
A FRISCH-NEWTON ALGORITHM FOR SPARSE QUANTILE

REGRESSION

ROGER KOENKER AND PIN NG

Abstract. Recent experience has shown that interior-point methods using a log
barrier approach are far superior to classical simplex methods for computing so-
lutions to large parametric quantile regression problems. In many large empirical
applications, the design matrix has a very sparse structure. A typical example is
the classical fixed-effect model for panel data where the parametric dimension of
the model can be quite large, but the number of non-zero elements is quite small.
Adopting recent developments in sparse linear algebra we introduce a modified
version of the Frisch-Newton algorithm for quantile regression described in Portnoy
and Koenker (1997). The new algorithm substantially reduces the storage (memory)
requirements and increases computational speed. The modified algorithm also facil-
itates the development of nonparametric quantile regression methods. The pseudo
design matrices employed in nonparametric quantile regression smoothing are in-
herently sparse in both the fidelity and roughness penalty components. Exploiting
the sparse structure of these problems opens up a whole range of new possibilities
for multivariate smoothing on large data sets via ANOVA-type decomposition and
partial linear models.

1. Introduction

After almost three decades of development quantile regression is gradually emerging
as a fundamental tool of applied statistics. Complementing the use of least squares
methods for estimating conditional mean models, quantile regression not only offers a
more robust alternative for estimating the central tendency of the response, but also
allows researchers to explore more fully the conditional distribution of the response.
In the classical regression framework, the conditional mean E (Y |X = x) is estimated
by the least squares method. Unless one is willing to make strong distributional
assumptions on the conditional distribution of the response, least squares methods
do not provide any information beyond the conditional mean. Quantile regression
generalizes the idea of median regression to estimation of other conditional quantile
functions by minimizing weighted sums of absolute residuals and, hence, enable inves-
tigators to examine the effect of various covariates on other quantiles of the response.

Median regression, introduced by Boscovich in the mid-18th century, and champi-
oned by Laplace at the end of that century, seeks to estimate parametric statistical

Key words and phrases. Quantile regression, interior-point algorithm, sparse linear algebra.
Version: August 25, 2004. Corresponding author: Pin Ng, College of Business Administration,

Northern Arizona University, 70 McConnell Dr, P.O. Box 15066, Flagstaff, AZ 86011-5066. This
research was partially supported by NSF grant SES-02-40781.

1

2 Sparse Frisch Newton Algorithm

models by minimizing sums of absolute residuals. From its inception it has been rec-
ognized as a challenging computational problem. With the discovery of least squares
methods by Gauss and Legendre at the end of the 18th century, it fell into a be-
nign neglect, only to be revived by Edgeworth at the end of the 19th century, and
again with the discovery of the simplex algorithm for linear programming in the late
1940’s. The last decade has seen a flurry of quantile regression applications in a wide
variety of disciplines including economics, finance, demography, sociology and social
policy, education, political science, ecology, environmental science, biostatistics and
medicine.

Until quite recently, simplex based methods, notably the algorithm of Barrodale
and Roberts (1974), offered the only viable approach to computation for quantile re-
gression. Koenker and D’Orey (1987, 1993) describe this approach and some related
computational methods for inference. The introduction of interior point methods
by Karmarker (1984) unleashed a fundamental shift in the paradigm of computation
for linear programming. Significant progress has been made over the last decade to
improve the computational efficiency of interior point methods for linear program-
ming. See Gonzaga (1992), Lustig, Marsten and Shanno (1994), and Wright (1997)
for surveys of the development of interior point methods. Primal-dual interior point
algorithms are competitive with classical simplex methods for small to moderate size
problems and far superior for large problems.

Portnoy and Koenker (1997) showed that interior point methods combined with
careful preprocessing could effectively reduce the computational effort of quantile
regression problems to that of the corresponding least squares problems. But their
approach was designed for “long, thin problems”, that is for problems with large
sample size, but only a relatively small number of parameters. In many large empirical
applications of quantile regressions, however, the parametric dimension of the model
can be quite large. Particularly challenging are large-scale problems that involve
nonparametric function estimation, see e.g., Koenker, Ng and Portnoy (1994), He,
Ng and Portnoy (1998), He and Ng (1999) and Koenker and Mizera (2004).

Often though, such problems have a design matrix that has a very sparse structure.
A typical example is the classical fixed-effect model for panel data where the para-
metric dimension of the model can be quite large, due to a large number of indicator
variables and their interactions, but the number of non-zero elements in the design
matrix can be quite small. The design matrices arising in nonparametric quantile
regression smoothing problems are also inherently sparse in both their fidelity and
roughness penalty components. These problems call for new methods that rely on
effective exploitation of the sparsity of the matrix structure of the problems to achieve
improvements in computational efficiency. With the emergence of massive-scale data
mining in business, economic and biological applications there is a compelling need
for more efficient computational methods.

In this paper we adapt recent developments in sparse linear algebra to introduce
a modified version of the Frisch-Newton algorithm for quantile regression described

Koenker and Ng 3

in Portnoy and Koenker (1997). The new algorithm utilizes the BLAS-like rou-
tines for sparse matrices available from Saad (1994) and adapted in Koenker and
Ng (2002), and the block sparse Cholesky algorithm of Ng and Peyton (1993). Our
implementation substantially reduces storage (memory) requirements and increases
computational speed. Exploiting the sparse structure opens up a whole range of new
applications for multivariate smoothing on large data sets via ANOVA-type decom-
position and partial linear models.

2. Quantiles Regression

Given τ ∈ [0, 1] and n observations on the dependent variable yi and the p-variate
independent variable xi, the τ -th parametric linear regression quantile b is defined as
the solution to

(1) min
b∈Rp

n
∑

i=1

ρτ (yi − x>

i b)

where ρτ (u) = u(τ − I(u < 0)). As demonstrated in Koenker and Ng (2004), (1) can
be rewritten as the following linear program with e denoting an n-vector of ones:

(2) min
(u>,v>,b>)

{τe>u + (1 − τ)e>v|Xb + u − v = y, (u
>

, v
>

, b
>

) ∈ R
2n
+ × R

p}

Here, u and v are the positive and negative parts of the regression residuals. The
dual of (2) is

(3) max
d

{y>d|X>d = (1 − τ)X>e, d ∈ [0, 1]n}

where [0, 1]n denotes the n-fold Cartesian product of the unit interval, and d may
be interpreted as a vector of Lagrange multipliers associated with the linear equality
constraints of the primal problem in (1). It is this bounded variables dual linear
program in (3) that we will solve using the interior point methods.

3. The Frisch-Newton Algorithm

Lustig, Marsten and Shanno (1992, 1994) express a linear program primal-dual pair
as

min
x

{c>x|Ax = b, 0 ≤ x ≤ u, x ∈ R
n}(4)

max
(z

>
,w

>
,y

>)
{b>y|A>y + z − w = c,

(

z
>

, w
>

, y
>

)

∈ R
2n
+ × R

p}.(5)

Note that the dual in (3) that we want to solve corresponds to the primal in (4) so

that −y, d, (1 − τ) X
>

e, and X
>

in (3) correspond, respectively, to c, x, b, and A in
(4).

The log-barrier form of the Lagrangian for the primal problem in (4) is,

L = c>x − y>(Ax − b) − w>(u − x − s) − µ(
∑

log xi +
∑

log si),

4 Sparse Frisch Newton Algorithm

for µ > 0. The last log-barrier term in the expression above guarantees that (x, s)
stays away from the boundary of the positive orthant. The strategy is to gradually
relax the barrier parameter µ, letting it tend toward zero as the duality gap c>x −
b>y > 0 closes and we approach the optimal solution.

Writing z = µX−1e and differentiating with respect to (y>, x>, s>, w>)>, the clas-
sical Karush-Kuhn-Tucker conditions for optimality are

(6) g (ξ) =













A>y + z − w − c
Ax − b

x + s − u
XZe − µe
SWe − µe













= 0

where the upper case letters are diagonal matrices with the corresponding lower case
vectors as their diagonal elements, so for example X = diag (x). Given an initial
point, ξ = (y>, z>, x>, s>, w>)>, of the primal-dual variables, the Newton approxi-
mation to (6) is

g(ξk+1) ≈ ∇ξg(ξ)dξ + g(ξ).

We choose a descent direction dξ =
(

dy>, dz>, dx>, ds>, dw>
)>

by setting the above
Newton approximation equal zero. The resulting linear system we obtain is

(7)













A> I 0 0 −I
0 0 A 0 0
0 0 I I 0
0 X Z 0 0
0 0 0 W S

























dy
dz
dx
ds
dw













= −













A>y + z − w − c
Ax − b

x + s − u
XZe − µe
SWe − µe













=













r1

r2

r3

r4

r5













All primal-dual log barrier form of interior point algorithms involve generating se-
quences of the primal-dual variables and iterating until the duality gap becomes
smaller than a specified tolerance. Frisch (1955) was a pioneering advocate of the
log-barrier method for solving linear programming problems, so Portnoy and Koenker
(1997) dub their primal-dual log barrier interior point implementation for quantile
regression a Frisch-Newton algorithm. The Frisch-Newton algorithm we implement
here consists of three components at each iteration: (i) an affine-scaling “predictor”
direction is first computed, (ii) separate primal and dual step lengths are then ob-
tained and the barrier parameter µ is updated so that, (iii) a “corrected” direction
can be computed and a step taken along the corrected direction.

Affine-scaling predictor direction First, the affine-scaling predictor
steps are obtain by solving (7) with µ = 0. After some linear algebra that can be

Koenker and Ng 5

found in Koenker and Ng (2004), the predictor steps can be obtained as

dy = (AQ−1A>)−1[r̃2 + AQ−1r̃1]

dx = Q−1(A>dy − r̃1)

ds = −dx(8)

dz = −z − X−1Zdx = −Z
(

e + X−1dx
)

dw = −w − S−1Wds = −W
(

e + S−1ds
)

where Q = X−1Z + S−1W , r̃1 = c − A>y and r̃2 = b − Ax.
Following Lustig, Marsten and Shanno (1992), the maximum feasible affine-scaling

primal and dual step lengths that ensure the primal and dual variables stay feasible
are then obtained as

(9)
αP = min {0.9995 (arg max {α ≥ 0|x + αdx ≥ 0, s + αds ≥ 0}) , 1}
αD = min {0.9995 (arg max {α ≥ 0|z + αdz ≥ 0, w + αdw ≥ 0}) , 1}

update µ Second, the duality gap from taking this potential affine-scaling step
is

µk+1 = (x + αPdx)> (z + αDdz) + (s + αPds)> (w + αDdw)

This new duality gap is then compared to the existing duality gap µk = x>z + s>w
to evaluate the amount of centering needed. Mehrotra’s (1992) centering proposal
involves replacing µ in (7) by

(10) µ =

(

µk+1

µk

)2
(µk+1

n

)

corrector direction Finally, the third component, the corrector direction,
δξ = (δy>, δz>, δx>, δs>, δw>)> is obtained by substituting the value of µ from (10)
and ξ = ξ + δξ into (6), and solving for δξ. By applying similar algebra that yields
the affine-scaling predictor direction in (8), Koenker and Ng (2004) show that the
corrector steps can be derived as:

δy = (AQ−1A>)−1[AQ−1r̂1]

δx = Q−1(A>δy − r̂1)

δs = −δx(11)

δz = −X−1Zδx + X−1(µe − dXdZe)

δw = −S−1Wδs + S−1(µe − dSdWe)

where r̂1 = µ(S−1 − X−1)e + X−1dXdZe − S−1dSdWe. The motivation for the
corrector steps is given in Lustig, Marsten and Shanno (1992, pp. 441-2) and Wright
(1997, pp.196-7). Basically, the correction is an attempt to account for the amount of
deviation, dXdZ, of XZ from its targeted zero values in (6) when a tentative affine-
scaling step is taken. Using rules similar to (9), the step lengths in the corrector
direction are

6 Sparse Frisch Newton Algorithm

(12)
αP = min {0.9995 (arg max {α ≥ 0|x + αδx ≥ 0, s + αδs ≥ 0}) , 1}
αD = min {0.9995 (arg max {α ≥ 0|z + αδz ≥ 0, w + αδw ≥ 0}) , 1}

The corrector step is taken and the iteration continues until the duality gap is below
some pre-specified tolerance.

The pseudo code of our Frisch-Newton algorithm is:

Given initial ξ =
(

y>, z>, x>, s>, w>
)>

with
(

z>, x>, s>, w>
)

> 0 and u = x + s,

compute µ = x>z + s>w;
while (µ > tolerance) {

compute the predictor step dξ =
(

dy>, dz>, dx>, ds>, dw>
)>

using (8);
compute the primal and dual step lengths using (9);
calculate centering parameter µ according to (10);

compute the corrector step δξ =
(

δy>, δz>, δx>, δs>, δw>
)>

using (11);
compute the primal and dual step lengths using (12);
take the primal-dual steps ξP = ξP + αP δξP and ξD = ξD + αDδξD;
update µ = x>z + s>w

}

4. Sparse Linear Algebra

In large problems almost all of the computational effort of the Frisch-Newton al-
gorithm occurs in the solution of the linear system involving the matrix AQ−1A>

in (8) and (11). Fortuitously, both solutions can use the same Cholesky factoriza-
tion so this operation only needs to be performed once for each affine-scaling step dξ
and can be reused for the corrector steps δξ in each iteration. Recall that given the
Cholesky factorization LL> = AQ−1A>, the symmetric, positive definite linear sys-
tem AQ−1A>x = b can be solved in two steps by backsolving the triangular systems:

Ly = b

L>x = y

The literature on sparse linear system solvers is vast. Solvers for sparse linear sys-
tem of equations are typically classified into iterative methods and direct methods.
See Duff (1997), Golub and van der Vorst (1997), and Saad and van der Vorst (2000)
for excellent surveys on the state of art of sparse linear system solvers. A direct
method factors the coefficient matrix into the product of lower and upper triangular
matrices while an iterative method starts with one or several initial approximations
and iterates until convergence. Even though direct methods are highly memory
consuming compared to the iterative methods due to the fill-in that occurs during
the explicit factorization step, they are more robust and can handle more general
problems. In many applications, the direct methods are the only feasible solu-
tion methods or preferred methods because the efforts of preconditioning in iterative
methods outweigh the cost of direct factorization. The direct methods also provide an
effective means for solving multiple system with the same coefficient matrix because

Koenker and Ng 7

the factorization only needs to be performed once as in our Frisch-Newton algorithm.
Even though the iterative methods avoid the memory scaling problem in the direct
methods, their effectiveness depends heavily on the spectral properties of the coeffi-
cient matrix, and, hence, it is a challenge to make them robust enough to be used
in portable libraries and computational environments for a wide variety of problems.
We have experimented with various variants of iterative methods available in Sparskit
of Saad (1994) with unsatisfactory results. Our experience reaffirms Duff’s (1998,
p.15) recommendation that “One should use the direct method!” and has led to our
decision to adopt the direct methods in our Frisch-Newton implementation.

Haunschmid and Ueberhuber (1999) and Gupta (2002) perform extensive compar-
isons on the performance of some prominent direct method software packages for
solving general sparse systems. Gupta (2002, Table II) reports that the Watson
Sparse Matrix Package (WSMP) has the most consistent performance and is more
than twice as fast as the Multifrontal Massively Parallel Solver (MUMPS), which is
the fastest and the most robust amongst the solvers released before 2000, on sin-
gle CPU machines for most of the general systems studied in the experiment. The
WSMP, however, is under proprietary license and is available on only a few plat-
forms. Haunschmid and Ueberhuber (1999), on the other hand, find that none of
the direct solvers being studied perform best in all situations since the codes being
compared offer quite different capabilities, and are designed for different environments
and different types of matrices. In a specific application to multiperiod asset liability
management planning in dynamic portfolio management via an interior point method,
they report that the run times of the multifrontal sparse Gaussian elimination found
in the set of routines MA47 in the Harwell Subroutine Library outperforms all the
other Harwell codes as well as other direct solvers and are comparable with those of
the supernodal code of Ng and Peyton (1993). Their setting is very similar to our
Frisch-Newton algorithm. Based on the above studies, we have decided to adopt Ng
and Peyton’s (1993) blocked left-looking sparse Cholesky algorithm as the underlying
engine to compute the affine-scaling step dξ and the corrector steps δξ in (8) and
(11).

The block sparse algorithm of Ng and Peyton (1993) provides an extremely effi-
cient Cholesky factorization for solving linear systems of equations with symmetric
positive definite coefficient matrix. It consists of four distinct steps: (1) ordering, (2)
symbolic factorization, (3) numerical factorization and (4) numerical solution. The
ordering step attempts to reorder the AQ−1A> matrix using the multiple minimum
degree routines from Liu (1985) to reduce the fill-in and the amount of work re-
quired by the factorization steps. Symbolic factorization generates the compact data
structure in which the Cholesky factor L will be computed and stored. Numerical
factorization computes the sparse Cholesky factor using the efficient data structures
obtained from symbolic factorization. The numerical solution step merely performs
the triangular eliminations needed to solve the linear system. Due to the fact that
the sparse structure of the coefficient matrix does not change and only its numerical
values vary from one iteration to another, the ordering and symbolic factorization

8 Sparse Frisch Newton Algorithm

steps need to be performed only once in the Frisch-Newton algorithm. This further
saving in computing time is more significant the higher is the number of iterations to
convergence. The relative performance of the various steps is reported in the next
section when applied to a bivariate smoothing setting.

Even though sparse direct solvers are designed to exploit the sparse structure of the
coefficient matrix, almost all of them use kernels from the dense linear algebra found in
BLAS (basic linear algebra subroutines for dense vectors and matrices) in their inner
loops. Only iterative methods for large sparse system solution use sparse versions of
the BLAS which involves sparse matrix and dense vector, and sparse matrix and dense
matrix operations. As a result, the current implementation of sparse BLAS in Duff,
Heroux and Pozo (2002) is tailored for sparse matrix and dense matrix multiplication
at level 3 instead of the binary sparse matrix and sparse matrix operations that
we need in (8) and (11). The Sparskit of Saad (1994) is an extensive library of
tools: masking, sorting, permuting, extracting, filtering of sparse matrices, binary
sparse matrix operations, and matrix-vector operations, that are most suitable for
our implementation. The remaining sparse linear algebra in the system of equations
in (8) and (11) is performed with the routines available in SparseM, see Koenker and
Ng (2003), which utilizes BLAS-like routines tailored for sparse matrices from the
Sparskit.

5. Performance

To obtain a better sense of the performance of the new algorithm, we use the
bivariate test function

f0 (x, y) =
40 exp

(

8
(

(x − .5)2 + (y − .5)2
))

exp
(

8
(

(x − .2)2 + (y − .7)2)) + exp
(

8
(

(x − .7)2 + (y − .2)2))

which has been studied extensively in Gu, Bates, Chen and Wahba (1989), Breiman
(1991), Friedman (1991), He and Shi (1996), Hansen, Kooperberg and Sardy (1996),
and Koenker and Mizera (2004). The (xi, yi) covariates are generated from indepen-

dent uniforms on [0, 1]2 and the response is generated by

(13) zi = f0 (xi, yi) + ui i = 1, · · · , n

where ui is generated as standard normal random variable. Notice that in the last two
equations we have reverted temporarily back to the notations commonly used in the
statistics literature. This bivariate surface is then fitted with the penalized triogram
method introduced in Koenker and Mizera (2004). Triograms are piecewise linear
functions defined on triangulations of the plane. The functions are parameterized by
the values taken at the vertices of the triangulation. In Koenker and Mizera (2004)
fidelity of the fitted function to the observations is formalized by the quantile regres-
sion objective function, and roughness of the fitted function is penalized according to
the total variation of its gradient. This leads to the problem,

(14) min
b∈Rn

n
∑

i=1

ρτ

(

zi − g>

i b
)

+ λ
M

∑

k=1

∣

∣h>

k b
∣

∣

Koenker and Ng 9

50 100 150 200

10
0

20
0

30
0

40
0

50
0

60
0

70
0

column

ro
w

Figure 1. Structure of a typical triogram pseudo design matrix of
Koenker and Mizera (2004)

where gi is the pseudo design vector with elements gij = (Bj (xi, yi))
>, with Bj being

a barycentric basis function, and hk the vector that represents the contribution of

the kth edge of the triangulation to the total variation of the function in terms of
the function values. The parameter λ is the smoothing parameter that controls the
trade-off between fidelity to the data measured in the first term and roughness of
the fit captured in the second summation. To express (14) as the regression quantile

problem in (1), we introduce the (n + M)× n pseudo design matrix X =

[

G>
...H>

]>

where G =
(

g>
i

)

, H =
(

h>
k

)

, and the pseudo response vector y =
(

z>, 0>
)>

∈ R
n+M .

This can then be solved as the linear program in (3) or (4).
Reverting back to the numerical analysis notations, the structure of a typical pseudo

design matrix A> in (4) of the above triogram is presented in Figure 1. Figure 2
contains the pattern of the AQ−1A> matrix. It is apparent from Figure 2 that
the matrix to be factorized is extremely sparse. The portion of nonzero entries in
AQ−1A> is roughly 13/n.

5.1. Ng and Peyton’s Blocked Direct Solver. Separate timing of the four dif-

ferent steps in Ng and Peyton’s direct solver is presented in Figure 3. The amount of

10 Sparse Frisch Newton Algorithm

50 100 150 200

50
10

0
15

0
20

0

column

ro
w

Figure 2. A typical AQ−1A> matrix of the penalized triogram prob-
lem in Koenke rand Mizera (2004).

time reported is the median execution time of solving the linear system of equations
with AQ−1A> as the coefficient matrix and the pseudo response vector in (14) as the
right-hand-side in 50 replications of (13) for sample size ranges from 1000 to 50000.
The rates of growth are reflected in the value of the least-squares slope coefficient
b1 of the log-linear model fitted to the data points in Figure 3. The biggest chunk
of time is expended in numerical factorization followed by minimum degree ordering.
The fact that the nonzero pattern of the AQ−1A> matrix remains unchanged from
one iteration to the other enable us to perform the ordering and symbolic factoriza-
tion steps only once over the whole iteration process in the Frisch-Newton algorithm.
With a twenty-iteration execution, for example, an additional saving of roughly a
factor of 1/5 in computing time can further be realized.

5.2. Sparse Frisch-Newton Algorithm. We perform a small scale simulation us-
ing the penalized triogram in (14) to fit the bivariate model in (13) to study the
performance of our sparse implementation of the Frisch-Newton algorithm. We com-
pare our sparse implementation (srqfn) to the implementation in Koenker and Miz-
era (2004), which utilizes the dense matrix version of the Frisch-Newton algorithm
(rqfn) reported in Portnoy and Koenker (1997). Since it takes a long time for rqfn
to solve the penalized triogram problem for just one replication for moderately large

Koenker and Ng 11

1000 5000 50000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Minimum Degree Ordering

n

Tim
e

b0 = −14.3633
b1 = 1.3709

1000 5000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

Symbolic Factorization

n

Tim
e

b0 = −13.5467
b1 = 1.1943

1000 5000 50000

0
2

4
6

8
10

Numerical Factorization

n

Tim
e

b0 = −15.2732
b1 = 1.582

1000 5000 50000

0.
0

0.
2

0.
4

0.
6

Numerical Solution

n

Tim
e

b0 = −15.134
b1 = 1.332

Figure 3. Median execution time (in seconds) of the four different
steps in Ng and Peyton’s blocked left-looking sparse direct solver for
sample size (in log-scale) ranges from 1,000 to 50,000.

size, we only perform 10 replications in the simulation study for n = 2(6 to 10 by 0.5).
Both implementations of the Frisch-Newton algorithm are coded in Fortran while
the interfaces are in R. The simulation is performed on a Sun Sparcstation and the
timings are clocked between the time the computation enters and leaves the Fortran
code that performs the Frisch-Newton iterations, hence, eliminating any discrepancy
on the overhead between the two implementations.

Figure 4 reports the median execution time, in seconds, required to compute the
triogram solutions. The advantage of srqfn over rqfn is obvious in Figure 4 over
the whole range of sample sizes we have investigated. The factor of improvement
ranges from roughly 36 at the sample size of 64 to approximately 850 at the sample
size of 1024. Also reported in the legend of Figure 4 are the least-squares estimated
coefficients of the log-linear model fitted to execution time on sample size. In Figure
5, we report the timing, in seconds, for only the srqfn for n = 2(6 to 14 by 0.5). Also
included in the figure are the least-squares estimated intercept and slope coefficients
from regressing the log of execution time on the log of sample size. The estimated
slope coefficient is almost identical to that in Figure 4, which suggests execution time
grows exponentially at the rate of around 1.54.

12 Sparse Frisch Newton Algorithm

100 200 500 1000

1e
−0

2
1e

+0
0

1e
+0

2
1e

+0
4

n

Tim
e

rqfn: log(Time) = −11.49 + 2.53 log(n)
srqfn: log(Time) = −11.16 + 1.51 log(n)

426

0.50.36

0.01

Figure 4. Median execution time (in seconds) to obtain the penal-
ized triogram solution to model (13) for rqfn and srqfn for sample size
between 64 and 1024. Both axes are in log-scale.

To compare the storage saving from our sparse implementation, we report in Fig-
ure 6 the memory requirement in bytes, needed to compute the penalized triogram
solutions for different sample sizes on our Sun Sparcstation. What is evident from
the figure is the quadratic increasing storage requirement of rqfn compared to the
linear increase in srqfn.

Koenker and Ng 13

100 200 500 2000 5000 20000

1e
−0

2
1e

−0
1

1e
+0

0
1e

+0
1

1e
+0

2

n

Tim
e

srqfn: log(Time) = −10.92 + 1.54 log(n)

64.93

0.01

Figure 5. Median execution time (in log-scale) of srqfn.

References

Barrodale, I., and F. Roberts (1974): “Solution of an overdetermined system of
equations in the `1 norm,” Communications of the ACM, 17, 319–320.

Breiman, L., (1991). “The Π method for estimating multivariate functions from
noisy data (Disc: 145-160)”, Technometrics, 33, 125-143.

Duff, I.S., (1997). “Sparse numerical linear algebra: direct methods and precondi-
tioning”, I.S. Duff, G.A. Watson (Eds.), The State of the Art in Numerical Analysis,
Oxford University Press, Oxford, 27-62.

Duff, I.S., (1998). “Matrix methods”, RAL-TR-1998-076, Department of Compu-
tation and Information, Rutherford Appleton Laboratory, Oxon.

Duff, I.S., M.A. Heroux, and R. Pozo, (2002). “An overview of the sparse basic
linear algebra subprograms: The new standard from the BLAS technical forum”,
ACM Transactions on Mathematical Software, 28, 239-267.

Friedman, J.H., (1991). “Multivariate adaptive regression splines (Disc: 67-141)”,
The Annals of Statistics, 19, 1-67.

Frisch, R., (1955). “The logarithmic potential method of convex programming”,
Technical Report, University Institute of Economics, Oslo, Norway.

14 Sparse Frisch Newton Algorithm

50 100 200 500 1000 5000

1e
+0

5
1e

+0
7

1e
+0

9

n

St
or

ag
e

in
By

te
s

rqfn: log(Storage) = 3.6 + 2 log(n)
srqfn: log(Storage) = 7.5 + 1 log(n)

Figure 6. Storage requirement in bytes (log-scale) versus sample size
(log-scale) for the rqfn and srqfn implementation when used to estimate
the penalized triogram model.

Golub, H.G., and H.A. van der Vorst, (1997). “Closer to the solution: iterative
linear solvers”, I.S. Duff and G.A. Watson (Eds.), The State of the Art in Numerical
Analysis, Oxford University Press, Oxford, 63–92.

Gonzaga, C., (1992). “Path-following methods for linear programming”, SIAM
Review, 34, 167-224.

Gu, C., D.M. Bates, Z. Chen, and G. Wahba, (1989). “The computation of gener-
alized cross-validation functions through Householder tridiagonalization with appli-
cations to the fitting of interaction spline models”, SIAM Journal on Matrix Analysis
and Applications, 10, 457-480.

Gupta, A. (2002). “Recent advances in direct methods for solving unsymmetric
sparse systems of linear equations”, ACM Trans. Math. Software, 28, 301-324.

Hansen, M., C. Kooperberg, and S. Sardy, (1998). “Triogram models”, Journal of
the American Statistical Association, 93, 101-119.

Haunschmid, E.J., and C.W. Ueberhuber, (1999). “Direct Solvers for Sparse Sys-
tems”, Tech. Report AURORA TR1999-18, Vienna University of Technology.

He, X., and P. Ng (1999): “COBS: qualitatively constrained smoothing via linear
programming,” Computational Statistics, 14, 315–337.

Koenker and Ng 15

He, X., P. Ng and S. Portnoy (1998): “Bivariate Quantile Smoothing Splines,” J.
Royal Stat. Soc., 60, 537–550.

He, X. and P. Shi, (1996). “Bivariate tensor-product B-splines in a partly linear
model”, Journal of Multivariate Analysis, 58, 162-181.

Karmarker, N. (1984): “A new polynomial time algorithm for linear programming,”
Combinatorica, 4, 373–395.

Koenker, R. and I. Mizera, (2004). Penalized triograms: Total variation regu-
larization for bivariate smoothing, Journal of the Royal Statistical Society (B), 66,
145–163.

Koenker, R. and P. Ng, (2003). “SparseM: a sparse matrix package for R”, Journal
of Statistical Software, 8, 2003.

Koenker, R. and P. Ng, (2004). Inequality constrained quantile regression, manu-
script.

Koenker, R., P. Ng, and S. Portnoy (1994): “Quantile Smoothing Splines,”
Biometrika, 81, 673–80.

Koenker, R., and V. d’Orey (1987): “Computing Regression Quantiles,” Applied
Statistics, 36, 383–393.

Koenker, R., and V. d’Orey (1993): “A Remark on Computing Regression Quan-
tiles,” Applied Statistics, 36, 383–393.

Liu, J. W-H., (1985). “Modification of the minimum degree algorithm by multiple
elimination”, ACM Trans. Math. Software, 11, 141-153.

Lustig, I. J., R. E. Marsten, and D. F. Shanno (1992): “On implementing Mehro-
tra’s predictor-corrector interior-point method for linear programming”, SIAM Jour-
nal of Optimization, 2, 435-449.

Lustig, I.J., R.E. Marsten and D.F. Shanno, (1994). “Interior point methods for
linear programming: Computational state of the art”, ORSA Journal on Computing,
6, 1-14.

Ng, E.G. and B.W. Peyton, (1993) “Block sparse Cholesky algorithms on advanced
uniprocessor computers”, SIAM J. Sci. Comput., Volume 14, 1034-1056.

Portnoy, S. and R. Koenker (1997). “The Gaussian hare and the Laplacian tortoise:
computability of squared-error vs absolute error estimators”, (with discussions), Sta-
tistical Science, 12, 279-300.

Saad, Y., (1994). Sparskit: A basic tool kit for sparse matrix computations; Version
2, available from: www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html

Saad, Y. and H. van der Vorst, (2000). “Iterative solution of linear systems in the
20-th century”, Journal of Computational and Applied Mathematics, 123, 1-33.

Wright, S., (1997). Primal-Dual Interior-Point Methods, Society for Industrial and
Applied Mathematics, Philadelphia.

University of Illinois at Urbana-Champaign

Northern Arizona University

