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Introduction

• Treatment e�ects often estimated under “unconfoundedness” or
“selection-on-observables” assumption
=⇒ Systematic di�erences in outcomes between treated and control units

with same values of covariates xi due only to treatment

• When xi continuously distributed, estimation requires regularization:
• matching with imperfect matches
• kernel/series/sieve estimation of conditional means

Regularization causes �nite-sample bias

• Conventional approach to choosing estimators and constructing
con�dence intervals (CIs) based on �rst-order asymptotics

• Ignores bias; many estimators asymptotically e�cient

• This paper: take �nite-sample approach to address these problems
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Conventional approach

1. Pick estimator β̂ that achieves semiparametric e�ciency bound

2. Construct std error ŝe(β̂) by estimating e�cient asymptotic variance

3. Construct nominal 95% CI as β̂ ± 1.96ŝe(β̂)

Problems:

• Many estimators achieve semiparametric e�ciency bound
• Estimators that do not achieve the bound (e.g. nearest neighbor

matching) often more intuitively appealing than estimators that do
(e.g. matching with 10th order kernel)

• Ignores bias due to smoothing and lack of perfect overlap =⇒
potential undercoverage of CIs

• Theory requires a lot of smoothness (e.g. bound on 10th derivative)
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Our approach

• Theory requires a lot of smoothness (e.g. bound on 10th derivative)

• Start out with smoothness assumption on conditional mean of outcome
given covariates xi and treatment di : okay to use bound on lower order
derivative

• Consider performance of estimators and CIs conditional on (xi ,di )

1. Pick estimator β̂ that achieves semiparametric e�ciency bound solves
�nite-sample worst-case bias-variance tradeo�

• Many estimators achieve semiparametric e�ciency bound
• Unique optimal estimator, linear in outcomes
• Under Lipschitz (�rst-derivative) constraint on conditional mean, with

large enough bound, matching estimator with single match optimal
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2. Construct std error ŝe(β̂) by estimating e�cient asymptotic variance its
conditional variance

∑
i k

2
i var(yi | xi ,xi ), where β̂ =

∑
i kiyi is optimal

estimator

3. Construct nominal 95% CI as β̂ ± 1.96ŝe(β̂) by using larger critical
value that explicitly takes into account possible bias (substantial in
empirical application)

• Ignores bias due to smoothing and lack of perfect overlap =⇒ potential
undercoverage of CIs

• Finite-sample coverage under normal errors and known variance
• Feasible CIs with estimated variance valid and asymptotically e�cient

when error distribution unknown
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New asymptotic results

• Derive minimal smoothness conditions for achieving semiparametric
e�ciency bound when conditioning on realized treatments and
covariates

• Need a bound on derivative of order dim(Xi )/2
• Matches unconditional bound of Robins et al. (2009) when no

smoothness is imposed on propensity score

• Our CIs asymptotically valid and e�cient with unknown error
distribution even when semiparametric e�ciency bound cannot be
achieved

• In this case, critical value > 1.96 even asymptotically
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Related literature

• Apply framework of Armstrong and Kolesár (2017, hereafter AK17) and
Donoho (1994)

• Similar motivation to RD application in AK17 and Kolesár and Rothe
(2017): �nite sample approach means we don’t have to worry about
discrete vs continuous regressors, etc.

• Semiparametrics with alternative asymptotics (papers by Cattaneo,
Farrell, Jansson, Newey; Abadie and Imbens)

• Low regularity semiparametrics (Robins et al., 2009; Khan and Tamer,
2010)

• Classical selection on observables literature (Rosenbaum and Rubin,
1983; Hahn, 1998; Dehejia and Wahba, 1999; Heckman et al., 1997,
1998a,b; Hirano et al., 2003, . . . )
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Setup

• For i = 1, . . . ,n, observe covariates xi , treatment indicator di , and
outcome yi = (1 − di )yi (0) + diyi (1), where yi (0),yi (1) are potential
outcomes

• Condition on {xi ,di }ni=1 throughout: all expectations and probability
statements are conditional [ Discussion of conditioning on (di ,xi )]

• Leads to �xed design regression model

yi = f (xi ,di ) + ui , E(ui ) = 0,

with ui independent over i

• To obtain �nite sample results, further assume ui ∼ N (0,σ 2(xi ,di ))

with σ 2(xi ,di ) known
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• Under unconfoundedness (selection on observables assumption),
conditional average treatment e�ect (CATE) given by

CATE(f ) =
1
n

n∑
i=1

E[(Yi (1) − Yi (0)) | xi ] =
1
n

n∑
i=1
[f (xi , 1) − f (xi , 0)]

[ Details of CATE de�nition]

Key Assumption

f ∈ F , known convex set

• For many results, focus on Lipschitz class, for some norm ‖·‖,

F = FLip(C) = { f : | f (x ,d) − f (x̃ ,d)| ≤ C ‖x − x̃ ‖, d ∈ {0, 1}}
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Criteria for relative efficiency

• Interval C is 100 · (1 − α)% CI for CATE if

inf
f ∈F

Pf (CATE(f ) ∈ C) ≥ 1 − α , (1)

where Pf denotes probability under f

• Among CIs that satisfy (1), minimize worst-case (expectation or
quantile of) length over F (minimax)

• By results in Armstrong and Kolesár (2016), not much to be gained by
making directing power at smoother functions [ Details]

• For estimation, focus on maximum (worst-case over F ) mean squared
error (MSE)
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Relation to asymptotic efficiency bounds

• We use same notion of e�ciency as asymptotic results in the literature

• For example, saying
matching estimators achieve semiparametric e�ciency bound

when regression function has at least one derivative and there

is only one continuous covariate

can be formalized as stating
ratio of the minimaxMSE of a matching estimator to the optimal

minimax MSE converges to one when F = FLip(C) and there is

only one continuous covariate

• Our approach is “uniform in the underlying distribution” version of
nonparametric smoothness
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Linear estimators

• For notational ease, let Lf = CATE(f )

• Optimal CIs are based on linear estimators (AK17) L̂k =
∑n

i=1 k(xi ,di )yi

• By linearity, L̂k is normal with variance

sd(L̂k )2 =
n∑
i=1

k(xi ,di )
2σ 2(xi ,di )

and bias bounded in absolute value by

biasF(L̂k ) = sup
f ∈F

����� n∑
i=1

k(xi ,di )f (xi ,di ) − Lf

�����
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Constructing CIs based on linear estimators

• One-sided CI based on L̂k given by [ĉ,∞), where

ĉ = L̂k − biasF(L̂k ) − sd(L̂k )z1−α

• For two-sided CI, could add and subtract biasF(L̂k ) + sd(L̂k )z1−α/2, but
this is conservative. Instead, note that

L̂k − Lf

sd(L̂k )
∼ N (t , 1) where |t | ≤

biasF(L̂k )
sd(L̂k )

.

Letting cvα (t) denote 1 − α quantile of |N (t , 1)|, can therefore use �xed

length CI (FLCI)

L̂k ± cvα (biasF(L̂k )/sd(L̂k )) sd(L̂k )
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Optimal CIs and estimators

• For two-sided FLCI, choose k to minimize length

2cvα (biasF(L̂k )/sd(L̂k ))sd(L̂k )

• When using L̂k as a point estimate, one can minimax the MSE:

sup
f ∈F

Ef
[
(L̂k − Lf )

2] = biasF(L̂k )2 + sd(L̂k )2

• For one-sided CI, we use minimax quantiles of excess length (see paper)
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• All of these criteria increasing in biasF(L̂k ) and sd(L̂k ), so it su�ces to
1. minimize variance subject to bound on bias
2. vary this bound on bias to �nd optimal bias-variance tradeo� for given

criterion (FLCI, MSE, etc.)

• Same idea as usual nonparametric bias-variance tradeo�, but in �nite
samples.

• Unlike, say, estimating conditional mean at a point or RD parameter
(Armstrong and Kolesár, 2017), no closed form for this problem in
general, even asymptotically.

• Using results from Donoho (1994), AK17, we can trace out this
bias-variance frontier using convex optimization.

• We give results for F = FLip(C). See paper for general convex F .
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Optimal CIs and estimators for Lipschitz smoothness

• Bias-variance frontier can be traced out by solving

max
f ∈FLip (C)

2
1
n

n∑
i=1
[f (xi , 1) − f (xi , 0)] s.t.

√√
n∑
i=1

f (xi ,di )2

σ 2(xi ,di )
≤
δ

2

Let f ∗δ denote solution
• Constraint that f ∈ FLip (C) is equivalent to requiring that for
d ∈ {0, 1} and i, j ∈ {1, . . . ,n} (Beliakov, 2006)

| f (xi ,d) − f (x j ,d)| ≤ C‖xi − x j ‖

• Developed algorithm similar to LARS/LASSO algorithm that traces out
solution path as function of δ : piecewise linear solution
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• Let

L̂δ = L̂k∗δ (·) =
n∑
i=1

k∗δ (xi ,di )yi , k∗δ (xi ,di ) =

f ∗δ (xi ,di )
σ 2(xi ,di )∑n

j=1
dj f ∗δ (x j ,dj )
σ 2(x j ,dj )

.

{L̂δ }δ>0 traces out the optimal bias-variance frontier.

• Bias of L̂δ maximized at −f ∗δ and minimized at f ∗δ :

biasFLip(C)(L̂δ ) =
1
n

n∑
i=1

[
f ∗δ (xi , 1) − f ∗δ (xi , 0)

]
−

n∑
i=1

k∗δ (xi ,di )f
∗
δ (xi ,di )

• Variance is

sd(L̂δ )2 =
n∑
i=1

k∗δ (xi ,di )
2σ 2(xi ,di ).
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Theorem 1

Let L̂δ and biasδ = biasFLip(L̂δ ) be given above and let

ĉα,δ = L̂δ − biasδ − sd(L̂δ )z1−α .

Then

1. [ĉα,δ ,∞) is a 1 − α CI over FLip(C), and it has optimal minimax

βth quantile excess length over all 1 − α CIs where

β = Φ(δ − z1−α ) and Φ denotes the standard normal cdf.

2.
{
L̂δ ± cvα (biasδ /sd(L̂δ ))sd(L̂δ )

}
is a 1 − α CI over FLip(C) for any

δ . Optimal FLCI centered at an a�ine estimator takes this form

with δ = δχ where δχ minimizes cvα (biasδ /sd(L̂δ ))sd(L̂δ ) over δ .
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Notes on theorem

• For one-sided CIs, optimality follows by application of results in AK17,
who use results on minimax testing of convex null against convex
alternative

• For two-sided CI, the theorem above only gives optimality among a�ne
FLCIs. However, the optimal a�ne FLCI is close to optimal among all
CIs, under both minimax criterion and at smooth functions (see AK17).

• In our application, we calculate that our CI is at least 94% e�cient
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Optimal estimators

• Estimation under MSE criterion: minimax a�ne estimator is L̂δρ where
δρ minimizes bias

2
δ + sd(L̂δ )2. It is near-minimax among all estimators

(follows from Donoho, 1994)

• If we want CI centered at optimal point estimate, we can form a FLCI
based on MSE optimal estimate:

{
L̂δρ ± cvα (biasδρ /sd(L̂δρ ))sd(L̂δρ )

}
.

• In our application, we δρ and δχ are close to each other, so not much
e�ciency is lost by doing this.

• Intuition: better to widen CI to take into account bias than to
undersmooth.
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Unknown error distribution

• Since σ 2(xi ,di ) is unknown, we recommend replacing it with estimate
or guess σ̃ 2(xi ,di ) to compute the optimal weights and variance of
estimator

• We assume homoscedasticity for computing optimal weights, but drop
this assumption for estimating variance

• Analogous to OLS with heteroscedasticity robust standard errors
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Matching estimators

• Nearest neighbor matching estimator with M matches is linear
estimator with weights

kmatch,M (xi ,di ) =
1
n
(2di − 1)

(
1 +

KM (i)

M

)
.

where KM (i) is number of times observation i is matched [ Details]

• To compute CIs, evaluate minimax MSE, etc. for matching estimators,
we just need to compute biasFLip(C) for these weights. This is another
convex programming problem.

• We show that, when C is large enough, optimal estimator L̂δ is the
matching estimator with M = 1.
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Optimality of matching with low smoothness

Theorem 2

Suppose σ 2(xi ,di ) = σ is constant and that distances ‖xi − x j ‖X take

on unique values as i and j vary. Then there exists a constant K

depending on σ and {xi ,di }ni=1 such that, if C/δ > K , optimal

estimator L̂δ is given by the matching estimator with M = 1.

• Intuition: Matching estimators with M = 1 minimize bias

• For lower values of C , optimal estimator takes form of matching
estimator with variable number of matches (follows from our
algorithm)

• Observations matched more times considered “further away”
• NN estimate weights observations by their distance
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Semiparametric efficiency bound

Conventional approach uses asymptotics based on the assumption that
semiparametric e�ciency bound is achieved.

• Suppose xi and di drawn from a distribution where
P(di = 1|xi = x) = p(x), and we have enough smoothness (i.e. F
bounds high enough order derivative).

• Then optimal rate of convergence is
√
n, bias asymptotically negligible,

and optimal weights asymptotically proportional to e�cient in�uence
function kseb (Hahn, 1998)

• We show that optimal rate is slower than
√
n for Lipschitz when

dimXi > 2, in general need derivative of order dim(Xi )/2
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Numerical illustration

• To see what the optimal weights look like, we take single draw of
{xi ,di }

n
i=1 from a known data generating process with a single

covariate. Then plot the optimal weights k∗δ
• We take δ = 2z .95 (optimizes .95 quantile of excess length for 95% CI)

• Since p(x) = P(di = 1|xi = x) is known, we can also plot the e�cient
in�uence function kseb.

• Also plot the matching weights k∗match,M with M = 5.

• Multiply all weights by n for comparison across sample sizes
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Estimator weights for n = 100
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Estimator weights for n = 250
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Estimator weights for n = 500
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Numerical Illustration

Optimal estimator Matching estimator

n bias sd bias sd

100 0.0201 0.2053 0.0202 0.2081
250 0.0087 0.1331 0.0079 0.1353
500 0.0057 0.0963 0.0048 0.0983
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Notes on numerical illustration

• Dimension of xi is one, so we achieve semiparametric e�ciency bound
with optimal estimator.

• Matching achieves the bound if M →∞ at the appropriate rate.

• Numerical results seem to re�ect this:
• Weights are not too far o� from e�cient in�uence function for n = 500.
• Worst-case bias is small relative to standard error (about 5–10% of

standard error)

• On the other hand, will see that bias is substantial relative to standard
error in NSW data even though n is much larger—re�ects greater
dimension of xi
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National Supported Work Demonstration (NSW)

• yi : earnings in 1978 (after training program) in $1,000s

• di : indicator for program participation

• xi : age, education, indicators for Black and Hispanic, indicator for
marriage, earnings in 1974, earnings in 1975, and employment
indicators for 1974 and 1975
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Data

Sample of treated (di = 1) individuals from NSW, sample of untreated
(di = 0) individuals from PSID (data from Dehejia and Wahba, 1999)

• NSW also included randomized controls, which we don’t use.

• Can non-experimental sample replicate experimental results? (Lalonde
(1985), Dehejia and Wahba (1999), Smith and Todd (2001, 2005), Abadie
and Imbens (2011))
Following this literature, focus on average treatment e�ect on the
treated (CATT):

Lf =

∑n
i=1[f (xi , 1) − f (xi , 0)]di∑n

i=1 di

• Results for ATE go through with obvious adjustments (see paper)
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Choice of norm

• De�nition of FLip(C) depends on norm that de�nes distance on x

• De�nition of matching estimators also depends on this

• Let A be positive de�nite symmetric matrix and de�ne norm

‖x ‖A,p =

(
n∑
i=1
|(A1/2x)i |

p

)1/p
• Focus on p = 1 and A diagonal: Lipschitz condition easier to interpret

• With C = 1 and A diagonal, j, jth element gives a priori bound on
derivative of regression function with respect to jth element of x
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Ideally, choose A based on a priori restrictions one is willing to impose

• Here, focus on A1/2 = A1/2
main = diag(0, 1, 20, 20, 0, 1, 0, 0, 0)

=⇒ su�ces to control for education, previous year’s earnings and
Black/Hispanic indicators when making the selection-on-observables
assumption

• With C = 1
• No more than one-to-one e�ect of previous year’s earnings on this

year’s earnings
• Bound of $1,000 increase in wages per year of education
• Bound of $20,000 for wage gap between Black or Hispanic and others

Earnings are less than $5,000 for most of treated sample and less than
$20,000 for most of sample overall, so these bounds are large in
percentage terms
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Issues with this approach to choosing norm

• Asking a lot of researcher

• Concern one might try many di�erent choices and justify one ex post

Alternative: use invariance considerations to pick a norm

• For example, let A1/2 be diagonal matrix with j, jth given by 1/sd(xi j )
(invariant to choice of units for x ) [ More]
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Additional considerations

1. Choice of C

• By results in AK17, one must choose C a priori: one cannot start with a
conservative choice and “let the data tell us” that C is, in fact, smaller
than we thought [ Details]

• We recommend plotting the CIs and estimates as a function of C
• We have argued that C = 1 is plausible, so we take this as a benchmark

and include it in our range of choices

2. Choice of quantile of excess length for one-sided CI
• We take 0.8 since it corresponds to a benchmark in statistical power

analysis (Cohen, 1988)
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Optimal estimator and CIs for CATT in NSW data
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Comments on results

• For C small, Lipschitz assumption implies that selection on
pretreatment variables does not lead to substantial bias.

• Estimator incorporates this by tending towards raw
di�erence-in-means estimate (which is negative for this data set).

• For larger C , estimator gets larger. This suggests that the estimator is
accounting for the possibility of selection bias by controlling for
observables.

• As required by our results, the estimator is identical to matching with
M = 1 for large enough C .
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Closer look at results for C = 1

• Optimal estimator is L̂δ , where δ is chosen to optimize bias-variance
tradeo� for the given criterion (one-sided CI/FLCI/MSE).

• To illustrate this, we plot bias, standard deviation, one-sided excess
length, FLCI length and MSE against δ .

• For comparison M plays same role as δ for matching estimator (trades
o� bias and variance). We plot these quantities against M for the
matching estimator.
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Optimal estimator

criterion δ L̂ bias se robust se
one-sided CI 2.4865 0.9652 0.2376 1.4806 0.9752
FLCI 5.5988 0.5906 0.5060 1.3399 0.9009
MSE 5.4672 0.6019 0.4920 1.3449 0.9033

Matching estimator

criterion M L̂ bias se robust se
one-sided CI 1 1.4353 0.1137 1.6496 0.9950
FLCI 12 0.8409 0.6739 1.4393 0.8540
MSE 11 0.9609 0.6132 1.4641 0.8541
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Comments

• Bias nonnegligible proportion of CI length (about half of standard
deviation)

• FLCI and RMSE make similar choices for bias-variance tradeo�: one
can check that FLCI centered at the RMSE optimal estimator is near
optimal for FLCI in this data

• This is a numerical result for this data set and application rather than a
general result. However, we have found similar results in other settings.

• Don’t have to worry about CI and estimate giving radically di�erent
results

• On the other hand, the one-sided CI chooses a smaller
bias/standard-deviation ratio
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Comparison to experimental estimates

Di�erence-in-means estimate of ATT using experimental controls (not
used here) is 1.794. Our estimates can di�er due to:

1. Di�erence between CATT and ATT

2. Failure of selection-on-observables assumption (so that∑n
i=1[f (xi ,1)−f (xi ,0)]di∑n

i=1 di
does not give the actual CATT)

3. Bias and variance in estimating
∑n
i=1[f (xi ,1)−f (xi ,0)]di∑n

i=1 di

Bias in 3. may play a substantial role in explaining di�erence:

• For example, withC = 1, optimal MSE estimate is 0.60, with worst-case
bias 0.49: bias accounts for almost half of di�erence
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Conclusion

• Derived optimal estimators/CIs for average treatement e�ects under
unconfoundedness.

• Estimators are linear in outcomes and trade o� bias and variance
optimally.

• With conservative Lipschitz (�rst-derivative) constraint, matching with
a single match is optimal.

• In general, estimators can be computed using convex optimization.

• CIs take the form of estimator plus-or-minus critical value, but wider
than conventional CIs since they take into account worst-case bias
explicitly.
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Future/ongoing research

• Our general results apply to any convex function class:
• Partly linear model
• Higher order smoothness
• Smoothness assumptions on residuals of best linear predictor (natural

for regression adjusted matching)
• Smoothness assumptions on di�erenced conditional means (natural for

di�erence-in-di�erence matching)

• Other applications
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Pros and Cons of conditioning

(+) Takes into account realized covariate imbalance between treated and
control groups.

• Consider RCT with di randomly assigned, but most men end up in
treatment group: conditioning takes into account resulting bias concerns

(-) Cannot use smoothness of propensity score p(x) = P(di = 1 | xi = x).

• Our view: worth working out sharp e�ciency bounds in both cases
and comparing them.

• If one prefers not to condition, our CIs still valid. Also rate optimal if
no smoothness on p(x) imposed (conjecture: they are close to optimal
in �nite samples)

[ Back]
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Formal definition of CATE

• Assume: {(xi ,di ,yi (0),yi (1))}ni=1 are i.i.d. and {yi (1),yi (0)} ⊥⊥ di | xi

• Then

1
n

n∑
i=1

E[yi (1)−yi (0) | di , . . . ,dn ,x1, . . . ,xn] =
1
n

n∑
i=1
(f (Xi , 1)− f (Xi , 0)),

where f (x ,d) = E(yi (d) | xi = x) = E(yi |di = d,xi = x), and
yi = f (xi ,di ) + ui

• Assumption that ui is (conditionally) normal follows from assumption
that yi (0) and yi (1) are normal (but not necessarily joint normal)
conditional on {(xi ,di )}ni=1

[ Back]
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Adaptation bounds

• Minimax may be “too pessimistic” and requires knowing F (e.g., need
to know C to use FLip(C))

• Potential solution: adaptive inference
• Require coverage over F , but optimize length simultaneously over F

and one or more smaller sets Gj ( F (e.g. F = FLip(C0) and
Gj = FLip(Cj ), C J < · · · < C1 < C0

• When F centrosymmetric (f ∈ F implies −f ∈ F ), results in AK17
show that very little can be gained by adaptive inference.
=⇒ CIs must depend explicitly on C: one cannot be conservative and then

“let the data show” that C is in fact smaller.

• If F is asymmetric (e.g. monotonicity restrictions) or nonconvex
(e.g. Giné-Nickl style restrictions), adaptive CIs may be possible.

[ Back to E�ciency Criteria] [ Back to Application]
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Definition of matching estimators

• Matching estimators take the form

1
n

∑
i

[
di (yi − f̂ (xi , 0)) + (1 − di )( f̂ (xi , 1) − yi )

]
,

where f̂ (x ,d) is estimate of f (x ,d).

• We consider nearest neighbor matching: f̂ (xi , 0) is M-nearest neighbor
estimate of f (xi , 0) among observations with dj = 0, similarly for
f (xi , 1).

• If di = 1, dj = 0 and yj is used in forming f̂ (xi , 0), we say that j is used
as a match (and similarly for di = 0, dj = 1). KM (j) denotes number of
times j is used as a match. [ Back]
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Alternative choice of norm

• Diagonal elements of A1/2
ne = diag(1/std(x1), . . . , 1/std(xdx )):

Age Educ. Black Hispanic Married
0.0952 0.3275 2.1998 5.4864 2.5993

1974 earnings 197 earnings 1974 emp. 1975 emp.
0.0729 0.0721 2.9793 2.9297

• Each entry gives bound on derivative of conditional mean wrt x j (when
C = 1).

• Probably doesn’t re�ect relative magnitude of a priori bounds for most
researchers: e.g., wage gap is much larger for Hispanics than Blacks.

• To allow for a one-to-one e�ect of last year’s earnings (as with the
main speci�cation with C = 1), need C above 10, which leads to very
wide CIs (for C = 10, optimal FLCI is 1.7176 ± 7.6797). [ Back]
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