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INTRODUCTION

« Treatment effects often estimated under “unconfoundedness” or

“selection-on-observables” assumption

= Systematic differences in outcomes between treated and control units

with same values of covariates x; due only to treatment
« When x; continuously distributed, estimation requires regularization:

« matching with imperfect matches

« kernel/series/sieve estimation of conditional means
Regularization causes finite-sample bias

+ Conventional approach to choosing estimators and constructing

confidence intervals (CIs) based on first-order asymptotics

« Ignores bias; many estimators asymptotically efficient

« This paper: take finite-sample approach to address these problems
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CONVENTIONAL APPROACH

1. Pick estimator ﬁ that achieves semiparametric efficiency bound
2. Construct std error @(ﬁ) by estimating efficient asymptotic variance

3. Construct nominal 95% CI as [§ + 1.96§E:(,B)

Problems:

« Many estimators achieve semiparametric efficiency bound
« Estimators that do not achieve the bound (e.g. nearest neighbor
matching) often more intuitively appealing than estimators that do

(e.g. matching with 10th order kernel)

« Ignores bias due to smoothing and lack of perfect overlap —

potential undercoverage of Cls

« Theory requires a lot of smoothness (e.g. bound on 10th derivative)
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OUR APPROACH

« Start out with smoothness assumption on conditional mean of outcome

given covariates x; and treatment d;: okay to use bound on lower order

derivative

« Consider performance of estimators and CIs conditional on (x;, d;)

1. Pick estimator f that achieves-semiparametrie-eflicieney-bound solves
finite-sample worst-case bias-variance tradeoff
oM ; hi . e offici ] l
+ Unique optimal estimator, linear in outcomes
« Under Lipschitz (first-derivative) constraint on conditional mean, with

large enough bound, matching estimator with single match optimal
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2. Construct std error s’E(ﬁA) by estimating effieient-asymptotie-varianee its
conditional variance }; k? var(y; | x;, x;), where ,B = 2; kiy; is optimal
estimator

3. Construct nominal 95% CI %7@14—96@%@ by using larger critical

value that explicitly takes into account possible bias (substantial in
empirical application)

« Finite-sample coverage under normal errors and known variance
« Feasible CIs with estimated variance valid and asymptotically efficient

when error distribution unknown
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NEW ASYMPTOTIC RESULTS

+ Derive minimal smoothness conditions for achieving semiparametric
efficiency bound when conditioning on realized treatments and
covariates

« Need a bound on derivative of order dim(X;)/2
« Matches unconditional bound of Robins et al. (2009) when no

smoothness is imposed on propensity score

« Our CIs asymptotically valid and efficient with unknown error
distribution even when semiparametric efficiency bound cannot be
achieved

« In this case, critical value > 1.96 even asymptotically
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RELATED LITERATURE

« Apply framework of Armstrong and Kolesar (2017, hereafter AK17) and
Donoho (1994)

« Similar motivation to RD application in AK17 and Kolesar and Rothe
(2017): finite sample approach means we don’t have to worry about
discrete vs continuous regressors, etc.

« Semiparametrics with alternative asymptotics (papers by Cattaneo,
Farrell, Jansson, Newey; Abadie and Imbens)

« Low regularity semiparametrics (Robins et al., 2009; Khan and Tamer,
2010)

« Classical selection on observables literature (Rosenbaum and Rubin,
1983; Hahn, 1998; Dehejia and Wahba, 1999; Heckman et al., 1997,
1998a,b; Hirano et al., 2003, ...)
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SETUP

« Fori =1,...,n, observe covariates x;, treatment indicator d;, and
outcome y; = (1 — d;)y;(0) + d;y;(1), where y;(0), y;(1) are potential
outcomes

« Condition on {x;,d;}! ; throughout: all expectations and probability
statements are conditional [7 Discussion of conditioning on (d;, x;)]

« Leads to fixed design regression model
yi = f(xi,di) +ui,  E(u;) =0,

with u; independent over i
« To obtain finite sample results, further assume u; ~ N(0, 0%(x;, d;))

with o?(x;, d;) known
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Under unconfoundedness (selection on observables assumption),

conditional average treatment effect (CATE) given by

CATE(f) = ZE(Y(l)—Y(O))le]— S [f 6 1)~ 0

i=1

[ Details of CATE definition]

Key Assumption

f € ¥, known convex set

For many results, focus on Lipschitz class, for some norm ||-||,
F = Fp(C) ={f: |f(x,d) - f(x,d)| < Cllx - x]|, d € {0,1}}
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CRITERIA FOR RELATIVE EFFICIENCY

. Interval C is 100 - (1 — 6()% CI fOI' CATE lf
inf Pr(CATE eC)>1-a, 1
;6577 .f( (j?) ) ( )

where Py denotes probability under f

« Among CIs that satisfy (1), minimize worst-case (expectation or
quantile of) length over # (minimax)

+ By results in Armstrong and Kolesar (2016), not much to be gained by

making directing power at smoother functions [Z Details]

« For estimation, focus on maximum (worst-case over ¥ ) mean squared

error (MSE)

10/50



RELATION TO ASYMPTOTIC EFFICIENCY BOUNDS

« We use same notion of efficiency as asymptotic results in the literature
« For example, saying
matching estimators achieve semiparametric efficiency bound
when regression function has at least one derivative and there

is only one continuous covariate

can be formalized as stating

ratio of the minimax MSE of a matching estimator to the optimal
minimax MSE converges to one when ¥ = F1;,(C) and there is

only one continuous covariate

« Our approach is “uniform in the underlying distribution” version of

nonparametric smoothness
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LINEAR ESTIMATORS

« For notational ease, let Lf = CATE(f)
« Optimal CIs are based on linear estimators (AK17) Ly = iy k(xi, di)y;

« By linearity, L is normal with variance
n
sd(Li)? = ) k(xi, di)o”(xi, di)
i=1

and bias bounded in absolute value by

bias#(Ly) = sul;'z k(x;,di) f(xi,d;) = Lf
feF|i=
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CONSTRUCTING Cls BASED ON LINEAR ESTIMATORS

« One-sided CI based on ﬁk given by [¢, o), where
¢ = Ly — biase(Li) — sd(L)z1-a

« For two-sided CI, could add and subtract ﬁﬂik) + sd(f;k)zl_a /2, but

this is conservative. Instead, note that

Ip—E ias (L
ko f ~ N(t,1) where [t| < M.
sd(Ly) sd(Lk)

Letting cv,(t) denote 1 — « quantile of [N(t, 1)|, can therefore use fixed
length CI (FLCT)

Ly + cvg(biasy(Ly)/sd(Ly)) sd(Lk)
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OPTIMAL CIS AND ESTIMATORS

« For two-sided FLCI, choose k to minimize length
2cv (biasy(Li)/sd(Li))sd(Li)
« When using Liasa point estimate, one can minimax the MSE:

;ug Ef [(Lx = Lf)?] = biase(Lx)? + sd(Ly)?
€

« For one-sided CI, we use minimax quantiles of excess length (see paper)
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All of these criteria increasing in bias#(Ly) and sd(Ly), so it suffices to

1. minimize variance subject to bound on bias
2. vary this bound on bias to find optimal bias-variance tradeoff for given

criterion (FLCI, MSE, etc.)

Same idea as usual nonparametric bias-variance tradeoff, but in finite

samples.

+ Unlike, say, estimating conditional mean at a point or RD parameter
(Armstrong and Kolesar, 2017), no closed form for this problem in

general, even asymptotically.

Using results from Donoho (1994), AK17, we can trace out this

bias-variance frontier using convex optimization.

We give results for ¥ = ¥1;,(C). See paper for general convex 7.
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OPTIMAL Cls AND ESTIMATORS FOR LIPSCHITZ SMOOTHNESS

« Bias-variance frontier can be traced out by solving

f(xi, di)?
o) Z Lt 1) = (s, O) s JZ (ends) 2

Let f denote solution
« Constraint that f' € ¥7;,(C) is equivalent to requiring that for
de€{0,1} and i,j € {1,...,n} (Beliakov, 2006)

|fCxir d) = f(x),d)| < Cllxi = x|

+ Developed algorithm similar to LARS/LASSO algorithm that traces out

solution path as function of §: piecewise linear solution
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o Let

. fyxindi)
. . . D)
Ls = Liy() = Z ks (xi, di)y;, ks(xi,d;) = o )

i=1

j:l UZ(Xj,dj)

{Ls}sso traces out the optimal bias-variance frontier.

« Bias of Ls maximized at — fs and minimized at f5:

tETLip(C)(I:zs) = % Z [f5Gei1) = f35(x1,0)] - Z k5(x;, di) fs (xi, d;)
i=1 i=1

« Variance is

sd(Ls)? = ) ky(xi, di)io™(xi, di).
i=1
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Theorem 1

Let Ls and %5 = @ﬁip(ﬁg) be given above and let
é,6 = Ls — biass — sd(Ls)zi—a-

Then
1. [Cq,8,00) isal—a Clover Fip(C), and it has optimal minimax
PBth quantile excess length over all 1 — a Cls where
B = (5 — z1—,) and @ denotes the standard normal cdf.
2. {ﬁg EE cva(%g/sd(ﬁg))sd(ﬁg)} isa1—a Clover F;,(C) for any
d. Optimal FLCI centered at an affine estimator takes this form

with § = §, where §, minimizes cvg(biass/sd(Ls))sd(Ls) over 6.
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NOTES ON THEOREM

« For one-sided CIs, optimality follows by application of results in AK17,
who use results on minimax testing of convex null against convex
alternative

» For two-sided CI, the theorem above only gives optimality among affine

FLCIs. However, the optimal affine FLCI is close to optimal among all

CIs, under both minimax criterion and at smooth functions (see AK17).

« In our application, we calculate that our CI is at least 94% efficient
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OPTIMAL ESTIMATORS

« Estimation under MSE criterion: minimax affine estimator is f,gp where
0, minimizes ﬁg + sd(Ls)?. It is near-minimax among all estimators
(follows from Donoho, 1994)

« If we want CI centered at optimal point estimate, we can form a FLCI
based on MSE optimal estimate: {ﬁgﬂ +cvgy (ﬁgp/sd(ﬁ(gp ))Sd(f,(gp)}.

« In our application, we 6, and 6, are close to each other, so not much

efficiency is lost by doing this.

« Intuition: better to widen CI to take into account bias than to

undersmooth.
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UNKNOWN ERROR DISTRIBUTION

« Since 0(x;, d;) is unknown, we recommend replacing it with estimate
or guess 6(x;,d;) to compute the optimal weights and variance of

estimator

« We assume homoscedasticity for computing optimal weights, but drop
this assumption for estimating variance

+ Analogous to OLS with heteroscedasticity robust standard errors

21/50



MATCHING ESTIMATORS

« Nearest neighbor matching estimator with M matches is linear

estimator with weights

1 Km(i)
kmatch,M(xiy d;) = ;(Zd,- = 1) (1 + i ) .
where Kj(i) is number of times observation i is matched [7 Details]

+ To compute CIs, evaluate minimax MSE, etc. for matching estimators,
we just need to compute biasg;, (c) for these weights. This is another

convex programming problem.

« We show that, when C is large enough, optimal estimator L is the

matching estimator with M = 1.
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OPTIMALITY OF MATCHING WITH LOW SMOOTHNESS

Theorem 2

Suppose o%(x;,d;) = o is constant and that distances ||x; — x;||x take
on unique values as i and j vary. Then there exists a constant K
depending on o and {x;,d;}[, such that, if C/6 > K, optimal

estimator L is given by the matching estimator with M = 1.

+ Intuition: Matching estimators with M = 1 minimize bias

« For lower values of C, optimal estimator takes form of matching
estimator with variable number of matches (follows from our

algorithm)

« Observations matched more times considered “further away”

+ NN estimate weights observations by their distance
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SEMIPARAMETRIC EFFICIENCY BOUND

Conventional approach uses asymptotics based on the assumption that

semiparametric efficiency bound is achieved.

« Suppose x; and d; drawn from a distribution where
P(d; = 1]x; = x) = p(x), and we have enough smoothness (i.e. ¥

bounds high enough order derivative).

« Then optimal rate of convergence is y/n, bias asymptotically negligible,
and optimal weights asymptotically proportional to efficient influence

function ksep, (Hahn, 1998)

« We show that optimal rate is slower than +/n for Lipschitz when

dim X; > 2, in general need derivative of order dim(X;)/2
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Numerical illustration



NUMERICAL ILLUSTRATION

+ To see what the optimal weights look like, we take single draw of
{xi,d;}?, from a known data generating process with a single

covariate. Then plot the optimal weights k}
« We take § = 2z o5 (optimizes .95 quantile of excess length for 95% CI)
« Since p(x) = P(d; = 1|x; = x) is known, we can also plot the efficient

influence function kep,.
« Also plot the matching weights k* .\ with M = 5.

« Multiply all weights by n for comparison across sample sizes
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ESTIMATOR WEIGHTS FOR n = 100
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ESTIMATOR

WEIGHTS FOR n

optimal kernel, d=0

0 0.2 0.4 0.6 0.8
kernel for M=5 matching estimator, d=0
0 0.2 0.4 0.6 0.8
kernel for efficient influence function, d=0
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ESTIMATOR WEIGHTS FOR n = 500
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NUMERICAL ILLUSTRATION

Optimal estimator Matching estimator

n bias sd bias sd
100 0.0201  0.2053  0.0202 0.2081
250 0.0087 0.1331 0.0079 0.1353

500 0.0057 0.0963 0.0048 0.0983
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NOTES ON NUMERICAL ILLUSTRATION

+ Dimension of x; is one, so we achieve semiparametric efficiency bound

with optimal estimator.

« Matching achieves the bound if M — oo at the appropriate rate.
« Numerical results seem to reflect this:
« Weights are not too far off from efficient influence function for n = 500.
« Worst-case bias is small relative to standard error (about 5-10% of
standard error)
« On the other hand, will see that bias is substantial relative to standard
error in NSW data even though n is much larger—reflects greater

dimension of x;
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Application



NATIONAL SUPPORTED WORK DEMONSTRATION (NSW)

« y;: earnings in 1978 (after training program) in $1,000s
« d;: indicator for program participation
« x;: age, education, indicators for Black and Hispanic, indicator for

marriage, earnings in 1974, earnings in 1975, and employment

indicators for 1974 and 1975
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DATA

Sample of treated (d; = 1) individuals from NSW, sample of untreated
(d; = 0) individuals from PSID (data from Dehejia and Wahba, 1999)

« NSW also included randomized controls, which we don’t use.

« Can non-experimental sample replicate experimental results? (Lalonde
(1985), Dehejia and Wahba (1999), Smith and Todd (2001, 2005), Abadie
and Imbens (2011))

Following this literature, focus on average treatment effect on the

treated (CATT):

[f Cxi, 1) = f(xi,0)]d;

n
i=1 di

n
Lf: i=1

« Results for ATE go through with obvious adjustments (see paper)
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CHOICE OF NORM

Definition of #1,(C) depends on norm that defines distance on x

« Definition of matching estimators also depends on this

« Let A be positive definite symmetric matrix and define norm

@ 1/p
> |(A1/2x>,~|f’)
i=1

Focus on p = 1 and A diagonal: Lipschitz condition easier to interpret

lxlla,p =

« With C = 1 and A diagonal, j, jth element gives a priori bound on

derivative of regression function with respect to jth element of x
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Ideally, choose A based on a priori restrictions one is willing to impose

1/2

- Here, focus on A% = A" = diag(0, 1, 20, 20,0, 1,0, 0,0)

— sulffices to control for education, previous year’s earnings and
Black/Hispanic indicators when making the selection-on-observables
assumption

« WithC =1
+ No more than one-to-one effect of previous year’s earnings on this
year’s earnings
+ Bound of $1,000 increase in wages per year of education
« Bound of $20,000 for wage gap between Black or Hispanic and others

Earnings are less than $5,000 for most of treated sample and less than

$20,000 for most of sample overall, so these bounds are large in

percentage terms
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ISSUES WITH THIS APPROACH TO CHOOSING NORM

+ Asking a lot of researcher

« Concern one might try many different choices and justify one ex post

Alternative: use invariance considerations to pick a norm

« For example, let A'/? be diagonal matrix with j, jth given by 1/sd(x; o

(invariant to choice of units for x) [7 More]

35/50



ADDITIONAL CONSIDERATIONS

1. Choice of C

+ By results in AK17, one must choose C a priori: one cannot start with a
conservative choice and “let the data tell us” that C is, in fact, smaller
than we thought [7 Details]

« We recommend plotting the CIs and estimates as a function of C

« We have argued that C = 1 is plausible, so we take this as a benchmark

and include it in our range of choices

2. Choice of quantile of excess length for one-sided CI

» We take 0.8 since it corresponds to a benchmark in statistical power

analysis (Cohen, 1988)
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OPTIMAL ESTIMATOR AND Cls FOR CATT IN NSW DATA

3 7one—sideg

dollars (thousands)
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COMMENTS ON RESULTS

« For C small, Lipschitz assumption implies that selection on

pretreatment variables does not lead to substantial bias.

« Estimator incorporates this by tending towards raw

difference-in-means estimate (which is negative for this data set).

« For larger C, estimator gets larger. This suggests that the estimator is
accounting for the possibility of selection bias by controlling for

observables.

« Asrequired by our results, the estimator is identical to matching with

M =1 for large enough C.
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CLOSER LOOK AT RESULTS FORC =1

« Optimal estimator is Ls, where J is chosen to optimize bias-variance

tradeoff for the given criterion (one-sided CI/FLCI/MSE).

o To illustrate this, we plot bias, standard deviation, one-sided excess
length, FLCI length and MSE against .

+ For comparison M plays same role as § for matching estimator (trades
off bias and variance). We plot these quantities against M for the

matching estimator.
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Optimal estimator

criterion 1) L bias se robust se
one-sided CI  2.4865 0.9652 0.2376 1.4806 0.9752
FLCI 5.5988 0.5906 0.5060 1.3399 0.9009
MSE 5.4672 0.6019 0.4920 1.3449 0.9033
Matching estimator
criterion M L bias se robust se
one-sided CI 1 14353 0.1137 1.6496 0.9950
FLCI 12 0.8409 0.6739 1.4393 0.8540
MSE 11 0.9609 0.6132 1.4641 0.8541
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COMMENTS

« Bias nonnegligible proportion of CI length (about half of standard
deviation)
« FLCI and RMSE make similar choices for bias-variance tradeoff: one

can check that FLCI centered at the RMSE optimal estimator is near
optimal for FLCI in this data

« This is a numerical result for this data set and application rather than a
general result. However, we have found similar results in other settings.
« Don’t have to worry about CI and estimate giving radically different
results
« On the other hand, the one-sided CI chooses a smaller

bias/standard-deviation ratio
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COMPARISON TO EXPERIMENTAL ESTIMATES

Difference-in-means estimate of ATT using experimental controls (not

used here) is 1.794. Our estimates can differ due to:

1. Difference between CATT and ATT

2. Failure of selection-on-observables assumption (so that
Linlf O D=f O Oldi g0 0ot give the actual CATT)

Z?:l di
2 [f (i D= f (x4, 0)1d;
Z?:] di

3. Bias and variance in estimating

Bias in 3. may play a substantial role in explaining difference:

« For example, with C = 1, optimal MSE estimate is 0.60, with worst-case

bias 0.49: bias accounts for almost half of difference
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CONCLUSION

+ Derived optimal estimators/ClIs for average treatement effects under

unconfoundedness.

« Estimators are linear in outcomes and trade off bias and variance
optimally.

« With conservative Lipschitz (first-derivative) constraint, matching with
a single match is optimal.

« In general, estimators can be computed using convex optimization.

« CIs take the form of estimator plus-or-minus critical value, but wider
than conventional CIs since they take into account worst-case bias

explicitly.
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FUTURE/ONGOING RESEARCH

« Our general results apply to any convex function class:
« Partly linear model
+ Higher order smoothness
+ Smoothness assumptions on residuals of best linear predictor (natural
for regression adjusted matching)
« Smoothness assumptions on differenced conditional means (natural for

difference-in-difference matching)

» Other applications
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PRos AND CONS OF CONDITIONING

(+) Takes into account realized covariate imbalance between treated and
control groups.
+ Consider RCT with d; randomly assigned, but most men end up in

treatment group: conditioning takes into account resulting bias concerns

(-) Cannot use smoothness of propensity score p(x) = P(d; = 1 | x; = x).

+ Our view: worth working out sharp efficiency bounds in both cases

and comparing them.

« If one prefers not to condition, our CIs still valid. Also rate optimal if
no smoothness on p(x) imposed (conjecture: they are close to optimal

in finite samples)

(&7 Back]
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ForRMAL DEFINITION OF CATE

o Assume: {(x;,d;, y;(0),y;(1))}[, areiid. and {y;(1),4;(0)} L d; | x;
o Then

N Elgu(1) = i0) | o] = = D (K1) = (X0, )
= =

where f(x,d) = E(y;(d) | x; = x) = E(y;|d; = d,x; = x), and
yi = f(xi,di) + wi

+ Assumption that u; is (conditionally) normal follows from assumption
that 1;(0) and y;(1) are normal (but not necessarily joint normal)

conditional on {(x;,d;)}!",

(&7 Back]
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ADAPTATION BOUNDS

« Minimax may be “too pessimistic” and requires knowing ¥ (e.g., need

to know C to use F1;p(C))
Potential solution: adaptive inference

« Require coverage over ¥, but optimize length simultaneously over ¥
and one or more smaller sets G; C F (e.g. F = FLip(Cy) and
Gi=Fp(C)),Cr <---<C1 <G

« When ¥ centrosymmetric (f € ¥ implies —f € ), results in AK17
show that very little can be gained by adaptive inference.
— CIs must depend explicitly on C: one cannot be conservative and then
“let the data show” that C is in fact smaller.

« If ¥ is asymmetric (e.g. monotonicity restrictions) or nonconvex

(e.g. Giné-Nickl style restrictions), adaptive CIs may be possible.

[c2 Back to Efficiency Criteria] [cZ Back to Application]
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DEFINITION OF MATCHING ESTIMATORS

+ Matching estimators take the form
1 A a
22 | iy - fxi,0) + (1= )i 1) - )|

where f(x, d) is estimate of f(x, d).

« We consider nearest neighbor matching: f (x;,0) is M-nearest neighbor
estimate of f(x;,0) among observations with d; = 0, similarly for
fxi,1).

« Ifd; = 1,d; = 0 and y; is used in forming f(xi, 0), we say that j is used
as a match (and similarly for d; = 0, d; = 1). Kp(j) denotes number of

times j is used as a match. @ Back]
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ALTERNATIVE CHOICE OF NORM

- Diagonal elements of Ai,/ez = diag(1/std(xy), ..., 1/std(xq,)):
Age Educ. Black Hispanic Married
0.0952 0.3275 2.1998 5.4864 2.5993
1974 earnings 197 earnings 1974 emp. 1975 emp.

0.0729 0.0721 2.9793 2.9297
« Each entry gives bound on derivative of conditional mean wrt x; (when

C=1).
« Probably doesn’t reflect relative magnitude of a priori bounds for most
researchers: e.g., wage gap is much larger for Hispanics than Blacks.
« To allow for a one-to-one effect of last year’s earnings (as with the
main specification with C = 1), need C above 10, which leads to very

wide CIs (for C = 10, optimal FLCI is 1.7176 + 7.6797). [c7 Back]
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