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Abstract

We consider estimation and inference on average treatment effects under uncon-

foundedness conditional on the realizations of the treatment variable and covariates.

We derive finite-sample optimal estimators and confidence intervals (CIs) under the

assumption of normal errors when the conditional mean of the outcome variable is

constrained only by nonparametric smoothness and/or shape restrictions. When the

conditional mean is restricted to be Lipschitz with a large enough bound on the Lip-

schitz constant, we show that the optimal estimator reduces to a matching estimator

with the number of matches set to one. In contrast to conventional CIs, our CIs use a

larger critical value that explicitly takes into account the potential bias of the estimator.

It is needed for correct coverage in finite samples and, in certain cases, asymptotically.

We give conditions under which root-n inference is impossible, and we provide versions

of our CIs that are feasible and asymptotically valid with unknown error distribution,

including in this non-regular case. We apply our results in a numerical illustration and

in an application to the National Supported Work Demonstration.
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1 Introduction

To estimate the average treatment effect (ATE) of a binary treatment in observational stud-

ies, it is typically assumed that the treatment is unconfounded given a set of pretreatment

covariates. This assumption implies that systematic differences in outcomes between treated

and control units with the same values of the covariates are attributable to the treatment.

When the covariates are continuously distributed, it is not possible to perfectly match the

treated and control units based on their covariate values, and estimation of the ATE requires

nonparametric regularization methods such as kernel, series or sieve estimators, or matching

estimators that allow for imperfect matches.

To compare estimators, one can use the theory of semiparametric efficiency bounds.

Given enough smoothness, and given overlap in the covariate distributions in the treated

and control subpopulations, many different regularization methods lead to estimators that

are
√
n-consistent, asymptotically unbiased and normally distributed, with variance that

achieves the semiparametric efficiency bound (see, among others, Hahn, 1998; Heckman

et al., 1998; Hirano et al., 2003; Chen et al., 2008). One can then construct confidence

intervals (CIs) based on any such estimator by adding and subtracting its standard deviation

times a quantile of a standard normal distribution. A common critique1 of this approach

is that it does not provide a good description of finite-sample behavior of estimators and

CIs: in finite samples, regularization leads to bias, and different estimators have different

finite-sample biases even if they are asymptotically equivalent. The bias may in turn lead to

undercoverage of the resulting CIs due to incorrect centering. Furthermore, to achieve the

semiparametric efficiency bound, regularization requires a large amount of smoothness of

either the propensity score or the conditional mean of the outcome given the treatment and

covariates: one typically assumes continuous differentiability of the order p/2 at minimum

(e.g. Chen et al., 2008), and often of the order p + 1 or higher (e.g. Hahn, 1998; Heckman

et al., 1998; Hirano et al., 2003), where p is the dimension of the covariates. Unless p is very

small, such assumptions are hard to evaluate, and may be much stronger than the researcher

is willing to impose.

In this paper, we instead treat smoothness and/or shape restrictions on the conditional

mean of the outcome—the regression of the outcome on the treatment and covariates—as

given and determined by the researcher. To explicitly account for finite-sample biases, we

consider finite-sample performance of estimators and CIs under the assumption that the

1See, for example, Robins and Ritov (1997).
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regression errors are normal with known variance, with the treatment and covariates viewed

as fixed.

We derive three main results. First, we show that if the conditional mean is assumed

to satisfy a Lipschitz constraint, the minimax optimal estimator is given by a matching

estimator with the number of matches set to one, so long as the Lipschitz constant is large

enough. Thus, the matching estimator with a single match is finite-sample optimal when

only very weak smoothness assumptions are made. More generally, we show that the optimal

estimator is given by a solution to a convex programming problem. We show how the solution

can be found numerically in the case of Lipschitz smoothness.

Second, we derive minimal conditions under which the semiparametric efficiency bound

can be achieved in our setting. In particular, we show that for
√
n-inference to be possible,

one needs to bound the derivative of the conditional mean of order at least p/2. This is

essentially the same smoothness condition as in the case in which one does not condition on

treatment and covariates (Robins et al., 2009), but where no regularity is imposed on the

propensity score. Intuitively, by conditioning on the treatment and covariates, we take away

any role that the propensity score may play in increasing precision of inference.

Third, we derive the form of optimal CIs. We show the optimal CI is centered around a

linear estimator that is based on the the same class of estimators that lead to the optimal es-

timator. Importantly, however, in order to account for the possible bias of the estimator, the

CI uses a larger critical value than the conventional critical value based on normal quantiles.

This critical value depends on the worst-case bias of the estimator, which for the optimally

chosen estimator has a simple form. We show that feasible versions of the optimal CI are

asymptotically valid and efficient when the distribution of errors is unknown and potentially

non-normal, including in the non-regular case in which the semiparametric efficiency bound

cannot be achieved. In the regular case, the large-sample bias of the estimator is negligible,

and the critical value converges to the conventional critical value based on normal quantiles.

However, in the non-regular case, the bias remains non-negligible even in large samples, and

using this larger critical value is necessary to ensure asymptotic coverage.

We also show that by using this larger critical value, one can construct finite-sample

valid CIs based on other linear estimators, such as series or kernel estimators, or matching

estimators with a more than a single match. This requires computing the worst-case bias of

the estimator, which reduces to a convex programming problem; we show how the solution

can be found numerically under Lipschitz smoothness. One can compare this CI to the

conventional CI that uses critical values based on normal quantiles that does not take bias
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into account as a form of sensitivity analysis.

An important advantage of our finite sample approach is that it deals automatically with

issues that normally arise with translating asymptotic results into practice. One need not

worry about whether the model is point identified, “irregularly identified” (due to partial

overlap as in Khan and Tamer 2010, or due to smoothness conditions being too weak to

achieve root-n convergence, as in Robins et al. 2009) or set identified (due to complete lack

of overlap). If the the overlap in the data combined with the smoothness conditions imposed

by the researcher lead to nonnegligible bias, this will be incorporated into the CI. If the model

is set identified due to lack of overlap, this bias term will prevent the CI from shrinking to

a point, and the CI will converge to the identified set. Nor does one have to worry about

whether covariates should be logically treated as having a continuous or discrete distribution.

If it is optimal to do so, our estimator will regularize when covariates are discrete, and the

CI will automatically incorporate the resulting finite sample bias. Thus, we avoid decisions

about whether, for example, to allow for imperfect matches with a discrete covariate when

an “asymptotic promise” says that, when the sample size is large enough, we will not.

We illustrate the results using a numerical example and an application to the National

Supported Work (NSW) Demonstration. We find that finite-sample optimal CIs are often

substantially different than those based on first order asymptotic theory, with bias determin-

ing a substantial portion of the width of the CI. We also find that, under Lipschitz smooth-

ness, matching estimators perform relatively well for a range of smoothness constants, in

addition to being exactly optimal when the smoothness constant is large enough.

Our results rely on the key insight that, once one conditions on treatment assignments

and pretreatment variables, the ATE is a linear functional of a regression function. This

puts the problem in the framework of Donoho (1994) and Cai and Low (2004) and allows us

to apply sharp efficiency bounds in Armstrong and Kolesár (2016). In contrast, if one does

not condition on treatment assignments and pretreatment variables, the ATE is a nonlinear

functional of two regression functions (the propensity score, and the conditional mean of

the outcome variable given pretreatment variables). This makes the problem much more

difficult: while upper and lower bounds have been developed that give the optimal rate

(Robins et al., 2009), computing efficiency bounds that are sharp in finite samples (or even

bounds on the asymptotic constant in non-regular cases) remains elusive.

Whether one should condition on treatment assignments and pretreatment covariates

when evaluating estimators and CIs is itself an interesting question (see Abadie et al.,

2014a,b, for a recent discussion in related settings). An argument in favor of conditioning is
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that it takes into account the realized imbalance, or overlap, of covariates across treatment

groups. For example, even if the treatment is assigned randomly and independently of an

individual’s level of education, it may happen that the the realized treatments are such that

the treated individuals are highly educated relative to those randomized out of treatment.

Conditioning takes into account this ex-post imbalance when evaluating estimators and CIs.

On the other hand, by conditioning on realized treatment assignments, one loses the ability

to use knowledge of the propensity score or its smoothness to gain efficiency. We do not

intend to make a blanket argument for or against the practice of conditioning on realized

treatment. Rather, our view is that this choice depends on the particular empirical context,

that it is worth developing efficiency bounds that are as sharp as possible in both settings,

and that comparing the bounds is instructive. Since our CIs are valid unconditionally, they

can be used in either setting, so long as one is willing to pay the price of not using the

knowledge of the smoothness of the propensity score in the unconditional case (which would

lead to tighter CIs).

The remainder of this paper is organized as follows. Section 2 presents the main results.

Section 3 gives a numerical illustration of the optimal CIs. Section 4 presents the results of

an application to the NSW data. Additional results, proofs and details of results given in

the main text are given in appendices.

2 Setup and main results

We consider the following setting. For observations i = 1, . . . , n, we observe yi where yi =

yi(1)di + yi(0)(1 − di) and yi(1) and yi(0) are potential outcomes, along with pretreatment

variables xi ∈ Rp and treatment indicator di ∈ {0, 1}. We condition on the realized values

of {xi, di}ni=1 throughout the paper: all probability statements are taken to be with respect

to the conditional distribution of {yi(0), yi(1)}ni=1 conditional on {xi, di}ni=1 unless stated

otherwise. This leads to a fixed design regression model

yi = f(xi, di) + ui, E(ui) = 0. (1)
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Under the assumption of unconfoundedness, the sample average treatment effect (CATE) is

given by2

CATE(f) =
1

n

n∑
i=1

[f(xi, 1)− f(xi, 0)]. (2)

In order to obtain finite-sample results, we make the further assumption that ui is normal

ui ∼ N(0, σ2(xi, di)), (3)

with the (conditional on di, xi) variance σ2(xi, di) treated as known.

We assume that f is in a known function class F , which we assume throughout the paper

to be convex. The function class F formalizes the “regularity” or “smoothness” that we are

willing to impose. For many of the results in this paper, we focus on classes that place

Lipschitz constraints on f(·, 0) and f(·, 1):

FLip(C) = {f : |f(x, d)− f(x̃, d)| ≤ C‖x− x̃‖X , d ∈ {0, 1},

where ‖ · ‖X is a norm on x, although our general results hold for any convex function class.

For a given level α, a 100 · (1− α) CI C for a parameter Lf (e.g. for the CATE, we take

Lf = CATE(f) as defined in (2)) must satisfy

inf
f∈F

Pf (Lf ∈ C) ≥ 1− α, (4)

where Pf denotes probability computed under f . Subject to (4), we derive CIs that optimize

minimax performance over F or over a smaller subset of the parameter space. For a one-

sided CI [ĉ,∞) for a parameter Lf , we focus on quantiles of excess length. Given a subset

2Formally, suppose that {(X ′i, Di, yi(0), yi(1))}ni=1 are i.i.d. and that the unconfoundedness assumption

yi(1), yi(0) ⊥⊥ Di|Xi

holds. Then

E

[
1

n

n∑
i=1

[yi(1)− yi(0)]

∣∣∣∣D1, . . . , Dn, X1, . . . , Xn

]
=

1

n

n∑
i=1

[f(Xi, 1)− f(Xi, 0)]

where f(x, 1) = E(yi(1)|Xi = x) = E(yi(1)|Di = 1, Xi = x) = E(yi|Di = 1, Xi = x) and similarly for f(x, 0),
and {yi}ni=1 follows (1) conditional on {(Xi, Di) = (xi, di)}ni=1. The assumption that ui is (conditionally)
normal then follows from the assumption that each of yi(0) and yi(1) are normal (but not necessarily joint
normal) conditional on {(X ′i, Di)}ni=1.
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G ⊆ F , define the worst-case βth quantile of excess length over G:

qβ(ĉ,G) = sup
g∈G

qg,β(Lg − ĉ)

where qg,β(Lg − ĉ) denotes the βth quantile of excess length Lg − ĉ for the CI [ĉ,∞) under

the function g. Taking G = F , a CI that optimizes qβ(ĉ,F) is called minimax, which is the

case we consider throughout most of this paper.

For two-sided CIs, we focus on fixed length CIs, which take the form L̂±χ for an estimator

L̂ and a constant χ (since we take the variance function of ui as known, χ can depend on the

variance of the errors). Since χ is constant, optimal fixed length CIs simply minimize the

half-length χ. As we discuss below, fixed length CIs can be shown to have nearly optimal

expected length in our setting among all CIs.

2.1 Linear Estimators

To derive optimal CIs, we note that our problem falls into the general framework of Donoho

(1994). Thus, we can use results from Donoho (1994), Cai and Low (2004) and Armstrong

and Kolesár (2016) to find estimators and CIs that are optimal or “close to” optimal, with

“close to” defined using tight finite-sample bounds. In particular, optimal CIs are based on

linear estimators, which in our setting take the form

L̂k(·) =
n∑
i=1

k(xi, di)yi. (5)

Since L̂k(·) is linear in {yi}ni=1, it is normal with variance

sd(L̂k(·))
2 =

n∑
i=1

k(xi, di)
2σ2(xi, di)

and bias bounded from above by

biasF(L̂k(·)) = sup
f∈F

Ef (L̂k(·) − Lf) = sup
f∈F

[
n∑
i=1

k(xi, di)f(xi, di)− Lf

]
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and from below by

biasF(L̂k(·)) = inf
f∈F

Ef (L̂k(·) − Lf) = inf
f∈F

[
n∑
i=1

k(xi, di)f(xi, di)− Lf

]
.

To form a one-sided CI based on L̂k(·), we must take into account bias by subtracting

biasF(L̂k(·)) in addition to the usual normal quantile: a 100 · (1− α)% CI is given by [ĉ,∞)

where

ĉ = L̂k(·) − biasF(L̂k(·))− sd(L̂k(·))z1−α

where z1−α denotes the 1−α quantile of a N(0, 1) distribution. To form a two-sided CI, note

that, under any f ∈ F , the z-statistic (L̂k(·) − Lf)/ sd(L̂k(·)) is distributed N(t, 1) for some

t with |t| ≤ max
{
| biasF(L̂k(·))|, | biasF(L̂k(·))|

}
/ sd(L̂k(·)). Thus, letting cvα(t) be the 1−α

quantile of the absolute value of a N(0, 1) random variable, a two-sided CI can be formed as{
L̂k(·) ± cvα(b/ sd(L̂k(·))) · sd(L̂k(·))

}
where b = max

{
| biasF(L̂k(·))|, | biasF(L̂k(·))|

}
.

Following Donoho (1994), we refer to this as a fixed-length CI (FLCI), since it takes the

form L̂ ± χ where χ is constant (in practice, the length of the feasible version of this CI

will depend on the data through an estimate of the standard deviation)3. For the one-sided

CI, the worst-case βth quantile of excess length over G is taken at the function g ∈ G that

achieves biasG(L̂k(·)) (i.e. when the estimate is biased downward as much as possible). This

gives

qβ(ĉ,G) = biasF(L̂k(·))− biasG(L̂k(·)) + sd(L̂k(·))(z1−α + zβ).

Finally, we consider estimation as well as inference. For estimation, we consider minimax

root mean squared error (RMSE), given by

RRMSE(L̂k(·)) =

√
b2 + sd(L̂k(·))2 where b = max

{
| biasF(L̂k(·))|, | biasF(L̂k(·))|

}
.

The optimal weighting k(·) follows from results in Donoho (1994) and Armstrong and

3For general convex classes F , the optimal FLCI is centered at L̂k(·) + a for a nonrandom constant a.
However, most if this paper focuses on settings where F is centrosymmetric, which leads to a = 0. See
Appendix A
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Kolesár (2016). To get some intuition for this, note that the width of the FLCI given above is

increasing in both variance and worst-case bias. Thus, computing the optimal k(·) amounts

to tracing out the minimum worst-case bias subject to a bound on variance, and varying

this bound on variance to find the optimal bias/standard deviation ratio. Optimizing the

worst-case bias is a minimax problem (minimizing the maximum bias), and the results in

Donoho (1994) reduce it to a single convex optimization problem. We provide details in

Appendix A.

In general, computing the optimal CI requires optimizing over the set F , which, in

nonparametric settings, is infinite dimensional. We now focus on the Lipschitz class FLip(C)

and provide a finite dimensional convex optimization problem that characterizes the solution.

2.2 Optimal CIs Under Lipschitz Smoothness

Given δ > 0, let f ∗δ solve

max
f

2
1

n

n∑
i=1

[f(xi, 1)− f(xi, 0)] s.t.

√√√√ n∑
i=1

f(xi, di)2

σ2(xi, di)
≤ δ

2
and

|f(xi, d)− f(xj, d)| ≤ C ‖xi − xj‖X for d ∈ {0, 1}, i, j ∈ {1, . . . , n},

and let ω(δ) denote the value of this problem. The constraints in the second line of the

above display are equivalent to imposing that there exists a function f ∈ FLip(C) that

extrapolates these points (see Beliakov, 2006, Theorem 4). In solving this and other maxi-

mization problems over f where the objective and constraints depend only on f evaluated at

points in {(xi, 0), (xi, 1)}ni=1, we identify f with the vector (f(x1, 0), . . . , f(xn, 0), f(x1, 1), . . . ,

f(xn, 1))′ ∈ R2n and optimize over the constrained subset of R2n: the value of f at other

points does not matter for our purposes. Note that this is a convex optimization problem in

R2n with 2n(n− 1) linear constraints, one quadratic constraint and a linear objective.

Let

k∗δ (xi, di) =

f∗δ (xi,di)

σ2(xi,di)∑n
j=1

djf∗δ (xj ,dj)

σ2(xj ,dj)
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and let

biasδ =
1

n

n∑
i=1

[f ∗δ (xi, 1)− f ∗δ (xi, 0)]−
n∑
i=1

k∗δ (xi, di)f
∗
δ (xi, di)

denote the bias of the corresponding estimator at −f ∗δ .

Theorem 2.1. The estimator L̂δ = L̂k∗δ (·) has worst case bias

biasFLip(C)(L̂δ) = − biasFLip(C)(L̂δ) = biasδ,

where biasδ is given above. Let

ĉα,δ = L̂δ − biasδ − sd(L̂δ)z1−α.

Then [ĉα,δ,∞) is a 1 − α CI over FLip(C), and it minimizes qβ(ĉ,FLip(C)) over all 1 − α
CIs where β = Φ(δ− z1−α) and Φ denotes the standard normal cdf. The optimal fixed length

CI centered at an affine estimator is given by{
L̂δχ ± cvα(biasδχ / sd(L̂δχ)) sd(L̂δχ)

}
where δχ minimizes cvα(biasδ / sd(L̂δ)) sd(L̂δ) over δ.

Theorem 2.1 shows that the CI that is minimax for βth quantile excess length is based on

L̂δ where δ = z1−α + zβ. The result follows from an application of results in Armstrong and

Kolesár (2016) and Donoho (1994) to the present setting. We provide details in Appendix A.

The FLCI in Theorem 2.1 is exactly optimal only among affine FLCIs. However, bounds in

Donoho (1994) and Armstrong and Kolesár (2016) can be used to show that little is lost by

restricting attention to affine FLCIs.

The one-sided CI in Theorem 2.1 can be computed by solving a single convex optimization

problem. For the two-sided CI, one can solve the optimization problem for each δ and then

perform a grid search over δ to find δχ. Alternatively, one can use the characterization of δχ

given in Donoho (1994) using least favorable one-dimensional subfamilies.

While the optimal CIs do not, in general, have a closed form, it turns out that, when

C is large enough, the optimal CI takes the form of a matching estimator. For a positive
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integer M , the matching estimator takes the form in (5) with k(·) given by

kmatch,M(xi, di) =
1

n
(2di − 1)

(
1 +

KM(i)

M

)
(6)

where KM(i) is the number of times the ith observation is matched (see equation (3) in

Abadie and Imbens 2006).

Theorem 2.2. Consider the case where σ2(xi, di) = σ is constant and the distances ‖xi −
xj‖X take on unique values as i and j vary. There exists a constant K depending on σ

and {xi, di}ni=1 such that, if C/δ > K, the optimal estimator L̂δ is given by the matching

estimator with M = 1.

2.3 Computing CIs Based on Suboptimal Estimators

The analysis in Section 2.1 allows one to construct a finite-sample CI based on any estimator

that is linear in the yi’s. One can then compute the length of the FLCI or worst-case βth

quantile of excess length, and compare it to the performance of the optimal CI. The only

difficulty is in computing the worst-case bias. We now show that this reduces to a linear

programming problem for FLip(C). In our numerical illustration and application, we compare

the optimal CI to CIs based on matching estimators (which are suboptimal unless C is large

and M = 1).

Consider a (possibly suboptimal) linear estimator L̂k(·) as defined in (5). We will assume

that

n∑
i=1

dik(xi, di) = 1 and
n∑
i=1

(1− di)k(xi, di) = −1, (7)

since otherwise the bias would be arbitrarily large at multiples of f(x, d) = d and f(x, d) =

1 − d. If this holds, then the set of possible biases over f ∈ FLip(C) is the same as the

set of possible biases over the restricted set of functions with the additional constraint∑n
i=1 f(xi, 1) =

∑n
i=1 f(xi, 0) = 0 (since any function in the class can be obtained by adding

a function in the span of {(x, d) 7→ d, (x, d) 7→ (1 − d)} to such a function, which will not

11



change the bias). Thus, the worst-case bias of L̂k(·) is given by the maximized value of

max
n∑
i=1

k(xi, di)f(xi, di)−
1

n

n∑
i=1

[f(xi, 1)− f(xi, 0)] (8)

s.t. |f(xi, d)− f(xj, d)| ≤ C ‖xi − xj‖X for d ∈ {0, 1}, i, j ∈ {1, . . . , n}

and
n∑
i=1

f(xi, 1) =
n∑
i=1

f(xi, 0) = 0.

where we again use Beliakov (2006, Theorem 4). This is a linear programming problem with

2n(n−1) inequality constraints and two equality constraints. We record this in the following

theorem.

Theorem 2.3. Consider the estimator L̂k(·) =
∑n

i=1 k(xi, di)yi where k satisfies (7). The

worst-case bias of this estimator biasFLip(C)(L̂k(·)) = − biasFLip(C)(L̂k(·)) is given by the maxi-

mized value of (8).

In particular, Theorem 2.3 shows that the formulas for CIs given in Section 2.1 hold with

biasFLip(C)(L̂k(·)) = − biasFLip(C)(L̂k(·)) given by the maximized value of (8), along with the

formula for minimax excess length qβ(ĉ,FLip(C)) of the one-sided CI.

2.4 Bounds to Adaptation

In our numerical illustration and empirical example, we focus on computing minimax CIs.

In the one-sided case, this corresponds to optimizing gβ(ĉ,F). An alternative is to optimize

gβ(ĉ,G) for some smaller class G ( F , or to try to do this simultaneously for multiple

classes G. Such CIs are refereed to as adaptive. Unfortunately, in the case where F is

centrosymmetric (f ∈ F =⇒ −f ∈ F), it can be shown that there is little scope for

improving upon minimax CIs (see Armstrong and Kolesár, 2016). In particular, this is the

case for the Lipschitz classes used in much of this paper, which means that one cannot

estimate the Lipschitz constant C for the purposes of forming a CI. Because of this, we

recommend reporting estimates and CIs for a range of choices of the Lipschitz constant C

when implementing these estimators in practice.

Alternatively, if additional restrictions such as monotonicity are used, then some degree

of adaptation may be possible. While we leave the full exploration of this question for

future research, we note that our approach can be used to bound the potential gains from

adaptation. For example, one can define F to be the class of functions such that f(·, d) is
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monotone in certain variables and Lipschitz with constant C, and let G be the same class,

but with C replaced by a smaller constant C ′. One can then use our approach to compute

the optimal excess length over G subject to coverage over F . We show how optimal CIs can

be computed when F and G impose Lipschitz and monotonicity constraints in Appendix A.

2.5 Semiparametric Efficiency Bound

Consider a setting where xi, di and yi are random with p(x) = P (di = 1|xi = x) denoting

the propensity score. If F imposes sufficient smoothness, optimal estimators will be root-n

consistent with asymptotically negligible bias, and will be asymptotically equivalent to a

linear estimator with kernel

kseb(xi, di) =
1

n

[
di

p(xi)
− 1− di

1− p(xi)

]
(see Hahn, 1998). We compare the optimal kernel to kseb in our numerical illustration in

Section 3.

On the other hand, the semiparametric efficiency bound gives only an upper bound, and

it cannot be achieved unless F imposes sufficient smoothness relative to the dimension of xi.

With random xi and di, Robins et al. (2009) derive optimal rates under a bound on the γf th

derivative of f(·, 0) and f(·, 1) along with a bound on the γpth derivative of p(·). They find

that root-n inference is impossible unless γp + γf ≥ p/2 where p is the dimension xi when xi

is continuously distributed.

Since conditioning on xi and di essentially takes away the role of smoothness of p(·), this

suggests that root-n inference should be impossible in our setting when γf ≥ p/2 (i.e. the

conditions for impossibility of root-n inference in our setting with fixed xi and di should

correspond to the conditions derived by Robins et al. 2009 in the case where no smoothness

is imposed on p(·)). This intuition turns out to be essentially correct. Since this question

does not appear to have been addressed in the existing literature, we provide a formal result

in Appendix B. In particular, the Lipschitz case we consider throughout most of this paper

corresponds to γf = 1, so that root-n inference is possible only when p ≤ 2.

2.6 Unknown Error Distribution

In practice, the error distribution is typically unknown, which makes estimators and CIs

that depend on σ2(x, d) infeasible. To implement feasible versions of the CIs proposed in
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this paper, we propose the following. Let σ̃2(x, d) be a (possibly incorrect) guess or estimate

of the conditional variance function. Let L̃δ, k̃
∗
δ and b̃iasδ denote the estimator, weights and

worst-case bias computed using σ̃2(x, d) as the conditional variance. The worst-case bias

calculations do not depend on the correct specification of the variance, so b̃iasδ still gives

the worst-case bias of L̃δ. We then form the standard error using an estimate that does not

impose correct specification of the conditional variance:

se(L̃δ) =

√√√√ n∑
i=1

k̃∗δ (xi, di)
2û2

i

where ûi = yi − f̂(xi, di) and f̂(x, d) is an estimate of f(x, d). The FLCI is then given by{
L̃δ ± cvα(b̃iasδ/se(L̃δ))se(L̃δ)

}
and the one-sided CI is given by

[L̃δ − b̃iasδ − se(L̃δ)z1−α,∞).

We prove the asymptotic validity of this approach using results from Armstrong and Kolesár

(2016) in Appendix C. In particular, our CIs are asymptotically valid even in cases discussed

in Section 2.5 where the semiparametric efficiency bound cannot be achieved. Given that

achieving the semiparametric efficiency bound requires bounding high order smoothness

when p is moderate, this includes many practically relevant cases.

3 Numerical illustration

To get a sense of what the optimal kernels look like, we generate {xi, di}ni=1 i.i.d. with

xi ∼ unif(0, 1) and P (di = 1|xi = x) = p(x) = 2(x − 1/2)2 + 1/4 for a range of sample

sizes n. We then compute the optimal kernel k∗δ with σ2(xi, di) = 1 and Lipschitz constant

C = 1 and δ = 2z.95 so that a minimax test with level .05 has power .95. For comparison,

we compute the kernel associated with the matching estimator with M matches for a range

of values of M , which is given by (6). We also compare the optimal weights to the weights

corresponding to the semiparametric efficiency bound, given in (2.5).

Figures 1, 2 and 3 plot the minimax optimal weight function k∗δ and kmatch,M , with M = 5,

along with kseb for a single draw of the data for n = 100, n = 250 and n = 500 (each of the
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weight functions are scaled by n to make them comparable across sample sizes). For this

draw of the dgp with n = 100, the estimator based on k∗b has worst-case bias 0.0201 and

standard deviation 0.2053. The worst-case bias for the matching estimator with M = 5 is

0.0202, and its standard deviation is 0.2081. For n = 250, the estimator based on k∗b has

worst-case bias 0.0087 and standard deviation 0.1331. The worst-case bias for the matching

estimator with M = 5 is 0.0079, and its standard deviation is 0.1353. For n = 500, the

worst-case bias for the minimax estimator is 0.0057, and the standard deviation is 0.0963,

while the M = 5 matching estimator has worst-case bias 0.0048 and standard deviation

0.0983. Overall, the matching estimators seem to be close to optimal.

4 Application to National Supported Work Demon-

stration

We now consider an application to the National Supported Work (NSW) demonstration.

The sample with di = 1 is given by a sample of people who received job training in this

program. The sample with di = 0 is taken from the PSID. The data is the same as the

data used by Dehejia and Wahba (1999) and Abadie and Imbens (2011).4 Following these

papers, we are interested in the sample average treatment effect on the treated (assuming

unconfoundedness):

CATT(f) =

∑n
i=1 [f(xi, 1)− f(xi, 0)] di∑n

i=1 di
.

The analysis in Section 2 goes through essentially unchanged, with CATT(f) replacing

CATE(f) throughout (see Appendix A).

In this data, yi denotes earnings in 1978 (after the training program) in thousands of

dollars. The variable xi contains the following variables (in the same order): age, education,

indicators for Black and Hispanic, indicator for marriage, earnings in 1974, earnings in 1975,

and employment indicators for 1974 and 1975.5

4Taken from Rajeev Dehejia’s website http://users.nber.org/~rdehejia/nswdata2.html.
5Following Abadie and Imbens (2011), the no-degree indicator variable is dropped, and the employment

indicators are defined as an indicator for nonzero earnings (Abadie and Imbens, 2011, do not give details of
how they constructed the employment variables, but these definitions match their summary statistics).
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4.1 Choice of Norm for Lipschitz Class

The choice of the norm on Rp used in the definition of the Lipschitz class FLip(C) and in

determining matches is important both for minimax estimators and for matching estimators.

For a positive definite symmetric p× p matrix A, define the norm

‖x‖A,p =

(
n∑
i=1

∣∣(A1/2x
)
i

∣∣p)1/p

where
(
A1/2x

)
i

denotes the ith element of Ax. Ideally, the parameter space FLip(C) should

reflect the a priori restrictions the researcher is willing to place on the conditional mean of the

outcome variable under treatment and control. If we take A to be a diagonal matrix, then,

when C = 1, the j, jth element gives the a priori bound on the derivative of the regression

function with respect to xj. With this in mind, we use

A1/2 = A
1/2
main ≡ diag(0, 1, 20, 20, 0, 1, 0, 0, 0)

in defining the distance in our main specification. To make the distance more interpretable,

we use p = 1 in defining the distance, so that the Lipschitz condition places a bound on the

cumulative effect of all of the variables. We discuss other choices of the A in Section 4.4.

This choice of distance assumes that it suffices to control for education, previous year’s

earnings and the Black/Hispanic indicators when making the selection-on-observables as-

sumption. The elements of Amain are chosen to give restrictions on f(x, d) that are plausible

when C = 1, and we report results for a range of choices of C as a form of sensitivity analysis.

When C = 1, the bound on the Lipschitz constants for earnings state that earnings from

the previous year do not have a greater than one-to-one effect on current earnings, and that

last year’s earnings are sufficient to control for employment and earnings in previous years.

The bound on the Lipschitz constant for education (earnings cannot increase by more than

$1000 per year of education) may be somewhat strong, although it is large in percentage

terms for many people in the sample.

4.2 Results

We compute the estimator L̂δ as described in Section 2.6 with the initial guess for the

variance function given by the constant function σ̃2(x, d) = σ̂2, where σ̂2 = 1
n

∑n
i=1 û

2
i and

ûi = yi − f̂(xi, di) where f̂(xi, di) is the nearest-neighbor estimate with 30 neighbors, with
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nearest neighbors defined using the same norm to define distance as for the Lipschitz class.

The robust standard deviation estimate follows the formula in Section 2.6, while the non

robust estimate is computed under the assumption that the variance is constant and equal

to σ̂2. For one-sided CIs, we calibrate δ so that the test is optimal for worst-case .8 quantile

with α = .05. Since the problem is translation invariant, the minimax one-sided CI inverts

minimax tests with size .05 and power .8 (see Armstrong and Kolesár, 2016), which is a

common benchmark in the literature on statistical power analysis (Cohen, 1988).

Figure 4 plots the optimal one-sided CIs in both directions along with the optimal affine

FLCI and RMSE optimal affine estimator as a function of C. For small values of C, the

Lipschitz assumption implies that selection on pretreatment variables does not lead to sub-

stantial bias, and the optimal estimator and CIs incorporates this by tending toward the

raw difference in means between treated and untreated individuals, which in this data set is

negative. For larger values of C, the point estimate is larger and becomes positive, which

suggests that the estimator and CIs are accounting for the possibility of selection bias by

controlling for observables. Note also that the two-sided FLCIs become wider as C increases,

reflecting greater uncertainty resulting from a less restrictive parameter space.

Interestingly, the upper one-sided CI is above the upper endpoint of the two-sided CI for

some values of C. This occurs because the one-sided CI criterion resolves the bias-variance

tradeoff in a different way than the two-sided FLCI: the FLCI and one-sided CI are based

on the estimator L̂δ with different choices of δ (recall that L̂δ minimizes the variance subject

to a bound on worst-case bias subject, with δ determining the relative weights given to

bias and variance). In particular, the one-sided CI uses a smaller value of δ for a given C

when applied to this data set, which leads to the one-sided CI being based on a larger point

estimate than the two-sided FLCI. On the other hand, the point estimate for the FLCI

is never very far from the RMSE optimal estimate, reflecting the fact that the FLCI and

RMSE criteria resolve the bias-variance tradeoff in a similar way.

To examine this more closely, Figure 5 focuses on the case where C = 1 and plots the

optimal estimator along with its standard deviation, worst-case bias, RMSE and CI length

as a function of δ. For this figure, the standard deviation is computed under the assumption

of homoskedasticity, so that the standard deviation, RMSE and CI length are identical to

those optimized by the estimator. For comparison, we plot the same quantities for matching

estimators as a function of M , the number of matches, using the linear programming problem

described in Section 2.3 to compute worst-case bias (the distance used to define matches is

the same as the one used for the Lipschitz condition). For the matching estimator, M plays
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the role of a tuning parameter that trades off bias and variance, just as δ does for the

class of optimal estimators: larger values of M tend to lower the variance and increase the

bias (although the relationship is not always monotonic). As required by Theorem 2.2, L̂δ

approaches the matching estimator with M = 1 as δ gets small enough.

Table 1 reports the point estimates that optimize each of the criteria plotted in Figure 5

along with worst-case bias, standard errors, and the value of the tuning parameter (δ or M)

that optimizes the given criterion. These are simply the estimates from Figure 5 taken at

the value of δ or M where the given criterion takes the minimum in the corresponding plot

in the figure. Note that, in all cases, the bias is non-negligible relative to variance: unlike

CIs based on conventional asymptotics, the CIs computed here reflect the “nonparametric”

nature of the problem by explicitly taking bias into account.

4.3 Comparison to Experimental Estimates

The present analysis follows LaLonde (1986), Dehejia and Wahba (1999), Smith and Todd

(2001), Smith and Todd (2005) and Abadie and Imbens (2011) (among others) in using a non-

experimental sample to estimate treatment effects of the NSW program. A major question

in this literature has been whether a non-experimental sample can be used to obtain the

same results (or, at least, results that are the same up to sampling error) as estimates based

on the original experimental sample of individuals who were randomized out of the NSW

program. Taking the difference in means between the outcome for the treated and untreated

individuals in the subset of the experimental sample that corresponds to the data used here

gives an estimate of the average treatment effect on the treated (ATT) of 1.794 with a

standard error of 0.633 (see Dehejia and Wahba, 1999).

Differences between the estimates reported here and the experimental estimate can arise

from (1) differences between the CATT for our sample and the ATT (2) failure of the

selection on observables assumption (which may lead to
∑n
i=1[f(xi,1)−f(xi,0)]di∑n

i=1 di
not giving the

actual CATT) and (3) bias and variance in estimating
∑n
i=1[f(xi,1)−f(xi,0)]di∑n

i=1 di
as well as sampling

error in the experimental estimates of the ATT. Since our CIs contain the experimental

estimate of the ATT except for when the Lipschitz constant is very small, our results do not

lead one to reject the null hypothesis that all of the difference between our estimates and the

experimental estimate comes from (3). Indeed, our results show that a substantial portion of

the difference between experimental estimates and the estimates based on non-experimental

data reported here can be explained by bias in estimating
∑n
i=1[f(xi,1)−f(xi,0)]di∑n

i=1 di
: for C = 1,

the optimal FLCI is centered at 0.5906 and has a worst-case bias of 0.5060 for estimating
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∑n
i=1[f(xi,1)−f(xi,0)]di∑n

i=1 di
, which is almost half the difference between the center of the FLCI and

the experimental estimate of 1.794.

4.4 Other Choices of Distance

A disadvantage of the distance based on A = Amain is that it requires prior knowledge of the

relative importance of different pretreatment variables in explaining the outcome variable.

An alternative is to specify the distance using moments of the pretreatment variables in a way

that ensures invariance to scale transformations. For example, Abadie and Imbens (2011)

form matching estimators using p = 2 and A1/2 = A
1/2
ne ≡ diag(1/std(x1), . . . , 1/std(xp)),

where std denotes sample standard deviation. Table 2 shows the diagonal elements of Ane,

which are simply the inverses of the standard deviations of each control variable. From

this table, it can be seen that this distance is most likely not the best way of encoding

a researcher’s prior beliefs about Lipschitz constraints. For example, the bound on the

difference in average earnings between Blacks and non-Black non-Hispanics is substantially

smaller than the bound on the difference in average earnings between Hispanics and non-

Black non-Hispanics.

If the constant C is to be chosen conservatively, the derivative of f(x, d) with respect to

each of these variables must be bounded by C times the corresponding element in this table.

If one allows for somewhat persistent earnings, this would suggest that C should be chosen

in the range of 10 or above: to allow previous year’s earnings to have a one-to-one effect,

we would need to take C = 1/.0729 = 13.7174. For C = 10, the optimal 95% affine FLCI is

1.7176± 7.6797, which is much wider than the FLCIs reported for Amain when C = 1 (which

corresponds to a greater bound on the derivative of the conditional mean with respect to

last year’s earnings).

4.5 Monotonicity Restrictions

To tighten the bounds further, one can impose monotonicity restrictions. The optimal

estimators can be obtained by solving an optimization problem similar to the one in the

case where monotonicity is not imposed (see Appendix A). As an example to show how this

leads to a tighter CI, if we assume that, for each d = 0, 1, f(·, d) is weakly increasing in age,

education and both income and employment variables, and weakly decreasing in the Black

and Hispanic indicator variables, the minimax affine FLCI with C = 1 and A = Amain is

0.3912± 1.8762 (compared to 0.5906± cv.05(0.5060/0.9009) · 0.9009 = 0.5906± 2.0111 when
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monotonicity is not imposed).

Once monotonicity is imposed, the class of functions is no longer centrosymmetric, so

the argument for using minimax fixed length confidence intervals is less clear. One may

want to “direct power” at smooth alternatives, or attempt to adapt to different levels of

smoothness. The problem of adaptive inference on average treatment effect parameters under

unconfoundedness when the conditional mean satisfies shape restrictions is an interesting

question that we leave for future research.

Appendix A Proofs and additional derivations

This appendix contains proofs and derivations used in the main text. Section A.1 proves

Theorem 2.1 and derives the formulas for optimal estimators and CIs given in Section 2.2

as well as the generalization to Lipschitz classes with monotonicity discussed in Section 4.5.

Section A.2 proves Theorem 2.2.

A.1 Derivation of Optimal CIs

We first note that our setting is a fixed design regression model with normal errors and

known variance, and therefore falls into the framework used in Armstrong and Kolesár

(2016) with (in the notation of that paper) Y = (y1/σ(x1, d1), . . . , yn/σ(xn, dn)), Y = Rn,

Kf = (f(x1, d1), σ(x1, d1), . . . , f(xn, dn)/σ(xn, dn)). The functional of interest (L in the

notation of Armstrong and Kolesár (2016)) is given by the CATE or CATT. To accommodate

both of these cases, we consider a general weighted sample average treatment effect of the

form

Lf =
n∑
i=1

ai[f(xi, 1)− f(xi, 0)]

where {ai}ni=1 are a set of known weights with
∑n

i=1 ai = 1. Setting ai = 1/n gives the

CATE, while setting ai = di/
(∑n

j=1 dj

)
gives the CATT.

The ordered class modulus of continuity ω(δ;F ,G) for classes F and G is given by the
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maximized value of

sup
f,g

n∑
i=1

ai {[g(xi, 1)− g(xi, 0)]− [f(xi, 1)− f(xi, 0)]} (9)

s.t.

√√√√ n∑
i=1

[f(xi, di)− g(xi, di)]2

σ2(xi, di)
≤ δ, f ∈ F , g ∈ G

(see Armstrong and Kolesár, 2016, p. 14). Let f ∗δ , g∗δ denote a pair of functions that achieves

the maximum. For general convex classes F and G, optimal CIs and efficiency bounds can

be derived by solving this problem. We specialize to the Lipschitz classes F = FLip(C) and

G = FLip(C ′) as well as versions of these classes that impose monotonicity conditions and

show that, in these cases, the constraints on the infinite dimensional objects f and g can be

phrased as a finite set of linear constraints.

For the function classes we consider here, the problem is translation invariant (as defined

by Armstrong and Kolesár, 2016, p. 15) with ι given by the function f(x, d) = d. This gives

the optimal weights as

k∗δ (xi, di) =

f∗δ (xi,di)−g∗δ (xi,di)

σ2(xi,di)∑n
j=1 di

f∗δ (xj ,dj)−g∗δ (xj ,dj)

σ2(xj ,dj)

.

The corresponding estimator L̂δ is then given by

a∗δ +
n∑
i=1

k∗δ (xi, di)yi

where

a∗δ =
1

2

{
Lf ∗δ + Lg∗δ −

n∑
i=1

k∗δ (xi, di)[g
∗
δ (xi, di) + f ∗δ (xi, di)]

}
,

and the worst-case biases are taken at f ∗δ and g∗δ , and are given by

biasF(L̂δ) = a∗δ +
n∑
i=1

k∗δ (xi, di)f
∗
δ (xi, di)− Lf ∗δ

= Lg∗δ − a∗δ −
n∑
i=1

k∗δ (xi, di)g
∗
δ (xi, di) = − biasG(L̂δ)
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(see Armstrong and Kolesár, 2016, p. 15).

The Lipschitz class (without monotonicity imposed) is centrosymmetric, so, if we take

F = G = FLip(C), the solutions to the modulus problem for ω(δ;F) = ω(δ;F ,F) will be

given by f ∗δ and g∗δ = −f ∗δ where f ∗δ solves

sup
f

2
n∑
i=1

ai [f(xi, 1)− f(xi, 0)] s.t.

√√√√ n∑
i=1

f(xi, di)2

σ2(xi, di)
≤ δ

2
, f ∈ F . (10)

The formula for k∗δ and the worst-case biases given above then hold with a∗δ = 0 and g∗δ = −f ∗δ ,

which gives the formulas in the main text (in the main text, the notation f ∗δ is used for the

function denoted g∗δ in this appendix).

Let F̃Lip,n(C) denote the set of functions f : {x1, . . . , xn}×{0, 1} → R such that |f(x, d)−
f(x̃, d)| ≤ C‖x − x̃‖X for all x, x̃ ∈ {x1, . . . , xn} and each d ∈ {0, 1}. That is, F̃Lip,n(C)

denotes the class of functions with domain {x1, . . . , xn} × {0, 1} that satisfy the Lipschitz

condition on this domain. If we take the restriction of any function f ∈ FLip(C) to the

domain {x1, . . . , xn} × {0, 1}, then the resulting function will clearly be in F̃Lip,n(C). The

following result, from Beliakov (2006), shows that, given a function in F̃Lip,n(C), one can

always interpolate the points x1, . . . , xn to obtain a function in FLip(C).

Lemma A.1. (Beliakov, 2006, Theorem 4) For any function f : {x1, . . . , xn}× {0, 1} → R,

we have f ∈ F̃Lip,n(C) iff. there exists a function h ∈ FLip(C) such that f(x, d) = h(x, d) for

all (x, d) ∈ {x1, . . . , xn} × {0, 1}.

We also consider the case where monotonicity restrictions are imposed in addition to

the Lipschitz restriction. Let S ⊆ {1, . . . , p} denote the subset of indices of xi for which

monotonicity is imposed, and normalize the variables so that the monotonicity condition

states that f(·, d) is nondecreasing in each of these variables (by taking the negative of

variables for which f(·, d) is non-increasing). Let FLip,S↑(C) denote the set of functions in

FLip(C) such that that f(·, 0) and f(·, 1) are monotonic for the indices in S: for any t, t̃ with

tj ≥ t̃j for j ∈ S and tj = t̃j for j /∈ S, we have f(t, d) ≥ f(t̃, d) for each d ∈ {0, 1} (that is,

increasing the elements in S and holding others fixed weakly increases the function).

We use a result on necessary and sufficient conditions for interpolation by monotonic

Lipschitz functions given by Beliakov (2005). For a vector t ∈ Rp, let (t)S+ denote the

vector with jth element tj for j /∈ S and jth element max{tj, 0} for j ∈ S. Let F̃Lip,S↑,n(C)

denote the set of functions f : {x1, . . . , xn} × {0, 1} → R such that, for all i, j ∈ {1, . . . , n}
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and d ∈ {0, 1}

f(xi, d)− f(xj, d) ≤ C‖(xi − xj)S+‖X .

Lemma A.2. (Beliakov, 2005, Proposition 4.1) For any function f : {x1, . . . , xn}×{0, 1} →
R, we have f ∈ F̃Lip,S↑,n(C) iff. there exists a function h ∈ FLip,S↑(C) such that f(x, d) =

h(x, d) for all (x, d) ∈ {x1, . . . , xn} × {0, 1}.

Using these results, we can phrase the problem of computing the modulus, optimal

weights and worst-case biases as a finite dimensional convex optimization problem.

Theorem A.1. The modulus of continuity ω(δ;FLip,S↑(C),FLip,S↑(C
′)) is given by the value

of (9) with F = F̃Lip,S↑,n(C) and G = F̃Lip,S↑,n(C ′). Furthermore, the functions f ∗ ∈
FLip,S↑(C) and g∗ ∈ FLip,S↑(C

′) are solutions to the modulus problem (9) with F = FLip,S↑,n(C)

and G = FLip,S↑,n(C ′) iff. there exist f̃ ∗ and g̃∗ that maximize (9) with F = F̃Lip,S↑,n(C)

and G = F̃Lip,S↑,n(C ′) such that f̃ ∗(x, d) = f ∗(x, d) and g̃∗(x, d) = g∗(x, d) for (x, d) ∈
{x1, . . . , xn} × {0, 1}. In particular, the corresponding estimator and CIs can be computed

using f̃ ∗ and g̃∗ in place of f ∗δ and g∗δ .

Similarly, the modulus of continuity ω(δ;FLip(C),FLip(C)) is given by the value of (10)

with F = F̃Lip,n(C). The function f ∗ ∈ FLip(C) is a solution to the modulus problem

(10) with F = FLip(C) iff. there exists f̃ ∗ ∈ F̃Lip,n(C) that maximizes (10) with F =

F̃Lip,n(C) such that f̃ ∗(x, d) = f ∗(x, d) for (x, d) ∈ {x1, . . . , xn} × {0, 1}. In particular, the

corresponding estimator and CIs can be computed using f̃ ∗ and g̃∗ = −f̃ ∗ in place of f ∗δ and

g∗δ .

Theorem 2.1 now follows immediately from Theorem A.1 along with Corollary 3.1 in

Armstrong and Kolesár (2016) for the one-sided CI and Theorem 1 and calculations in

Donoho (1994) for the two-sided case.

A.2 Proof of Theorem 2.2

To prove Theorem 2.2, we first provide another characterization of the optimal weights

given in (10). Given {mi}ni=1, consider the optimization problem (10) with the additional

constraint that f(xi, di) = mi for di = 1 and f(xi, di) = −mi for di = 0. It follows from

Beliakov (2006) that there exists a function f ∈ FLip(C) satisfying these constraints iff.

|mi −mj| ≤ C‖xi − xj‖X for all i, j with di = dj. Furthermore, when this condition holds,

f(x, 1) is maximized simultaneously for all x subject to the constraint that f(xi, di) = mi

23



for all i by taking f(x, 1) = mini:di=1(mi + ‖x − xi‖X ). Similarly, f(x, 0) is minimized

simultaneously for all x by taking f(x, 0) = −mini:di=0(mi + ‖x−xi‖X ) (see Beliakov, 2006,

p. 25). Plugging this into (10), it follows that f ∗δ (xi, di) = (2di−1) ·m∗i where {m∗i }ni=1 solves

max
m

n∑
i=1

ai

[
mi + min

j:dj 6=di
(mj + ‖xi − xj‖X )

]
s.t.

n∑
i=1

m2
i /σ

2(xi, di) ≤ δ2/4, |mi −mj| ≤ C‖xi − xj‖X for all i, j with di = dj.

This is a convex optimization problem and constraint qualification holds since m = 0 satisfies

Slater’s condition (see Boyd and Vandenberghe, 2004, p. 226). Thus, the solution (or set of

solutions) is the same as the solution to the Lagrangian.

To characterize the solution, let ω̃i(m) = minj:dj 6=di(mj+‖xi−xj‖X ) and let Ji(m) denote

the set of indices such that this minimum is achieved. Note that Ji(0) is the set of nearest

neighbors to i (i.e. the set of indices j of observations such that ‖xj − xi‖X is minimized).

Furthermore, if ‖m‖ is smaller than some constant that depends only on the design points,

we will have

Ji(m) = {j ∈ Ji(0) : mj ≤ m` all ` ∈ Ji(0)}. (11)

The superdifferential ∂ω̃i(m) of ω̃i(m) is given by the convex hull of ∪j∈Ji(m){ej}. For

δ/C small enough, the constraints |mi −mj| ≤ C‖xi − xj‖X are implied by the constraint

on
∑n

i=1m
2
i /σ

2(xi, di). Thus, specializing to the case in Theorem 2.2 where σ2(xi, di) = σ2

is constant and ai = 1/n, the first order conditions can be written

ι− 2(λn/σ2)m ∈ −
n∑
i=1

∂ω̃i(m)

=

{
n∑
i=1

n∑
j=1

bijej|bij = 0 all j /∈ Ji(m), bij ≥ 0, all i, j and
n∑
j=1

bij = 1 all i

}

where ι is a vector of ones. Let ‖m‖ be small enough so that (11) holds. Then mj = m` for

j, ` ∈ Ji(m). Thus, the nonzero bij’s in the superdifferential must take the form bij = 1
#Ji(m)

,

which gives

2(λn/σ2)mj = 1 +
∑

i:j∈Ji(m)

1

#Ji(m)
.
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In the case where the values of ‖xi−xj‖X are unique, we have Ji(m) = Ji(0) for small enough

m and Ji(0) is a singleton for each i, so that mj is proportional to 1 + #{i : j ∈ Ji(m)},
which gives the matching estimator with a single match.

Appendix B Asymptotic efficiency bound in non-regular

case

In this appendix, we derive conditions under which root-n inference on the CATE condi-

tional on treatments and outcomes is impossible. We consider Hölder classes of functions,

which place bounds on (possibly higher order) derivatives of f(·, 0) and f(·, 0). Let Σ(γ, C)

denote the set of functions f such that, for all integers k1, k2, . . . , kp with
∑p

j=1 kj = `,∣∣∣∣ d`

dx
k1
1 ···dx

kp
p

f(x)− d`

dx
k1
1 ···dx

kp
p

f(x′)

∣∣∣∣ ≤ C‖x− x′‖γ−`X , where ` is the greatest integer strictly less

than γ and ‖ · ‖X denotes the Euclidean norm on Rp. We consider the class F given by

functions f(x, d) such that f(·, 0) and f(·, 1) are both in Σ(γ, C). Here, γ = 1 corresponds

to the Lipschitz class used in most of the paper.

We consider a setup where i.i.d. random variables {Xi, Di}ni=1 are drawn, and the Gaus-

sian regression model defined in (1) and (3) is considered with {xi, di}ni=1 = {Xi, Di}ni=1

treated as fixed. Under regularity conditions on the distribution generating these covariates

and treatment indicators, we show that the excess length of a confidence interval with con-

ditional coverage in the class with f(·, 0), f(·, 1) ∈ Σ(γ, C) must be of order at least n−γ/p,

even at the “smooth” function f(x, d) = 0.

Theorem B.1. Let {Xi, Di} be i.i.d. with Xi a random variable on Rp and Di taking values

in {0, 1}. Suppose that the marginal probability that Di = 1 is not equal to zero or one

and that Xi has a bounded density conditional on Di. Let [ĉn,∞) be a sequence of CIs with

asymptotic coverage at least 1− α for the CATE conditional on {Xi, Di}ni=1:

lim inf
n

inf
f(·,0),f(·,1)∈Σ(C,γ)

Pf

(
1

n

n∑
i=1

[f(Xi, 1)− f(Xi, 0)] ∈ [ĉn,∞)

∣∣∣∣{Xi, Di}ni=1

)
≥ 1− α

almost surely. Then, under the zero function f(x, d) = 0, ĉn cannot converge to the CATE

(which is 0 in this case) more quickly than n−γ/p: there exists η > 0 such that

lim inf
n

P0

(
ĉn ≤ −ηn−γ/p|{Xi, Di}ni=1

)
≥ 1− α
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almost surely.

The condition γ/p < 1/2 corresponds to conditions under which equivalence with a

Brownian sheet fails, as noted by Brown and Zhang (1998). The CATE has a similar

form to the parameter used in a counterexample in the p = 1 case by Brown and Low

(1996). As discussed in Section 2.5, the condition γ/p < 1/2 corresponds to the case where

root-n inference is impossible when one does not condition on treatments and pretreatment

variables in the case where no smoothness is imposed on the propensity score. However,

when smoothness is imposed on the propensity score, weakening the coverage requirement

to require only marginal coverage allows one to obtain inference at a root-n rate under weaker

conditions on f(x, d). When γ/p > 1/2, Chen et al. (2008) show that the semiparametric

efficiency bound can be achieved (for example, using series estimators) without smoothness

assumptions on the propensity score (while Chen et al. 2008 do not condition on treatments

and pretreatment variables, their arguments appear to extend to the conditional case).

We now prove Theorem B.1. The fact that Xi has a bounded density conditional on Di

means that there exists some a < b such that Xi has a density bounded away from zero and

infinity on [a, b]p conditional on Di = 1. Let Nd,n = {i : Di = d, i ∈ {1, . . . , n}} and let

In(h) = {i ∈ N1,n : Xi ∈ [a, b]p and for all j ∈ N0,n, ‖Xi −Xj‖X > 2h}.

Let E denote the σ-algebra generated by {Di}∞i=1 and {Xi : Di = 0, i ∈ N}. Note that,

conditional on E , the observations {Xi : i ∈ N1,n} are i.i.d. with density bounded away from

zero and infinity on [a, b]p.

Lemma B.1. There exists η > 0 such that, if lim supn hnn
1/p ≤ η, then lim infn #In(hn)/n ≥

η almost surely.

Proof. Let An = {x ∈ [a, b]p|there exists j such that Dj = 0 and ‖x − Xj‖X ≤ 2h}. Then

#In(h) =
∑

i∈N1,n
[I(Xi ∈ [a, b]p) − I(Xi ∈ An)]. Note that, conditional on E , the random

variables I(Xi ∈ An) with i ∈ N1,n are i.i.d. Bernoulli(νn) with νn = P (Xi ∈ An|E) =
∫
I(x ∈

An)fX|D(x|1) dx ≤ Kλ(An) where fX|D(x|1) is the conditional density of Xi given Di = 1,

λ is the Lebesgue measure and K is an upper bound on this density. Under the assumption

that lim supn hnn
1/p ≤ η, we have λ(An) ≤ (4hn)pn ≤ 8pηp where the last inequality holds

for large enough n. Thus, letting ν = 8pηpK, we can construct random variables Zi for each

i ∈ N1,n that are i.i.d. Bernoulli(ν) conditional on E such that I(Xi ∈ An) ≤ Zi. Applying
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the strong law of large numbers, it follows that

lim inf
n

#In(h)/n ≥ lim inf
n

#N1,n

n

1

#N1,n

∑
i∈N1,n

(I(Xi ∈ [a, b]p)− Zi)

≥ P (Di = 1)(P (Xi ∈ [a, b]p|Di = 1)− 8pηpK)

almost surely. This will be greater than η for η small enough.

Let X̃n(h, η) be the set of elements x̃ in the grid {a+jhη|j = (j1, . . . , jp) ∈ {1, . . . , bh−1c(b−
a)}p} such that there exists i ∈ In(h) with max1≤k≤p |x̃k − Xi,k| ≤ hη. Note that, for any

x̃ ∈ X̃n(h, η), the closest element Xi with i ∈ In(h) satisfies ‖x̃−Xi‖X ≤ phη. Thus, for any

Xj with Dj = 0, we have

‖x̃−Xj‖X ≥ ‖Xj −Xi‖X − ‖x̃−Xi‖X ≥ 2h− pηh > h

for η small enough, where the first inequality follows from rearranging the triangle inequality.

Let k ∈ Σ(1, γ) be a nonnegative function with support contained in {x : ‖x‖X ≤ 1}, with

k(x) ≥ k on {x : max1≤k≤p |xk| ≤ η} for some k > 0. By the above display, the function

fn(x, d) = fn,{Xi,Di}ni=1
(x, d) =

∑
x̃∈X̃n(h,η)

(1− d)k((x− x̃)/h)

is equal to zero for (x, d) = (Xi, Di) for all i = 1, . . . , n. Thus, it is observationally

equivalent to the zero function conditional on {Xi, Di}ni=1: Pfn,{Xi,Di}ni=1
(·|{Xi, Di}ni=1) =

P0(·|{Xi, Di}ni=1). Furthermore, we have

1

n

n∑
i=1

[fn,{Xi,Di}ni=1
(Xi, 1)− fn,{Xi,Di}ni=1

(Xi, 0)]

= − 1

n

n∑
i=1

∑
x̃∈X̃n(h,η)

k((Xi − x̃)/h) ≤ −k#In(h)

n
(12)

where the last step follows since, for each i ∈ In(h), there is a x̃ ∈ X̃n(h, η) such that

max1≤k≤p |x̃k −Xi,k|/h ≤ η.

Now let us consider the Hölder condition on fn,{Xi,Di}ni=1
. Let ` be the greatest integer

strictly less than γ and let Dr denote the derivative with respect to the multi-index r =
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r1, . . . , rp for some r with
∑p

i=1 ri = `. Let x, x′ ∈ Rp. Let A(x, x′) ⊆ X̃n(h, η) denote the set

of x̃ ∈ X̃n(h, η) such that max{k((x− x̃)/h), k((x′ − x̃)/h)} > 0. By the support conditions

on k, there exists a constant K depending only on p such that #A(x, x′) ≤ K/ηp. Thus,

∣∣Drfn,{Xi,Di}ni=1
(x, d)−Drfn,{Xi,Di}ni=1

(x′, d)
∣∣

≤ h−`(K/ηp) sup
x̃∈A(x,x′)

|Drk((x− x̃)/h)−Drk((x′ − x̃)/h)|

≤ h−`(K/ηp)‖(x− x′)/h‖γ−`X = h−γ(K/ηp)‖x− x′‖γX ,

which implies that f̃n,{Xi,Di}ni=1
∈ Σ(C, γ) where f̃n,{Xi,Di}ni=1

(x, d) = hγC
K/ηp

fn,{Xi,Di}ni=1
(x, d).

By (12), the CATE under f̃n,{Xi,Di}ni=1
is bounded from above by −k hγC

K/ηp
#In(h)

n
, which, by

Lemma B.1, is bounded from above by a constant times hγn for large enough n on a probability

one event for hn a small enough multiple of n−1/p. Thus, there exists ε > 0 such that

the CATE under f̃n,{Xi,Di}ni=1
is bounded from above by −εn−1/p for large enough n with

probability one. On this probability one event,

lim inf
n

P0

(
ĉn ≤ −εn−γ|{Xi, Di}ni=1

)
= lim inf

n
Pf̃n,{Xi,Di}ni=1

(
ĉn ≤ εn−γ|{Xi, Di}ni=1

)
≥ lim inf

n
inf

f(·,0),f(·,1)∈Σ(C,γ)
Pf

(
1

n

n∑
i=1

[f(Xi, 1)− f(Xi, 0)] ∈ [ĉn,∞)

∣∣∣∣{Xi, Di}ni=1

)
≥ 1− α,

which gives the result.

Appendix C Asymptotic validity with unknown error

distribution

This appendix gives conditions for asymptotic coverage of the feasible CI with unknown

error distribution described in Section 2.6. The result follows by verifying the conditions in

Theorem E.2 in Armstrong and Kolesár (2016).

Theorem C.1. Consider the fixed design model with ui distributed independently (but not

identically distributed) with Eui = 0 and 1/K ≤ var(ui) ≤ K and E|ui|2+η ≤ K for some

η > 0 and some K. Suppose that, for all η > 0 and d ∈ {0, 1}, min1≤i≤n
∑n

j=1 I(‖xi− xj‖ ≤
η, di = d) → ∞, and that max1≤i≤n |f̂(xi, di) − f(xi, di)|

p→ 0 uniformly over f ∈ FLip(C).

Let C denote either of the CIs described in Section 2.6 with σ̃(x, d) taken to be nonrandom

and bounded away from zero and infinity. Then lim infn→∞ inff∈F P (Lf ∈ C) ≥ 1−α, where
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F = FLip(C) or F = FLip,S↑(C) denotes the parameter space used to compute the CI.

In addition to asymptotic coverage of the CIs, it follows from Theorem E.2 in Armstrong

and Kolesár (2016) that L̂δ is asymptotically normal (conditional on the xi’s and di’s). In

particular, it is interesting to note that the optimal estimator is asymptotically normal even

in non-regular cases, albeit with a potentially non-negligible asymptotic bias and non-root-n

rate of convergence.
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Optimal estimator

criterion optimal δ estimate worst-case non robust robust
bias std estimate std estimate

one-sided CI 2.4865 0.9652 0.2376 1.4806 0.9752
FLCI 5.5988 0.5906 0.5060 1.3399 0.9009
RMSE 5.4672 0.6019 0.4920 1.3449 0.9033

Matching estimator

criterion optimal M estimate worst-case non robust robust
bias std estimate std estimate

one-sided CI 1 1.4353 0.1137 1.6496 0.9950
FLCI 12 0.8409 0.6739 1.4393 0.8540
RMSE 11 0.9609 0.6132 1.4641 0.8541

Table 1: Results for NSW data, p = 1, A = Amain, C = 1
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age educ. Black Hispanic married earnings earnings emp. emp.
in 1974 in 1975 in 1974 in 1975

0.0952 0.3275 2.1998 5.4864 2.5993 0.0729 0.0721 2.9793 2.9297

Table 2: Diagonal elements of A
1/2
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Figure 1: Estimator weights for n = 100
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Figure 2: Estimator weights for n = 250
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Figure 3: Estimator weights for n = 500
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Figure 4: Optimal estimator and CIs for CATT in NSW data
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