribu-
tion, namely .10, .25, .50, .75, and .90 quantiles.

Specifically, I investigate the differential changes in the returns to education (or
maore precisely the derivatives of the conditional quantiles with respect to education)
at distinct poiats of the (Jog) wage distribution. The years chosen can be viewed as
“turning-point’’ years in the history of changes in the wage structure in the United
States. The emphasis of the empirical example given here is on the evolution of the
returns o education across these years.

As part of the analysis T introduce a few tests to examine the implications of the
results. First, I test for equality among the slope coefficients of the various quantile
regressions. Second, as a consequence of the results from of the first test, 1 estimate
a multiplicative heteroskedasticity model, which implies a certain structure on the
quantile parameter vectors, and I report the results of that test for the validity of this
model.

B. The Data

The extract used for the exampie presented here is from the March Current Popula-
tion Survey (March-CPS) for the years 1973, 1980, 1986, and 1993. The extract
contains all males between the ages of 18 and 64 who satisfied the following restric-
tions: (a) they worked at least 13 weeks in the proceding year; (b) they earned at
least $50 per week in 1987 prices; () they did not attend school; and (d) they were
not self-employed. Because the March-CPS variables used here (weeks worked and
total earnings) reflect activity in the year preceding the sample year, T refer to the
actual years of earnings (namely, 1993 CPS sample is referred to as 1992, efe.). All
nominal data are deflated by the implicit price deflator of personal consumption
expenditures for gross domestic produce (see The Economic Report of the President,
1993).

Table 1a reports the number of observations used in each of the four sample years,
for each of the age groups. As can be seen there are between 5,600 and 19,000
observations for each age group, ranging. This means that the estimation of the coef-
ficients is quite accurate. In addition, deviations among the various estimates for the
asymptatic covariance maltrix are more likely to indicate the existence of differences
in the true covariance matrices rather than differences in the estimates which come
from having small samples. _

Table 1b reports some basic statistics for the main variables used in the analysis.
In general, we see that for the whole sample the education level rises from 12 years
(on the average) to 13 years. This increase is not uniform across the various age
groups. For example, larger increases are observed for the middle age group than
for the younger greup. This is due to the fact that more people acquire higher educa-
tion later on in life or returned to school because of changing returns to education.
Note also that more people are living in metropolitan areas (see SMSA) in the later
sample years and that people in the southern region have greater representation in
the years after 1979. The larger percentage of representation of nonwhite people in

3. For other applications of quantile regressions see Buchinsky (1994), Buchinsky (1993h), Chamberlain
(1994}, Evans and Schwahb (1994), Horawitz and Neumann (1987), and Poterha and Reuben (1994).

91



1700 A 1972

100nt. 2500t 50Qnt. 75 Qne. 90Qnt. Mean

1500 T emem— 4344 mmEm 444 I

Shssssngunanst -
-
- S,

-
,—---__..-’-—
-

10 11 12 13 14 15 16 17
Education {in full years)

1700 B. 1979

1600 00Qnt, 25Qnt. 50Qnt. .75Qnt. 90 Qnt. Mean

1500 g ———— 4444¢ SNmm ssee NN

1400
1300
1200

g

1000
900
200
700
600
500
400 senaanet’
300
200
100

Real weekly earnings (in $)

s

-
o .
-

o

10 11 12 13 .14 15 16 17
Education (in full years)

Figure 1
Weekly Earnings for Individuals with 15 Years Experience by Quantile
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Table 1a
Number of Observations

Year
Age Group 1972 1979 1985 1992
Total 30,959 37,718 32,748 32254
18-34 12,913 16,258 15,933 14,325
35-49 10,063 10,834 10,763 12,282
50-64 7,983 7,626 6,052 5,647

Mate: The samples include all males between the ages of 18 and 64. For further detail see the text.

the later sample years is because of changes in the CPS sampling method rather than
a real change in the population race composition.

HI. Quantile Regression—Basic Model and Features

A. The Model

The quantile regression madel, first introduced by Koenker and Bassett (1978b), can
be viewed as a {ocation model. Specifically, let (v, x;), £ = 1, ..., n, be a sample
from some population, where x; is a K X | vector of regressors. It is assumed that

Priy, = tix) = F (T ~ xPelx), i=1,....n

This relation—in a different and perhaps more familiar formulation—can be rewrit-
ten as

(1) wi= x{Bo T ug, Quante(yi|x)) = x{Bo,

where Quantq(y;|x;) denotes the conditional quantile of y;, conditional on the re-
gressor vector x.* If F,(-) was known then various techniques could be used to
estimate 4. However, here the distribution of the error term u,, is left unspecified.
As is implied by (1), it is only assumed that u, satisfies the quantile restriction
Quantyl(tg | x) = 0.

In general, the Bth sample quantile (0 < @ < 1) of v, say [Ls, solves

min {Z By~ bl + > (1~ By - bl}‘

(AT [RTeS

4. Mote that it is assumed here that hath x; and y; are ahserved with no emor and that Equation (1) is
correctly specified. Prablems such as measuvement ervar and omitted variables are not discussed in this
paper, and are, by and large, unsolved in the literature. Tf (1} is not carrect]ly specified (namely, is not
linear) then ane can view the model as the best linear predictor for the conditianal quantile.
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The analogue of the linear model for the 8th quantile is defined in a similar manner.
That is, {34, the estimator for f in (1)—termed the Bth quantile regression—
solves

. 1 i . R — 4 1 :
@ ﬁn;{E;ewf~LM4j§iJ1 oy, nm} nyﬂzipm@L
ST [ i=

where pa(h) = (8 — (A < 0)) A is the check function, and I{:) is the usual indicator
function.
The ath quantile regression problem in (2} can be rewritten as

3) minlz @ ~ 172 + 1/2 sgn(y; — £B)(3: — xib).
poH i=1

The X X 1 vector of first-order conditions (F.0.C.) for the problem in (3) is given
by’

@ lz ® ~ 112 + 1/2 sgn(y, ~ xiPehz; = 0.
B4

In fact, it can be shown that the F.0.C., as specified in (4), implies a moment function
which fits into the GMM framework. Define the moment function as

(5) Wix,y, B =@ — 1/2 + 172 sgnly; — xfx.

It is straightforward to show that ander certain regularity conditions E[W(x;, y:, Pa}]
= (). This establishes the validity of y(-} in {5) as a moment function. The GMM
framework can be used, therefore, to establish consistency and asymptatic normality
of Be, the estimator of . Specifically, under certain regularity conditions, it can be
shown that®

V(s — Ba) = N(O, Ag)
where

(6) Ag = 8(1 ~ BYE[f,(Ofxyxaxi]) ™ Elxx{ 1 (E[£, (0 x)xx/ D7

5. In general these first-order conditions cannot hold exactly, Mevertheless, as £ — = the left hand
side of this equation canverges to 0, or stated mare precisely, the left hand side of the equation is ¢, (n™"
a

6. The form of A is derived in Powell {1984) for the censored quantile regression model. A general
derivation of the asymptatic distribution can be obtained using Huber's {1967) framework. Note that here
E[f,Oix)xxl] = QEy(x, , P3RS

and

81 ~ B ELex(] = Elwlx, v Bahy(xi vi BaY].
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If £,(0lx) = £, (0) with probability 1 (namely, the density of the error term u,
evaluated at { is independent of x), then A, in {(6) simplifies to”

8(1 — 8)

Iy

(7Y A= (EDx; ]

1. Imterpretation of Quantile Regression Estimation

Note that since the Oth conditional guantile of y given xis given by Quanty(y,|x,} =
x; P, its estimate is given hy Qﬁn\h@( yilx;) = x;Po. As one increases 8 continuously
from O to 1, one traces the entire conditional distribution of y, conditional on x. In
practice, given that any data set contains only a finite number of observations, only
a finite number of quantile estimates will be numerically distinct, although this num-
ber can be quite large. Note also that the various quantile regression estimates are
correlated. I discuss below the joint asymptotic distribution of these quantile regres-
sion estimates.

How can the quantile’s coefficients be interpreted? Consider the pattial derivative
of the conditional quantile of y with respect to one of the regressors, say j, namely,
aQuanty(y;jx,Mdx,. This derivative is to be interpreted as the marginal change in
the 6th conditional quantile due to marginal change in the jth element of x, If x
contains K distinct variables, then this derivative is given simply by Py, the coeffi-
cient on the jth variable. One should be cautious in interpreting this result. It does
not imply that 2 person whe happens to be in the Oth quantile of one conditional
distribution will also find himself/herself at the same quantile had his/her x changed.

2. Efficient Estimation

The quantile regression estimator described ahove is not an efficient estimator for
Bs. An efficient estimator can be obtained by solving

mirll qua((}lx)(@ — 172 + 172 sgnfy; — B0y — xiP).
BT

However, this estimation procedure requires the use of an estimate for the unknown
density f,.(0]x). For more details see Newey and Powell (1990).

3. Eguivariance Properties

The quantile regression estimator has several important equivariance properties
which help facilitate the computation procedure, Denote the set of feasible solutions
ta the problem defined in ¢3) by B(8, y, X). Then for every s = B(0, ¥, X) € B(D,
v, X} we have (Koenker and Bassett 1978b, Theorem 3.2):

®  Be, Ay X) =MB® X,  he [0 ),

7. This is exactly the resnit obtained by Koenker and Bassett (1578b). Tn general, if f, {-|x}is independent
of x, then all quantiles should have parameter vectars that differ only in their intercepts. A test of equality
among the slope parameters is discussed in Section V.
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@ B -84y X) =B v X e (=, 0],
(10) B,y + Xy X) = B® 3. X) + v ye RE
(11) BB, y, XA) = A'B(®, v, X),  Agx is nonsingular.
Because, as is shown below, the quantile regression is a linear programming prob-

lem, manipulation based on (8)—(11) can be used to significantly reduce the number
of simplex iterations.

B. Linear Programming Representation of Quantile Regression

The problem in (2) can be shown to have a linear programming (LP) representation.
This feature has impertant consequences from both theoretical and practical stand-
points.

To see that the problem (2) is an LP problem note that y, can be rewritien as a
function of only positive elements:

E ¥
yi = Zx[jﬂaj + Mea = Z.‘[U(Bé; - %}) + (eal. - Uar_),
=1 =1
where i} = 0, B%} =Z0G=1...,K)and g =0,v=0(=1,...,n). When

written in matrix notation the prablem in (2) takes the familiar primal problem of
LP {for example, Franklin 1980):

min £’z subject to; Az =y, z = 0.
I
where A = (X, X, I, 1Ly = (yu .. .3 2= (BY BY, o, v, ¢ = (0, O,
8- (-9 -V, X =1(xy...,x), I, is an n dimensional identity matrix, 0’ is
a K ¥ 1 vector of zeros, and [ is an » X 1 vectar of anes. Furthermore, the dual
problem, of LP is (approximately) the same as the F.O.C. specified in (4} and is
given by

max w'y subject to: WA = ¢
W

The duality theorem implies that feasible solutions exist for both the primal and the
dual problems, if the design matrix X is of full column rank. The equilibrivm theorem
of LP guarantees then that this solution is optimal.

The LP representation of the quantile regression problem has several 1mportant
implications from hoth theoretical and practical standpoints. First, it is guaranteed
that the quantile regression estimate will be obtained in a finite number of simplex
iterations.® Second, unlike the case of the mean type regression, the parameter vector
estimate is robust to outliers, That is, if y; — xfs > 0, then y, can be increased
toward oo, ar if y; ~ x/fls << 0, ¥, can be decreased toward —es, without altering
the solution Bg. In other words, it is not the magnitude of the dependent vari-
able that matters but on which side of the estimated hyperplane is the observation.

8. Typically, the number of iterations required is relatively small for an efficient LP algorithm such as
that propased by Bamrodale and Roberts {1973).
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In many economic situations the dependent variable is censored (at some known
value). The implication of the above propesty is that if, for example, an observation
is right-censored, then for as long as it has a positive residual one need not know
ihe true value of the dependent variable.’

1. Computation Algorithm

Several algorithms have been proposed in the literture for solving the LP problem,
the most attractive of which seems to be Barrodale and Roberts’ (1973} algorithm.'
The main advantage of the Barrodale-Roberts algorithm is that it significantly re-
duces the number of simplex transformations relative to the other known algorithms,
The computation time can be further reduced by modifying the LP algorithm to_take
advantage of the equivariant property {10} If a good initial value of [3,, say if, is
known in advance, it can be used to speed up the computational time, since it can
place the ohservations at the “‘right” side of the hyperplane, Let y, = y — XB§
and let 3 be the estimate from a quantile regression of yz on X, then by prop-
erty (10), Bs = P§ + P3. Obtaining B§ and BE can be much faster than obtaining
Be directly. '

One possible initial value is an adjusted least squares (LS) estimate, where the
constant is replaced by the [r8]th order statistic of the residuals €, . . ., é. An
alternative initial value can be obtained from a quantile regression based on only a
small fraction of the sample; this can be especially useful when the data set is very
large.

IV. Asymptotic Covariance Matrix Estimation

. Eqguations (6} and (7) give formulas for the agymptotic covariance
matrix for By under two alternative assumptions about £, (0|x). Problems in estimat-
ing the covariance matrix in (8) arise mainly with regard to £, (0x), or alternatively
Elf(0lx)xx"]). Consequently, estimation of A, depends on the suhjective decision
of the econometrician, and there is no decisively ‘*best’’ path to fellow. Each ap-
proach has some advantages and disadvantages and each entails some degree of
arbitrariness, the effects of which can be quite important, In this section I detail
several estimators for Ag and then in the empirical example in Section VII, [ provide
a comparison of the various methods."!

9. In cases where some of the observations which are right-censored have negative residuals, or some of
the ohservations which are left-censared have positive residuals, the quantile regression estimate is biased.
In this case one has to resort to the censored quantile regression model as is discussed later.

10, Barrodale and Robests® algorithm is for the median regression, namely, 9 = 12, but, with a minar
maodification, can be adapted for any quantile regression (for example, Koenker and D*Orey 1987). Other
algorithms include Barrodale (1968), Robers and Ben-Israel (1969), Robers and Robers (1970), Abdelma-
ek (1971}, and Armstrong, Frome and Kung (1979).

11. Fora comprehensive discussion and examination of the various estimatars for the asymptatic covari-
ance matrix see Buchinsky (1995a). In summary, the design matrix bootstrap performs the best, but it is
also the most computer intensive method.



Symposinm: Buchinsky

A. Order Statistic Estimator

This estimator is valid when £, (0| x) = £, (0}, that is, when the independence assump-
tion holds.'* Recall that under this assumption the asymptotic covariance matrix sim-
plifies to

Aq = SHELD T,
where
a(1 — 0)
0

The second term of this asymptotic variance is easily estimated by E(xx) = 1/n

1.1 x;x;. The first term, 6}, can be extracted from 2 confidence interval constructed
from the [nB]cth order statistic of ﬁal, ..., tig,. In general, an exact confidence interval
can be computed for the 8th quantile of a random variable ¥ ~ Fy(-) (for example,
Mood, Graybill, and Boes 1974). Specifically,

(12) Pr(yy = £s = yu) = Pr(yy = Eo) — Pr(yw < &a),

where v, and yy, are the jth and kth order statistics of y,, . . ., ¥,, respectively.
Note that

ai =

(13) Py, = Eg) = Pr(j or more observations = &g) = Z (T)G’(l ~ gy
Similarly, J
(14) Pr(ym < &) = Z (?)8"(1 )
Substituting (13) and (14) into (12) yields
(15) Priyy =<La =y = i (:_1)6‘(1 - g
i

Constructing a symmetric confidence interval of level 1 — o for £ is straightfor-
ward. Let j = [#8 — [}, & = [#0 + {], and let X ~ B(n, 8). Then,

(16)  Pr(ywe-m = o < Ypaoeny) = Pr((n6 — 11 = X < [08 + [])

mPr( X > ro = : )

ao(l — 8y Yne(l — 8)

Because (X — n8)/VnO(1 — 8) 5 N, 1), equating the probability in (16) to § —
Qo gives [ = Zl_m\Jrze(l ~— 8). Matching the length of the exact confidence interval

12. This estimator was suggested by Chamberlain (1994). Sitmilar compuration techniques, using an exact
confidence interval for order statistics, can be found in Efron (1982) and Huber (1981).
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i {15) with that of the asymptotic normal confidence interval yields an estimate
for af:

2
_ ”(}’([naﬂn - }’([na—rn)
4Z5_an

(17) &3

Essentially what we implicitly obtained is an estimator for £,(0) given by ﬁ
= 2Z,_nV0(1 — G)Nn(y{[,.w];. Yie-). This estimate can be used when con-
structing an estimate for the covariance matrix of a sequence of quantile regressions
as discussed below.

B. Bootstrap Estimators

There are two alternative ways to employ the bootstrap method propased by Efron
(1979), based on fundamentally different assumptions about the form of the asymp-
totic covariance matrix of 5. While one technique (Design Matrix Bootstrap Estima-
tor) provides a consistent estimator of the asymptotic matrix under more general
conditions, the other (Error Bootstrap Estimator) yields a consistent estimator only
under the idependence assumption. A third bootstrap estimator is the Sigma Estima-
tor. In this estimator only part of the covariance matrix is estimated using the boot-
strap technique, namely &{. Bootstrap samples for the design matrix bootstrap esti-
mator are drawn from the empirical joint distribution of x and y, F,,,; and for the
error bootstrap estimator from the empirical distribution of x, F,,, and u,, F,,,;s.”

1. Design Matrix Bootstrapping Estimator

Let (v¥, x¥),i = 1, ..., n, be arandomly drawn sample from the empirical distribu-
tion F,. It follows from the model in (1) that y* = X*B, + ug, where y* = (yf, ...,
yEYand X* = (xf, ..., x¥). Let B§ denote the bootstrap estimate obtained from
a quantjle regression of y* on X*. This process can be repeated B times, to yield
baotstrap estimates B, . . . , Pd. The bootstrap estimator of Ag is given then by

#

18y Apw =2 Z(Be @y - By

where B¢ = 1/B X2, ﬁé}, Alternatively, one can use ﬁa as the pivotal value instead
of Be

This is a consistent estimator of the asymptotic covariance of Ba given in (6) in
the sense that the conditional distribution of \fn(ﬁe — Be) weakly converges to the
unconditional distribution of ‘Jr_(ﬁe Boy.

13. Note that the empirical distributian F,;, is based on ug = y; — xfﬁm i=1,...,n and not fy, [ =
1, . ... & which are not ahsarved.
14. For a general derivation of this results see Bickel and Freedman {1981}. For an application of this

result in a mean regression model see Freedman (1981),
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2. Error Bootstrap Estimator

Under the independence asswmption itis possible to perform the bootstrap estimation
procedure by resampling from the marginal empirical distributions F,, and F,. . Let
uf = (ug, ..., uf) be a randomly drawn sample of size n from. the empirical
distribution F,; and let X* = (x¥, . .., x)’ be a randomly drawn sample from the
empirical distribution F,,. Define y* = X*f, + uf. This starred data is then used
ta solve the quantile regression problem, the solution of which is a bootstrap estima-
tor, say B&. As with the design matrix bootstrapping procedure, this is repeated B
times, to yield B bootstrap estimators gg; (j=1,...,8) The estimator of Ag,
as the asymptotic covariance matrix of [q, is then obtained in a fashion identical to
that of the design matrix bootstrap method given in (18).

This is a consistent estimator of A, only under the independence assumption. If
the independence assumption does not hold, the resampling scheme destroys any
relationship that might exist between i, and x, making this methed invalid. As is
clear from the discussion above, there is no advantage to using an error bootstrap
estimator over the design matrix estimator since both require the same computation
time and both hold under independence. In small samples, however, the performance
of the error bootstrap estimator might be better if the independence assumption is
satisfied.

3. Percentile Estimation

The percentile method is an alternative way of using the information from any single
bootstrap method. One can extract the variance of an estimated coefficient from a
confidence interval directly computed for that coefficient. Any ane of the bootstrap
methods provides a sequence of bootstrap estimates B, . . ., 3z Let &y, .. .
B be the ordered sequence of 34, . . . , B, element by element. Then, 1 — «
confidence interval for the kth coefficient B (k = 1, . .., K, can be constructed
as follows: Let L} and Uj be the [Bow/2]th and [B(I — ¢/2)]th order statistics of
the kth element of 3, . . ., B, respectively, where [L] denotes the largest integer
greater than or equal to A. Note that

Pr(Ls — By =P —Pi= Uy PO ~Prcls - Pi=P-Bi=0h-Bh~1-0,
where &k = 1, ..., K. Therefore, an (approximate) 1 — o confidence interval for
B is given by

19y 128 — Uh 265 - L4

Since [:’»’5 has an asymptotic normal distribution, matching the length of the asymptotic
confidence interval with the length of the confidence interval in (19) gives the asymp-
totic variance for [34:

n(Us — Lg)*

(20) Gim =
¥ Tz,

Jhk=1,... K

Note that this particular example provides a confidence intervals for each parame-
ter in 3. It can he used, however, to provide a confidence interval for any statistic
of interest that is based on a combination. of the quantile regression coefficients.
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4. Sigma Bootstrap Estimator

This estimator also relies on the independence assumption and on the form of the
asymptotic covariance matrix given in (7). More precisely, the technique combines
the special representation of Ay with a nanparametric estimation of a3, by employing
the bootstrap methad. One can obtain B bootstrap estimates for g4, the 8th quantile
of ug, g8, . . ., 4%y, from B bootstrap samples—each of size n—drawn from the
empirical distribution F,;,. An estimator for G5 is obtained then by

B
n H .
5% = 52 (4% — 40,

where 4§ = 1/B X/, 4%

C. Kernel Estimator

Powell (1988} considered a kernel estimator for E[f%(0|x)xx’ 1. This estimator takes
the form

@1 E(f,Olnd) = m)™ ) ki) s,
i=1

where k(') is some kemel function and ¢, = 0,(1) is the kernel bandwidth.'* The
term E{xx’} is estimated as before by E(xx") = X, xxi/a.

A practical problem arises regarding the choice of the kemel bandwidth that weuld
preferably be data dependent. No direct methad (that I am aware of} allows one to
optimally choose ¢,. Nevertheless, note that the top left-hand element of the matrix
in (21} is an estimate of the density £, (0}

Ful® = ) k).

i=l

Fartunately, for this particular problem, there are a number of cross-validation meth-
ods for optimally choosing ¢, (for example, least-squares, log likelihood, and so on).
Therefare, one can first determine ¢, via a cross validation technique and then use
the optimally chosen ¢, ta estimate E(f, (0]x)xx’) in (21).

Note that under the independence assumption it is only necessary to estimate
£,,(0), in addition to E(xx’). This is immediately available from the first step described
above. The estimate of the covariance matrix Ag Is then given by

L] -1
“ 01 -9 f1
_9a -0l E |
(22) Ay (}1 X ‘)

F100)

15. Powell (1986) cansidered a ane-side kemel function due to the problem of censoring. In general, one
¢an use # two-side kernel fanction.
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V. Sequence of Quantile Regressions

So far T have discussed the estimation of a single quantile regression
for a specific value of 0. In practice one would like to estimate several quantile
regressions at distinct points of the conditional distribution of the dependent variable.
Because these quantile regressions are estimated using the same data with different
weighting schemes, they ought to he correlated. This section outlines the estimation
of a finite sequence of quantile regressions and provides its asymptaotic distribution.

Consider the model given by (2) (dropping the i subscript for simplicity) far p
alternative 9's,

y=xBg + us, and Quanta(uglxy =0, j=1,...,p
Without loss of generality assume that 0 << 0, << 8, < -.. << 8§, < 1, Let
(23) III(I, » ﬁl\ LR ] BP)' = (wl(xs ¥ Bl)" ERERE | lpp(xs ¥ Bp)’)1
where
Wiy, i) =@, — 172 + 172sgn(y —*PY)x, j=1,...,p

define the p moment functions for the 8,th through 8,th quantile regressions, respec-
tively. Let " = (B, .. ., By and let Pa = (Bé, . . -, ﬁép) be the population’s true
values.

Under some regularity conditions, E[\(x, y, Bq,, - - Be )1 = 0. From the analogy

principle (for example, Manski 1988) of estimation. the estimator Be for 3, is obtained
as a solution (o

1 N . .
- i Fia EEEEE R =0.
Z W0 Vir Bayr - B

However, ane need not solve for Baj- (j =1,...,p) simultancously. In fact the
estimation amounts to solving the problem in (3) for each quantile separately, as
there are no cross-restrictions imposed on ﬁel, e ﬁﬂp

Under some regularity conditions (sec Powell 1984) [39 has an asymptonc
normal distribution, that is, ‘Jrn(ﬁa - Ba) 5 N, Ag), where Ay = {Aeﬂ}” L
and

(24} Aq, = (min{8, Bk} - ﬁfekl(E[ﬁaef(Oix)H'])“ E[xx’](E[f,,eé(Omxx’])‘l,
Again, note that if ﬁ,sj_(Oix) = ﬁei(O) (j =1,...,p), then (24) simplifies to
25) Ae = Qg @ (Elxx])7",
where (see Koenker and Bassett (1978b), Theorem 4.2) Qg = {4y}, 41, .., and
_ min{8, 6,} — 6,9,
L0600

Note that the estimated conditional quantiles, conditional on x, are given by
x Beu .. x'Ba Since the estimates [33 (j=1,..., p) for the p quantiles are
obtained scparatciy at every quantile, it need not be the case that X'y, > ¥/ Bek if 0;
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> 8, In fact, one can always find a vector x; such that xaﬁa; > x9Pe, namely, the
conditional quantiles cross each other. This may not be of any practical consequence,
because there may not be such a vector within the relevant range of plausible x's.

VI. Tests for Homoskedasticity and Symmetry

In the previous sections the asymptotic properties of the regression
quantiles were presented, In this section several practical questions pertaining to
these estimators are discussed. In particular, I consider tests that can be performed
having a sequence of quantile estimates at hand. Note that if £.(0x) = £, (0} then
any two quantile parameter vectors, i, and Bg,, should differ only in their intercepts
but not in their slope coefficients. If the distribution of 1y was symmetric, an alterna-
tive structure is implied for the coefficient vectors. This section examines tests for
equality of the slope coefficients and symmetry using the minimum distance (MD}
framework.

A, Test for Homaskedasticity

The main difference hetween the technique used here and that followed by Koenker
and Rassett (1982) is that the covariance mairix for the test statistic used here is
valid under non-local alternative hypotheses, while theirs is valid only under local
alternatives.'d

In the MD framework followed here, first the slope coefficients are estimated
under the restrictions implied by homoskedasticity. That is, the restricted coefficient
vector minimizes, with respect to f,

26) QB = (Bs — RBFYAT(B, — RBD),

where A s a weight matrix with A — ¥, a positive definite matrix and 3 =

(Bayr - [33 Y is the unrestricted vector of p quantile regression estimates.!” Note
that Ba = (Balu . ﬁa B LB isalp + K — 1) X 1 vector of restricted
parameters. The resmcrwn matrix R is given by
e, 0,
R =(R,...,R) where R, = \
0\- IK—l

e;isa p X 1 vector of zeros except for 1 in the jth place, 0, is a (K — 1) X 1 vector
of zeros, 0,,is a p X (K — 1) matrix of zeros, and [_, is the identity matrix of order
K — 1. Note that the intercepts from the alternative quantile regressions (B, . . »
Ba 1), need not be equal.

"The asymptotlc distribution of the optimal MD estimator, ﬁe, is given by Nrrz(ﬂa
— B8y.5 N(O, AD), where A% = (R"A71R)™\. A test statistic is immediately available

16. Koenker and Bassetl considered a particular madel of multiplicative heteroskedasticity that implies a
certain structure on the quantile parameter vectors.

17. Note that if w = Ay [defined in (25)] then the resulting estimate for B is the optimal MD estimator
whase asymptotic covariance mateix is given below. If y = Ay then the asymptotic covariance matrix for
the MD estimator is given by Af = (R 'R) 'Ry Agu'R(Ryw 'R) ™.



Symposium: Buchinsky

from the MD framework. For ¥ = A,, defined in (25}, we have, under the null
hypothesis (of equality among the slope coefficients):

\ . . . L
(27) n(Bs — RBEYAT'Ba — RBE) > Lhwp-x+1-

B. Test for Symmetry

As was noted by Newey and Powell (1987} it is possible to test for symmetry. Let
Be and B _g be the estimated parameter vectors for the 8th and (1 — 0)th quantile
regressions, respectively. Symmetry implies then that f g = 5(84 + Bu—g), where
B 50 is the median (8 = .50) parameter vector.

Letfy,, .. ., Be, be the parameter vectors assaciated with the 8y, . . . , 6, quantiles,
respectively, and let p be an odd number. Furthermore, in order to test for sym-
metry we alse need that 0,;, = 1 — 8, forj=0,...,(p — 1)/2 — |, and

the middle quantile 3¢, o is for By+¢_pn = .50. Fram the symmetry assumption
it follows that g = 2[5 ~ 2B, .

Let 8§ = B, . - -, Bs,), be the stacked vector of the p unrestricted quantile
estimates and let B§ = (B, . . ., Bl-un) be the restricted population parameter.
Then an estimate for Bf is obtained as a solution to

28) min(iy — ReYAU(BY — Rb),
[

where the restriction mateix R is given by R = (R{, R;)". R, is an identity matrix of
dimension (1 + (p — 1)/DK, and

I, O OK L. OK 2y
Ry = | : S
0;{ OK OK PP “"Ig' 2{[{
isa K(p — 1)/2 X K(I + (p — 1}/2) matrix.

The asymptotic distribution of the test statistic, under the null hypothesis, is similar
to that given in (27). That ig, for A = Ay a5 n — ==, we have

n s - » L
@9) nB¢ — RBEY AT B — RBE) — xhpnm

where 3 denotes the MD estimate.

A few remarks about the testing procedure described above are in line. First, note
that the outcome of the tests is either refection or nonrejection of the null hypothe-
sis—we do not obtain any measure of the power of the test against alternative
hypotheses. The setup in Koenker and Bassett (1982) and Newey and Powel] (1987)
enables them to compute local power under local alternative hypotheses. Second,
note that in the case of the homoskedasticity test, if the null hypothesis is not rejected,
then the MD framework provides an optimal way to combine the different slope
coefficients. Finally, note that one needs to choose a weight matrix in (26) or (28).
This matrix can be any matrix (including a nonrandom matrix} whose limit is a
nonstochastic positive definite matrix . For A in (27) or (29), one can use one of
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the asymptotic covariance estimates described in Section TV. For the homoskedastic-
ity test all covariance matrices are valid, but for the symmetry test only the estimates
for the general formula in (6) can he used.

C. Testing Using the GMM Framework

An alternative testing procedure can be applied here using Hansen’s {1982y GMM
method. The moment function defined in (23) is a pK % 1 vector. Under the null
hypothesis of either symmetry ar heteroskedasticity (of the form discussed above)
there are a fewer number of parameters to be estimated, say ¢4, than pK. Hansen's
GMM framewerk provides an estimator for Bf, say 3%, which is obtained as a solution
te

1< e
(30) mbln (; Z w(xh Yis b)) A 1(; Z: ‘{f(x;, }’n b))-

An efficient estimator can be cbtained if A is chosen that A —» E [yix, ¥, ﬁe]lp(x,
¥, Ba)’] as 1 — s, where W(x, y, Bs) is defined in (23). This framewark provides
us with a straightforward testing procedure. Under the null hypothesis (of either
heteroskedasticity or symmetry) we have

1< Y s N
n i A - s ¥is K - o,
PL(H Z yr{x;, ¥ Be)) _ (n. Z yix, y ﬁe)) - yi{p g) asn—

The drawback of this approach is that solving the preblem in (30) can be difficult
since it does not have an LP representation. Note that, because of the linearity of
the conditional quantiles, the estimates obtained frem (30), with an optimal A, are
(asymptotically) equivalent to those obtained by the optimal MD discussed above.
Therefore, in the follewing empirical example, I report only the test statistic for the
MD method.

VIL. Empirical Results

A. General Setup and Results

In this example, I adopt a linear model of the type introduced by Mincer (1974).
The dependent variable is log of weekly wage.”® The set of independent variables
includes: education, education squared, experience, experience squared, an interac-
tion term between education and experience, three regional dummy variables, metro-
politan area dummy variable, interaction variables between each of the regional
dummy variables and the metropolitan area dummy variable, part-time dummy vari-
able, two part-year dummy variables, a dummy variable for race, and interaction
terms between the race dummy variable and education, experience and the part-

14. This variable is defined as the natural log of total annual earings divided by the pumber of weeks
warked.
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time and part-year dummy variables.'” As meationed above, I compute five quantile
regressions, namely .10, .25, .50, .75 and .90, using the same set of independent
variahles in each regression.

After obtaining estimates for the coefficieat vectors from the five regressions, one
should first test whether or not they are statistically different from each other. As
explained above, if the model was truly a location model, then all the slope coeffi-
cients would be the same. Note that, under independence, all the covariance estimates
described above are valid. Table 2 reports the test statistics for each year and age
group. This table shows that the null hypothesis (of equality among the slope coeffi-
cients) is overwhelmingly rejected, regardless which covariance matrix estimate is
used, for all years and age groups. This test provides no indication, however, as to
the form of the dependence between the error term and the regressors.

Ta better evaluate the results, I estimated the multiplicative heteroskedasticity
model considered in Koenker and Bassett (1982). This maodel implies a certdin stiuc-
ture on the parameter estimate at the various quantiles. Consider the model given
by (dropping the i subscript) y = x'B + o(x; V)¢, where € ~ 1.i.d.(0, 67) independent
of x. Let also 6(x; ) = 1 + xY. Then the conditicnal quantile of y is given by

Qolyix) = x'(B + ¥0% + O = xS,

where 8y = B + (v + D@5, e, = (1, ..., (), and @5 denotes the Bth quantile of
€. Note that: (a) we cannot identify both 1, and v, (corresponding to the constant
terms}; and (b) not all of the %'s can be identified. I therefore introduce normaliza-
tion, 7y = 0 and 0% = 0, and estimate the remaining coefficients using the MD
framework. In this specific model, the set of restricted parameters are nonlinear func-
tions of a smaller subset of parameters, namely, 8, = 8(l), where ' = (B, . . .,
B Yar -« s Yoo 260 Q6,, 05, @5.). Given the quantile regression estimates, an efficient
estimator for | is given by '

fle = arg min(@s — 81 Ag* (Be — (),
"
and its asymptotic covariance is given hy

-
A, = [\ B
di au
Under the null hypothesis of multiplicative heteroskedasticity it follows then that

n(fs — 3(faYAs' Bs — 8(fie)) — LXK ~ (2K + 3)).

19. Education is defined as the number af full years of education. Experience is defined as Experience
= max {age — education ~ 6,0}, There are three regional dummy variables for the CPS regions, Northeast,
Marth Central and South (the West region is the excluded region). Each of these dummy variables takes
the value 1 if the individual resided in that region and 0 otherwise. The metropotitan area duramy vatiable
takes the value L if the ipdividual resided in a metropolitan area {according to the CPS definition) and 0
atherwise. The part-time dummy takes the value 1 if an individual worked less than 30 hours per week
and O atherwise. The first part-year dumnmy takes the value I if the individual worked between 26 and 19
weeks and O otherwise. The second patt-year dummy takes the value 1 if an individual worked up to 24
weeks and 0 otherwise.
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Table 2
¥’ Test for Equality Among Slope Parameters

Age Group
Variance Estimate All 18-34 35--49 50-64
1972
Order statistic 2,649.5 1,295.6 721.2 983.8
Homoskedastic kernel 2,067.0 958.7 573.5 682.3
General kernel 1,457.0 659.8 439.3 5126
Design matrix boetstrap 3.971.4 1,006.8 601.5 3191
1979
Order statjstic 1,631.4 1,009.9 $21.6 929.2
Homoskedastic kernel 1,435.7 759.1 663.5 589.7
General kernel 1,021.8 600.2 4706 3309
Design matrix bootstrap 1,636.2 896.0 719.2 4292
1985
Order statistic 1,138.4 698.4 235.6 598.2
Hemoskedastic kernel - 1,019.8 524.9 653.5 416.2
General kernel 674.4 408.2 361.9 2995
Design matrix bootstrap 1,139.0 559.1 448.6 4347
1992
Order statistic 745.3 4749 721.8 606.2
Homoskedastic kernel 651.9 329.0 504.5 427.8
General kernel 506.2 2922 408.3 268.8
Design mattix bootstrap 609.1 484.5 440.0 305.0

Note: The reported statistic is n (Pa — PH” Aqt (ﬁs - Gg), where fﬂa is a stacked vector of all unrestricted
coefficient estimates, A, is its asymptatic covariance estimate, and fi§ is the restricted parameter vectar
estimate (ohtained hy minimum distance). This statistic has an asymptotic %7 distribution with 5k — 5 ~
{k ~ 1} = 84 degree of freedom.

Table 3 reports the test statistics for each year and age group using the order
statistic and design matrix bootstrap estimators for the unrestricted covariance matrix
Ay, The null hypothesis is again rejected in all cases, but there is a clear indication
that the rejection is not as strong as in the previcus test. Also note that the test
statistics are larger when they are based on order statistic estimates for Ag than when
they are based on design matrix bootstrap estimates. This is not surprising since the
order statistic estimator is not valid as is implied by the results of the previous test.
The results seem to indicate that there exists a mare complicated type of dependence
hetween wg and x.

B. Returns to Education

Let’s now focus our attention on the evolution of the returns to education over time
across the different quantiles for the various age groups. The return to education
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Table 3
y? Test for Multiplicative Heteroskedasticity Model

Age Group

Variance Estimate All 18-34 35-49 50-64
1972

Order statistic 501.6 251.6 155.8 2509

Design matrix hootstrap 492.8 154.9 119.7 103.6
1979

Order statistic 3303 249.7 1755 273.3

Design matrix bootstrap 3299 2381 134.2 107.9
1985

Order statistic 283.5 207.8 269.1 239.5

Design matrix bootstrap 249.1 160.4 1739 131.2
1992

Order statistic 198.7 202.2 211.8 211.1

Design matrix bootsirap 169.3 175.6 136.0 117.5

Note: The reparied statistic is u‘(ﬁa — By Ai' (Bl — 8¢y, where fig is a stacked vectar of all un-
restricted coefficient estimates, A, is ils asymptotic covariance estimate, ang [iq is the restricled parameter
vector estimate (obtained by minimum distance). This statistic has an asymptotic %2 distribution with
Sk~ 2k — 1) — 4 = 63 degree of freedom.

(ed) is defined as the derivative of the conditional quantile with respect to education,
dQuaniy( v|x}/ded. Because the wage equation includes a squared term of education,
interaction terms between education and experience (ex) and between education and
a race dummy (ra), this derivative is given by
9Quanty(ylx) _ B, + 2B.2ed + Paex + Bora.
ded

Tahle 4 reports the returas to education at five quaatiles for the model estimated
using the entire sample. The returns are evaluated for white males at the levels of
education and experience denoted in the table, We can see from this table that the
returns at all quantiles declined significantly during the period from 1972 to 1979.
By 1985 the returns at all quantiles increased to unprecedented highs; reaching levels
which are twice as large as in 1979, Note, however, the distinct features across the
various quantiles. For example, in 1972 and 1979 the returns for the high school
graduates (12 years of education) at the entry and mid-career levels (five and 15
years of experience, respectively) are lower at the higher quantiles. For experienced
workers (23 years of experience) with high school education, this pattern is com-
pletely reversed.

In contrast, the returns for the college graduates (16 years of education) are always
higher at the higher quantiles, especially in the years when the return to education
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was relatively low. As the returns at the various quantiles increased during the 1980s,
there is considerable convergence of these returns resulting from sharper increases
at the lower quantiles. In the last sample year {1992) we clearly see that the returns
for all education-experience combinations are higher at the higher quantiles. For
most skill groups there are differences of close to one percentage point between the
returns at the 9¢ quantile and the .10 quantile,

The results in Table 4 also indicate that the returns for the more experienced
waorkers are significantly lower, at all quantiles, than for the less experienced work-
ers. Workers at the entry level have a higher return to their education at each and
every quantile. As they become more experienced, the return to education declines.
This result is consistent with life-cycle labor supply models which predict a decline
in the rate of return over one's career. It is apparent from Table 4, however, that
larger differences exist at the bottom of the wage distribution than at the top, espe-
cially during the carly sample years.

The next three tables present the returns to education computed from the quantile
{and least-squares) regressions carvied qut for each of the three age groups considered
in this study. Tables 5, 6 and 7 present the results for the 18-34, 35-49, and 50—
64 age groups, respectively. There are several differences between the various age
groups that cannot be seen from Table 4. When estimated separately, the 18-34 age
group, which contains of all the new entrants, exhibits higher retums at the entry
level and lower returns at the midcareer level. In general, sharper declines in the
returns are apparent between 1972 and 1979. While the rise in the returns to educa-
tion at all quantiles can be clearly seen in 1985 and 1992, there are sharper increases
at the higher quantiles. Especially for the college graduates the returns seem to be
higher at the lower quantiles in 1979 and 1983. The sharper increases at the upper
quantiles between 1985 and 1992, lead to the same convergence phenomena de-
scribed earlier for the whole sample. The other two age groups (Tables 6 and 7)
exhibit more similarities to the earlier results although the magnitude of the resuits
seems to be dominated by the youngest group. That is, the more substantial increases
in the returns to education are for the 1834 age group.

Overall, the results indicate that the returns to education exhibit different patterns
of changes over time, for the various education-experience groups. Moreover, in
most cases there are significant differences (of a few percentage points) in the levels
of the returns to education at the various quantiles. Changes in the mean returns to
education are quite different, as well, acress the various skill groups. Nevertheless,
these changes do not capture the differential changes across the various quantiles
induced by changes in the shapes of the corresponding conditional wage distribution.

C. Standard Error Estimates

In Section [Tl several alternative estimators for the asymptotic covariance matrix
were described. From this set of estimators, only the general kernel and the design
mattix bootstrap estimators are valid under the general dependence structure,
namely, £,.(0]x) # £,.(0) for all x. An immediate practical question is: how different
are the alternative estimates for a given sample. To answer this question I report
ratjos between alternative standard errors estimates and the design matrix bootstrap
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standard error estimates.? The results for a subset of the coefficients for the quantile
regressions carried out for the entire sample are presented in Table 8,

Table 8 shows that there are considerable differences between the standard error
estimates. In general, the order statistic and homoskedastic kernels provide standard
etrors which are much smaller than those provided by the bootstrap method. In some
cases these standard errors are smaller by more than 20 percent and can lead to false
inference if the general dependence structure applies. Note however that the general
kernel estimater provides standard errors which are quite similar to those provided
by the design matrix bootstrap. This is an encouraging result, since both methods
are valid under any dependence structure,

Two main conclusions should be drawn from the experiment presented here. Fixst,
one must not use methods for estimating the covariance matrix which apply only
under the independence structure if, in fact, tests indicate that this is not the case.
Second, the two methods which are valid under the general dependence structure
are equivalent and can always be used. Which of the two should be used is more
of a practical question. Both methods require lengthy computation time. For the
bootstrap estimate, the large number of bootstrap repetitions can be computationally
very demanding. On the other hand, the choice of the optional bandwidth needed
for the general kernel estimator can be just as lengthy if the sample size is large.

VIII. Censored Quantile Regression

When some of the observations are top coded (censored) an extension
to the quantile regression was suggested by Powell (1984 and 1986).

A. The Estimator
The: censored regression madel (or ““Tobit’” medel) can be written in the form
¥, = mln{y?, X:Bg + L{ﬂl_}, = 1, N

where y¢ is the top coding value of v, in the sample. In this formulation y is fixed
and known, even for the observations which are not censored.?
This model can be written as a latent variable model,

o —
¥ = xiBg + g,

where Quanty(ug |x;) = 0 and y; = ¥} I{y¥ = y"). It is easy to see that the 8th quantile
of the observed y; is given by Quante(y.|x, Be} = min{y® x/Bs}.

20. The desipn matrix bootstrap standard errors are computed using the data dependent method suggested
by Andrews and Buchinsky (1996) for determining the number of bootstrap repetitions. Typically, the
number of repetitions required varied from abaut 300 (at the extreme quantiles) to about 400 (at the middle
guantiles).

21, In the following I assume, for simplicity of presentation, that ¥! = 3% namely, it is the same for all
ohservations. Buchinsky and Haha (1996) considerad a2 more general case in which the censoring paint
is an unknown function of a known set of regressors. An estimator for the case in which the censoring
paint is randam was propased by Honoré and Powell {1993).
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The estimator {4 for Be. suggested by Powell, is defined as the solutions to
RN : ,
(31 min- > pg(y; — min{y", xB}),
ey

where py(A} is a check function defined above. Note that in order to obtain a cansis-
tent estimator of B, it is necessary that x/fq < ¥? for a positive fraction of the sample.
Rewriting (31) in a fashion similar to (3) gives that 34 solves

mm Z (B — 1/2 + 1/2 sgn(y, — min{y° £BIN{y, — min{y" x/BH.
The F.O.C. to the problem in (31) is given by

;EZ 1xiBo << YOO — 1/2 + 172 sgn(y, — xBah)x; = a,(n71,

f=|

Thus the moment function can be defined (dropping the { subscript for simplicity)
by

Wi, 3, B) = IR < y®®© — 172 + 1/2 sgn(y — ¥'B))x

Powell {1984 and 1986) showed that under certain regularity conditions E[W(x, y,
Be)] = 0. The GMM framework can be employed again to establish Vn- -consistency
and asymptotic normality for Be Specifically, it can be shown that under some regu-
larity conditions (see Powell 1984, 1986 for details) \fn([]e Ba) —>N(0 Ab), where®

= 8(1 — 0)A;AALY,
= E[fua(ﬂlx)l(x’ﬁa = yxx],
and
A = E[I(x'By < y*)xx’).
Again, if £,,(0x) = £,(0) with probability one, then A§ simplifies to
AL = 8(12 )
Fu(0)
What is the intuitive rationale behind the estimation procedure of 34 in the cen-
sored regression model? Recall that x'B, is the conditional quantile of y* given x,
namely, x'q = F,.'(8|x). Now, two cases are possible: (i) x/Bs < y*, and (ii} x{Bs
= y%. In case (i}, the probability is =8 that y* = x"B4 + 14 = y* so that the conditional
quantile of y* given x can be exactly identified. On the other hand, in case (ii), the
probability is <0 that y* = y°, namely, the conditional quantile is in the unobserved
part of the distribution. Consequently, nothing can be done with that porticn of the
data; we know only that its conditional quantile is greater than y°. The implication

is that one has to drop that portion of the data that cannot be used. It follows that
the calculated asymptotic covariance matrix has to be adjusted for the fact that the

E{I(x'Be < y")xx'].

22. This general form of the asymptatic cavariance matrix is derived in Powell (1984) for censored median
regressian, and extended in Powell {1986) for the general censored quantile regressian.
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estimation is conditioned on the inclusion of only the observations for which x'Bq
= y"

It is important to nete that, because of the nature of the censored regression model,
if x{f34 = v for all observations, then the quantile regression and censared quantile
regression estimates coincide. Although this is likely to happen for the low quantiles
(8 close ta (), in the right-censoring case discussed here, the quality of the estimator
decreases as 8 increases, because fewer ohservations are used in the estimation of
Be.

A considerable drawback of the censored quantile regression model is that it does
not have the attractive linear programming representation of the quantile regression
model, and hence linear programming algorithms cannot be directly used to estimate
Be. Also, because the objective function defined in (31) is not cenvex in B, only a
local minimizer {34 can be obtained.

1. Algorithms for Powell's Estimator

Several algorithms that have been suggested in the literature apply to Powell’s esti-
mater, Womersley (1986) suggested an algorithm which is directed toward sclutions
of Least Absolute Deviation (LAD) estimators for the censored regression model.
[t concentrates on the minimization of the objective function Q,(f) = L2 |y, —
min{y®, x/B}|, which is a nonconvex piecewise linear function. The algarithm devel-
oped extends the reduced gradient algorithm for LP to provide an efficient (finite
direct descent) method for caleulating a local minimizer for Q).

Buchinsky (1991) suggested an iterative LP algerithm (ILPA). The basic idea is
that if one had known in advance the set of observations for which x{Bq > ¥, then
these chservations could have been excluded from the estimation. Because this set
of observations is not known in advance, the algorithm solves for Ba in an iterative
way. In any iteration the solution 3§’ defines the set of cbservations to be excluded
from the next iteration. The j + 1 iteration is carried out (using an LP algorithm)
on the set of observations such that /Y = y° Convergence is achieved then when
the set of excluded cbservations in two successive iterations are the same.

Koenker and Park (1996} suggested an interior point algorithm which is suited
for a general non-linear quantile regression problem of the form y = f(x; Ba) + ug,
for some known function £(-; f5). This method in the linear quantile regression case
amounts to Iterative reweighting of least-squares (JRLS) estimates. Although this
methed is not as efficient as simplex methods for the linear case, it has the advantage
of providing an extremely useful tool for the nonlinear case, such as in the case of the
censored regression model. Moreover, it is a natural extension to the linear quantile
regression and it has the very desirable property (unlike many of other IRLS meth-
ods) that it is guaranteed to converge to the right solution.

B. Some Empirical Evidence Based on Pseudo-Data

In the data used in the empirical example, censoring is not an issue in any of the
years analyzed. To evalnate the empirical implications associated with the estimation
of a censored quantile regression, I generated pseudo-data from the CPS data for
1979 and 1983, In these two years [ artificially censored the data, setting the censor-
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ing value of real weekly wage (defined ahove) at $800. Any observation for which
the true reported value was above $800 was recorded in the psuedo-data as $800.
I then treated the data set as if it were censored to begin with and considered two
alternative estimation procedures.

In the first estimation procedure carried out, the quantile regression mode] was
estimated at the same five quantiles as before (with exactly the same regressors as
in the previous section) using Powell's censored quantile regression medel. This
precedure corrects for censoring and uses only the observations whose cenditional
quantiles are below the censoting point.*

In the second estimation procedure considered, the censoring problem was ig-
nored. That is, all observations that were censored were treated as if the censoring
value was their true value. We expect this procedure to yield estimates of the returns
to education which are downward biased, especially at the quantiles most affected
by the censoring.

We can compare these two sets of estimates with those obtained from the real
data. The estimation was only carried out for the 35—-49 age group. The resulting
returns to education are reported in Table 9. Also provided in Table 9 are two alterna-
tive standard error estimates hased on the: {a) homoskedastic kernel; and (b) general
kernel. The estimates based on the order statistic was very similar to the first kernel
estimate, while the design matrix bootstrap yielded standard ervors very similar to
those from the latter kemel methad.

The results are very clear, using the above stringent censering value has a tremen-
dous effect an the estimated returms to education and their standacd errors. The first
two quantiles are not affected by the introduction of the artificial censoring point
and the resulting returns are therefore identical to those reported in Table 6 which
are based on the real data. For gquantiles of .50 and higher, we see the effect of
censoring. Approximately 8 percent and 7 percent of the 50 conditional quantiles
are above the censoring value for 1979 and 19835, respectively. This preblem be-
comes more severe at the .75 quantile where 30 percent and 34 percent {for 1979
and 1985 respeciively) of the conditional quantiles are above the censoring point,
At the 90 quantile the problem hecomes almost unbearable; 75 percent and 70 per-
cent of the conditional quantiles for the two years are above the censoring point.

When the censoring is ignored, the returns to education are severely downward
hiased as can be seen from the last five celumns of the table. Moreover, in most
cases the estimated standard errors are very large, so that in. fact the estimated returns
are not statistically different from 0. When the censored regression model is em-
ployed there are significant improvements acress the board, even for the quantiles
that are severely affected by censoring. The returns based on the censored regression
moadel look mare similar o those in Table 6 where thete is no censoring. One major
difference between the results reported in Table 6 and the first five columns of Table
9, is in the estimated standard ervors. As one might expect, the standard errors in
Table ¢ are much larger than those in Table 6, since, essentially, only a small fraction
of the data is used. Note, however, that in almost all cases reported in Table 9, the
estimated returns to education from Table 6 are within appreximately one standard
error of the estimates reported in Table 9.

23, [ use the {LPA algorithm deseribed above to estimate this model,
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This example shews that the appropriate use of the model, i.e., the introduction
of the censored quantile regression model allows one to extend the estimation of
the quantile regression into cases where other methods (such as the least-squares)
are hound to fail.
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