
RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and (usually) relative
efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran while retaining its desirable quali-
ties, by providing decent control flow statements:

•statement grouping
•if-elseandswitch for decision-making
•while, for , do, andrepeat-until for looping
•break andnext for controlling loop exits

and some ‘‘syntactic sugar’’:
•free form input (multiple statements/line, automatic continuation)
•unobtrusive comment convention
•translation of >, >=, etc., into .GT., .GE., etc.
•return (expression) statement for functions
•definestatement for symbolic parameters
•include statement for including source files

Ratfor is implemented as a preprocessor which translates this language into Fortran.
Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is remarkably pleasant to
use. Ratfor programs are markedly easier to write, and to read, and thus easier to debug, maintain and modify than
their Fortran equivalents.
It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is written in itself in
this way, so it is also portable; versions of Ratfor are now running on at least two dozen different types of computers at
over five hundred locations.
This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its implementation, and user
experience.

-- --

RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
Most programmers will agree that Fortran is an
unpleasant language to program in, yet there are many
occasions when they are forced to use it. For example,
Fortran is often the only language thoroughly supported
on the local computer. Indeed, it is the closest thing to
a universal programming language currently available:
with care it is possible to write large, truly portable For-
tran programs[1]. Finally, Fortran is often the most
‘‘efficient’’ language available, particularly for pro-
grams requiring much computation.
But Fortran is unpleasant. Perhaps the worst defi-
ciency is in the control flow statements — conditional
branches and loops — which express the logic of the
program. The conditional statements in Fortran are
primitive. The ArithmeticIF forces the user into at least
two statement numbers and two (implied)GOTO’s; it
leads to unintelligible code, and is eschewed by good
programmers. The LogicalIF is better, in that the test
part can be stated clearly, but hopelessly restrictive
because the statement that follows theIF can only be
one Fortran statement (with somefurther restrictions!).
And of course there can be noELSE part to a FortranIF:
there is no way to specify an alternative action if theIF

is not satisfied.
The FortranDO restricts the user to going forward in an
arithmetic progression. It is fine for ‘‘1 to N in steps of
1 (or 2 or ...)’’, but there is no direct way to go back-
wards, or even (in ANSI Fortran[2]) to go from 1 to
N−1. And of course theDO is useless if one’s problem
doesn’t map into an arithmetic progression.
The result of these failings is that Fortran programs
must be written with numerous labels and branches.
The resulting code is particularly difficult to read and
understand, and thus hard to debug and modify.
When one is faced with an unpleasant language, a use-
ful technique is to define a new language that over-
comes the deficiencies, and to translate it into the
unpleasant one with a preprocessor. This is the
approach taken with Ratfor. (The preprocessor idea is
of course not new, and preprocessors for Fortran are
especially

This paper is a revised and expanded version of oe published inSoftware—Practice and Experi-
ence,October 1975. The Ratfor described here is the one in use onUNIX andGCOSat Bell Labora-
tories, Murray Hill, N. J.

popular today. A recent listing [3] of preprocessors
shows more than 50, of which at least half a dozen are
widely available.)

2. LANGUAGE DESCRIPTION

Design
Ratfor attempts to retain the merits of Fortran (univer-
sality, portability, efficiency) while hiding the worst
Fortran inadequacies. The languageis Fortran except
for two aspects. First, since control flow is central to
any program, regardless of the specific application, the
primary task of Ratfor is to conceal this part of Fortran
from the user, by providing decent control flow struc-
tures. These structures are sufficient and comfortable
for structured programming in the narrow sense of pro-
gramming withoutGOTO’s. Second, since the preproces-
sor must examine an entire program to translate the
control structure, it is possible at the same time to clean
up many of the ‘‘cosmetic’’ deficiencies of Fortran, and
thus provide a language which is easier and more pleas-
ant to read and write.
Beyond these two aspects — control flow and cosmet-
ics — Ratfor does nothing about the host of other
weaknesses of Fortran. Although it would be straight-
forward to extend it to provide character strings, for
example, they are not needed by everyone, and of
course the preprocessor would be harder to implement.
Throughout, the design principle which has determined
what should be in Ratfor and what should not has been
Ratfor doesn’t know any Fortran.Any language fea-
ture which would require that Ratfor really understand
Fortran has been omitted. We will return to this point
in the section on implementation.
Even within the confines of control flow and cosmet-
ics, we have attempted to be selective in what features
to provide. The intent has been to provide a small set
of the most useful constructs, rather than to throw in
ev erything that has ever been thought useful by some-
one.

-- --

- 2 -

The rest of this section contains an informal descrip-
tion of the Ratfor language. The control flow aspects
will be quite familiar to readers used to languages like
Algol, PL/I, Pascal, etc., and the cosmetic changes are
equally straightforward. We shall concentrate on show-
ing what the language looks like.

Statement Grouping
Fortran provides no way to group statements together,
short of making them into a subroutine. The standard
construction ‘‘if a condition is true, do this group of
things,’’ for example,

if (x > 100)
{ call error("x>100"); err = 1; return }

cannot be written directly in Fortran. Instead a pro-
grammer is forced to translate this relatively clear
thought into murky Fortran, by stating the negative con-
dition and branching around the group of statements:

if (x .le. 100) goto 10
call error(5hx>100)
err = 1
return

10 ...

When the program doesn’t work, or when it must be
modified, this must be translated back into a clearer
form before one can be sure what it does.
Ratfor eliminates this error-prone and confusing back-
and-forth translation; the first formis the way the com-
putation is written in Ratfor. A group of statements can
be treated as a unit by enclosing them in the braces {
and }. This is true throughout the language: wherever a
single Ratfor statement can be used, there can be sev-
eral enclosed in braces. (Braces seem clearer and less
obtrusive thanbegin and end or do and end, and of
coursedo andendalready have Fortran meanings.)
Cosmetics contribute to the readability of code, and
thus to its understandability. The character ‘‘>’’ is
clearer than‘‘.GT.’’ , so Ratfor translates it appropriately,
along with several other similar shorthands. Although
many Fortran compilers permit character strings in
quotes (like"x>100"), quotes are not allowed inANSI

Fortran, so Ratfor converts it into the right number of
H’s: computers count better than people do.
Ratfor is a free-form language: statements may appear
anywhere on a line, and several may appear on one line
if they are separated by semicolons. The example
above could also be written as

if (x > 100) {
call error("x>100")
err = 1
return

}

In this case, no semicolon is needed at the end of each
line because Ratfor assumes there is one statement per
line unless told otherwise.

Of course, if the statement that follows theif is a sin-
gle statement (Ratfor or otherwise), no braces are
needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the state-
ment is clearly not finished on the first line. In general
Ratfor continues lines when it seems obvious that they
are not yet done. (The continuation convention is dis-
cussed in detail later.)
Although a free-form language permits wide latitude
in formatting styles, it is wise to pick one that is read-
able, then stick to it. In particular, proper indentation is
vital, to make the logical structure of the program obvi-
ous to the reader.

The ‘‘else’’ Clause
Ratfor provides anelse statement to handle the con-
struction ‘‘if a condition is true, do this thing,otherwise
do that thing.’’

if (a <= b)
{ sw = 0; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

This writes out the smaller ofa andb, then the larger,
and setsswappropriately.
The Fortran equivalent of this code is circuitous
indeed:

if (a .gt. b) goto 10
sw = 0
write(6, 1) a, b
goto 20

10 sw = 1
write(6, 1) b, a

20 ...

This is a mechanical translation; shorter forms exist, as
they do for many similar situations. But all translations
suffer from the same problem: since they are transla-
tions, they are less clear and understandable than code
that is not a translation. To understand the Fortran ver-
sion, one must scan the entire program to make sure
that no other statement branches to statements 10 or 20
before one knows that indeed this is anif-elseconstruc-
tion. With the Ratfor version, there is no question
about how one gets to the parts of the statement. The
if-else is a single unit, which can be read, understood,
and ignored if not relevant. The program says what it
means.
As before, if the statement following anif or anelseis
a single statement, no braces are needed:

if (a <= b)
sw = 0

else
sw = 1

-- --

- 3 -

The syntax of theif statement is

if (legal Fortran condition)
Ratfor statement

else
Ratfor statement

where theelsepart is optional. Thelegal Fortran con-
dition is anything that can legally go into a Fortran
Logical IF. Ratfor does not check this clause, since it
does not know enough Fortran to know what is permit-
ted. The Ratfor statementis any Ratfor or Fortran
statement, or any collection of them in braces.

Nested if’s
Since the statement that follows anif or anelsecan be
any Ratfor statement, this leads immediately to the pos-
sibility of anotherif or else. As a useful example, con-
sider this problem: the variablef is to be set to −1 ifx is
less than zero, to +1 ifx is greater than 100, and to 0
otherwise. Then in Ratfor, we write

if (x < 0)
f = −1

else if (x > 100)
f = +1

else
f = 0

Here the statement after the firstelseis anotherif-else.
Logically it is just a single statement, although it is
rather complicated.
This code says what it means. Any version written in
straight Fortran will necessarily be indirect because
Fortran does not let you say what you mean. And as
always, clever shortcuts may turn out to be too clever to
understand a year from now.
Following an else with an if is one way to write a
multi-way branch in Ratfor. In general the structure

if (...)
− − −

else if (...)
− − −

else if (...)
− − −

...
else

− − −

provides a way to specify the choice of exactly one of
several alternatives. (Ratfor also provides aswitch
statement which does the same job in certain special
cases; in more general situations, we have to make do
with spare parts.) The tests are laid out in sequence,
and each one is followed by the code associated with it.
Read down the list of decisions until one is found that
is satisfied. The code associated with this condition is
executed, and then the entire structure is finished. The
trailing else part handles the ‘‘default’’ case, where
none of the other conditions apply. If there is no
default action, this finalelsepart is omitted:

if (x < 0)
x = 0

else if (x > 100)
x = 100

if-else ambiguity
There is one thing to notice about complicated struc-
tures involving nestedif ’s andelse’s. Consider

if (x > 0)
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

There are twoif ’s and only oneelse. Which if does the
elsego with?
This is a genuine ambiguity in Ratfor, as it is in many
other programming languages. The ambiguity is
resolved in Ratfor (as elsewhere) by saying that in such
cases theelsegoes with the closest previous un-else’ed
if . Thus in this case, theelsegoes with the innerif , as
we have indicated by the indentation.
It is a wise practice to resolve such cases by explicit
braces, just to make your intent clear. In the case
above, we would write

if (x > 0) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y
}

which does not change the meaning, but leaves no
doubt in the reader’s mind. If we want the other associ-
ation, wemustwrite

if (x > 0) {
if (y > 0)

write(6, 1) x, y
}
else

write(6, 2) y

The ‘‘switch’’ Statement
The switch statement provides a clean way to express
multi-way branches which branch on the value of some
integer-valued expression. The syntax is

switch (expression) {

caseexpr1:
statements

caseexpr2, expr3:
statements

...
default:

statements
}

-- --

- 4 -

Each case is followed by a list of comma-separated
integer expressions. Theexpressioninside switch is
compared against the case expressionsexpr1, expr2,
and so on in turn until one matches, at which time the
statements following thatcaseare executed. If no cases
match expression,and there is adefault section, the
statements with it are done; if there is nodefault, noth-
ing is done. In all situations, as soon as some block of
statements is executed, the entireswitch is exited
immediately. (Readers familiar with C[4] should
beware that this behavior is not the same as the C
switch.)

The ‘‘do’’ Statement
The do statement in Ratfor is quite similar to theDO

statement in Fortran, except that it uses no statement
number. The statement number, after all, serves only to
mark the end of theDO, and this can be done just as
easily with braces. Thus

do i = 1, n {
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

}

is the same as

do 10 i = 1, n
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

10 continue

The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyworddo has to be some-
thing that can legally go into a FortranDO statement.
Thus if a local version of Fortran allowsDO limits to be
expressions (which is not currently permitted inANSI

Fortran), they can be used in a Ratfordo.
The Ratfor statementpart will often be enclosed in
braces, but as with theif , a single statement need not
have braces around it. This code sets an array to zero:

do i = 1, n
x(i) = 0.0

Slightly more complicated,

do i = 1, n
do j = 1, n

m(i, j) = 0

sets the entire arraym to zero, and

do i = 1, n
do j = 1, n

if (i < j)
m(i, j) = −1

else if (i == j)
m(i, j) = 0

else
m(i, j) = +1

sets the upper triangle ofm to −1, the diagonal to zero,
and the lower triangle to +1. (The operator == is
‘‘equals’’, that is, ‘‘.EQ.’’.) In each case, the statement
that follows thedo is logically asinglestatement, even
though complicated, and thus needs no braces.

‘‘break’’ and ‘‘next’’
Ratfor provides a statement for leaving a loop early,
and one for beginning the next iteration.break causes
an immediate exit from thedo; in effect it is a branch to
the statementafter the do. next is a branch to the bot-
tom of the loop, so it causes the next iteration to be
done. For example, this code skips over neg ative val-
ues in an array:

do i = 1, n {
if (x(i) < 0.0)

next
process positive element

}

break and next also work in the other Ratfor looping
constructions that we will talk about in the next few
sections.
break andnext can be followed by an integer to indi-
cate breaking or iterating that level of enclosing loop;
thus

break 2

exits from two lev els of enclosing loops, andbreak 1 is
equivalent tobreak. next 2 iterates the second enclos-
ing loop. (Realistically, multi-levelbreak’s andnext’s
are not likely to be much used because they lead to
code that is hard to understand and somewhat risky to
change.)

The ‘‘while’’ Statement
One of the problems with the FortranDO statement is

that it generally insists upon being done once, regard-
less of its limits. If a loop begins

DO I = 2, 1

this will typically be done once withI set to 2, even
though common sense would suggest that perhaps it
shouldn’t be. Of course a Ratfordo can easily be pre-
ceded by a test

if (j <= k)
do i = j, k {

}

but this has to be a conscious act, and is often over-
looked by programmers.
A more serious problem with theDO statement is that it

encourages that a program be written in terms of an
arithmetic progression with small positive steps, even

-- --

- 5 -

though that may not be the best way to write it. If code
has to be contorted to fit the requirements imposed by
the FortranDO, it is that much harder to write and
understand.
To overcome these difficulties, Ratfor provides awhile
statement, which is simply a loop: ‘‘while some condi-
tion is true, repeat this group of statements’’. It has no
preconceptions about why one is looping. For exam-
ple, this routine to compute sin(x) by the Maclaurin
series combines two termination criteria.

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x− x∗∗3/3! + x∗∗5/5! − ...

sin = x
term = x

i = 3
while (abs(term)>e & i<100) {

term =−term∗ x∗∗2 / float(i∗(i−1))
sin = sin + term
i = i + 2

}

return
end

Notice that if the routine is entered withterm already
smaller thane, the loop will be donezero times,that is,
no attempt will be made to computex∗∗3 and thus a
potential underflow is avoided. Since the test is made
at the top of awhile loop instead of the bottom, a spe-
cial case disappears — the code works at one of its
boundaries. (The testi<100 is the other boundary —
making sure the routine stops after some maximum
number of iterations.)
As an aside, a sharp character ‘‘#’’ in a line marks the
beginning of a comment; the rest of the line is com-
ment. Comments and code can co-exist on the same
line — one can make marginal remarks, which is not
possible with Fortran’s ‘‘C in column 1’’ convention.
Blank lines are also permitted anywhere (they are not in
Fortran); they should be used to emphasize the natural
divisions of a program.
The syntax of thewhile statement is

while (legal Fortran condition)
Ratfor statement

As with theif , legal Fortran conditionis something that
can go into a Fortran LogicalIF, andRatfor statementis
a single statement, which may be multiple statements in
braces.
The while encourages a style of coding not normally
practiced by Fortran programmers. For example, sup-
posenextch is a function which returns the next input
character both as a function value and in its argument.
Then a loop to find the first non-blank character is just

while (nextch(ich) == iblank)
;

A semicolon by itself is a null statement, which is nec-
essary here to mark the end of thewhile; if it were not
present, thewhile would control the next statement.
When the loop is broken,ich contains the first non-
blank. Of course the same code can be written in For-
tran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few compilers)
believe this line is illegal. The language at one’s dis-
posal strongly influences how one thinks about a prob-
lem.

The ‘‘for’’ Statement
The for statement is another Ratfor loop, which
attempts to carry the separation of loop-body from rea-
son-for-looping a step further than thewhile. A for
statement allows explicit initialization and increment
steps as part of the statement. For example, aDO loop
is just

for (i = 1; i <= n; i = i + 1) ...

This is equivalent to

i = 1
while (i <= n) {

...
i = i + 1

}

The initialization and increment ofi have been moved
into the for statement, making it easier to see at a
glance what controls the loop.
The for and while versions have the advantage that

they will be done zero times ifn is less than 1; this is
not true of thedo.
The loop of the sine routine in the previous section can
be re-written with afor as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term =−term∗ x∗∗2 / float(i∗(i−1))
sin = sin + term

}

The syntax of thefor statement is

for (init ; condition; increment)
Ratfor statement

init is any single Fortran statement, which gets done
once before the loop begins.incrementis any single
Fortran statement, which gets done at the end of each
pass through the loop, before the test.condition is
again anything that is legal in a logicalIF. Any of init,
condition,and incrementmay be omitted, although the
semicolonsmust always be present. A non-existent
condition is treated as always true, sofor(;;) is an
indefinite repeat. (But see therepeat-until in the next
section.)
The for statement is particularly useful for backward
loops, chaining along lists, loops that might be done

-- --

- 6 -

zero times, and similar things which are hard to express
with a DO statement, and obscure to write out withIF’s
andGOTO’s. For example, here is a backwardsDO loop
to find the last non-blank character on a card:

for (i = 80; i > 0; i = i− 1)
if (card(i) != blank)

break

(‘‘!=’’ is the same as ‘‘.NE.’’). The code scans the
columns from 80 through to 1. If a non-blank is found,
the loop is immediately broken. (break andnext work
in for ’s andwhile’s just as indo’s). If i reaches zero,
the card is all blank.
This code is rather nasty to write with a regular Fortran

DO, since the loop must go forward, and we must
explicitly set up proper conditions when we fall out of
the loop. (Forgetting this is a common error.) Thus:

DO 10 J = 1, 80
I = 81 − J
IF (CARD(I) .NE. BLANK) GO TO 11

10 CONTINUE
I = 0

11 ...

The version that uses thefor handles the termination
condition properly for free;i is zero when we fall out of
thefor loop.
The increment in afor need not be an arithmetic pro-
gression; the following program walks along a list
(stored in an integer arrayptr) until a zero pointer is
found, adding up elements from a parallel array of val-
ues:

sum = 0.0
for (i = first; i > 0; i = ptr(i))

sum = sum + value(i)

Notice that the code works correctly if the list is empty.
Again, placing the test at the top of a loop instead of
the bottom eliminates a potential boundary error.

The ‘‘repeat-until’’ statement
In spite of the dire warnings, there are times when one
really needs a loop that tests at the bottom after one
pass through. This service is provided by therepeat-
until :

repeat
Ratfor statement

until (legal Fortran condition)

TheRatfor statementpart is done once, then the condi-
tion is evaluated. If it is true, the loop is exited; if it is
false, another pass is made.
The until part is optional, so a barerepeat is the
cleanest way to specify an infinite loop. Of course such
a loop must ultimately be broken by some transfer of
control such asstop, return , or break, or an implicit
stop such as running out of input with aREAD state-
ment.

As a matter of observed fact[8], therepeat-until state-
ment ismuchless used than the other looping construc-
tions; in particular, it is typically outnumbered ten to
one by for and while. Be cautious about using it, for
loops that test only at the bottom often don’t handle
null cases well.

More on break and next
break exits immediately fromdo, while, for , and

repeat-until. next goes to the test part ofdo, while and
repeat-until, and to the increment step of afor .

‘‘return’’ Statement
The standard Fortran mechanism for returning a value
from a function uses the name of the function as a vari-
able which can be assigned to; the last value stored in it
is the function value upon return. For example, here is
a routineequal which returns 1 if two arrays are identi-
cal, and zero if they differ. The array ends are marked
by the special value −1.

equal compare str1 to str2;
return 1 if equal, 0 if not

integer function equal(str1, str2)
integer str1(100), str2(100)
integer i

for (i = 1; str1(i) == str2(i); i = i + 1)
if (str1(i) == −1) {

equal = 1
return

}
equal = 0
return
end

In many languages (e.g., PL/I) one instead says

return (expression)

to return a value from a function. Since this is often
clearer, Ratfor provides such areturn statement — in a
functionF, return (expression) is equivalent to

{ F = expression; return }

For example, here isequalagain:

equal compare str1 to str2;
return 1 if equal, 0 if not

integer function equal(str1, str2)
integer str1(100), str2(100)
integer i

for (i = 1; str1(i) == str2(i); i = i + 1)
if (str1(i) == −1)

return(1)
return(0)
end

If there is no parenthesized expression afterreturn , a
normalRETURN is made. (Another version ofequal is
presented shortly.)

-- --

- 7 -

Cosmetics
As we said above, the visual appearance of a language
has a substantial effect on how easy it is to read and
understand programs. Accordingly, Ratfor provides a
number of cosmetic facilities which may be used to
make programs more readable.

Free-form Input
Statements can be placed anywhere on a line; long
statements are continued automatically, as are long con-
ditions in if , while, for , and until . Blank lines are
ignored. Multiple statements may appear on one line,
if they are separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make some
reasonable guess about whether the statement ends
there. Lines ending with any of the characters

= + − ∗ ,  & (

are assumed to be continued on the next line. Under-
scores are discarded wherever they occur; all others
remain as part of the statement.
Any statement that begins with an all-numeric field is
assumed to be a Fortran label, and placed in columns
1-5 upon output. Thus

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(5hhello)

Translation Services
Te xt enclosed in matching single or double quotes is
converted tonH... but is otherwise unaltered (except for
formatting — it may get split across card boundaries
during the reformatting process). Within quoted
strings, the backslash ‘\’ serves as an escape character:
the next character is taken literally. This provides a
way to get quotes (and of course the backslash itself)
into quoted strings:

"\\\′"

is a string containing a backslash and an apostrophe.
(This isnot the standard convention of doubled quotes,
but it is easier to use and more general.)
Any line that begins with the character ‘%’ is left
absolutely unaltered except for stripping off the ‘%’
and moving the line one position to the left. This is
useful for inserting control cards, and other things that
should not be transmogrified (like an existing Fortran
program). Use ‘%’ only for ordinary statements, not
for the condition parts ofif , while, etc., or the output
may come out in an unexpected place.
The following character translations are made, except
within single or double quotes or on a line beginning
with a ‘%’.

== .eq. != .ne.
> .gt. >= .ge.
< .lt. <= .le.

& .and.  .or.
! .not. ¬ .not.

In addition, the following translations are provided for
input devices with restricted character sets.

[{] }
$({ $) }

‘‘define’’ Statement
Any string of alphanumeric characters can be defined
as a name; thereafter, whenever that name occurs in the
input (delimited by non-alphanumerics) it is replaced
by the rest of the definition line. (Comments and trail-
ing white spaces are stripped off). A defined name can
be arbitrarily long, and must begin with a letter.
define is typically used to create symbolic parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS j > COLS) ...

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after the
comma up to the balancing right parenthesis; this
allows multi-line definitions.
It is generally a wise practice to use symbolic parame-
ters for most constants, to help make clear the function
of what would otherwise be mysterious numbers. As
an example, here is the routineequal again, this time
with symbolic constants.

define YES 1
define NO 0
define EOS −1
define ARB 100

equal compare str1 to str2;
return YES if equal, NO if not

integer function equal(str1, str2)
integer str1(ARB), str2(ARB)
integer i

for (i = 1; str1(i) == str2(i); i = i + 1)
if (str1(i) == EOS)

return(YES)
return(NO)
end

‘‘include’’ Statement
The statement

include file

inserts the file found on input streamfile into the Ratfor
input in place of theinclude statement. The standard
usage is to placeCOMMON blocks on a file, andinclude
that file whenever a copy is needed:

-- --

- 8 -

subroutine x
include commonblocks
...
end

suroutine y
include commonblocks
...
end

This ensures that all copies of theCOMMON blocks are
identical

Pitfalls, Botches, Blemishes and other Failings
Ratfor catches certain syntax errors, such as missing
braces,else clauses without anif , and most errors
involving missing parentheses in statements. Beyond
that, since Ratfor knows no Fortran, any errors you
make will be reported by the Fortran compiler, so you
will from time to time have to relate a Fortran diagnos-
tic back to the Ratfor source.
Ke ywords are reserved — usingif , else, etc., as vari-
able names will typically wreak havoc. Don’t leave
spaces in keywords. Don’t use the ArithmeticIF.
The FortrannH convention is not recognized any-
where by Ratfor; use quotes instead.

3. IMPLEMENTATION
Ratfor was originally written in C[4] on theUNIX oper-

ating system[5]. The language is specified by a context
free grammar and the compiler constructed using the
YA CC compiler-compiler[6].
The Ratfor grammar is simple and straightforward,
being essentially

prog : stat
 prog stat

stat :if (...) stat
 if (...) statelsestat
 while (...) stat
 for (...; ...; ...) stat
 do ... stat
 repeatstat
 repeatstatuntil (...)
 switch (...) { case...: prog ...

default: prog }
 return
 break
 next
 digits stat
 { prog }
 anything unrecognizable

The observation that Ratfor knows no Fortran follows
directly from the rule that says a statement is ‘‘anything
unrecognizable’’. In fact most of Fortran falls into this
category, since any statement that does not begin with
one of the keywords is by definition ‘‘unrecognizable.’’
Code generation is also simple. If the first thing on a
source line is not a keyword (likeif , else, etc.) the
entire statement is simply copied to the output with

appropriate character translation and formatting.
(Leading digits are treated as a label.) Ke ywords cause
only slightly more complicated actions. For example,
when if is recognized, two consecutive labels L and
L+1 are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition)) goto L

is output. Thestatementpart of theif is then translated.
When the end of the statement is encountered (which
may be some distance away and include nestedif ’s, of
course), the code

L continue

is generated, unless there is anelse clause, in which
case the code is

goto L+1
L continue

In this latter case, the code

L+1 continue

is produced after thestatementpart of theelse.Code
generation for the various loops is equally simple.
One might argue that more care should be taken in
code generation. For example, if there is no trailing
else,

if (i > 0) x = a

should be left alone, not converted into

if (.not. (i .gt. 0)) goto 100
x = a

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where this
kind of ‘‘inefficiency’’ will make even a measurable
difference. In the few cases where it is important, the
offending lines can be protected by ‘%’.
The use of a compiler-compiler is definitely the pre-
ferred method of software development. The language
is well-defined, with few syntactic irregularities.
Implementation is quite simple; the original construc-
tion took under a week. The language is sufficiently
simple, however, that anad hocrecognizer can be read-
ily constructed to do the same job if no compiler-com-
piler is available.
The C version of Ratfor is used onUNIX and on the
Honeywell GCOS systems. C compilers are not as
widely available as Fortran, however, so there is also a
Ratfor written in itself and originally bootstrapped with
the C version. The Ratfor version was written so as to
translate into the portable subset of Fortran described in
[1], so it is portable, having been run essentially with-
out change on at least twelve distinct machines. (The
main restrictions of the portable subset are: only one
character per machine word; subscripts in the form
c∗v±c; avoiding expressions in places likeDO loops;
consistency in subroutine argument usage, and inCOM-

-- --

- 9 -

MON declarations. Ratfor itself will not gratuitously
generate non-standard Fortran.)
The Ratfor version is about 1500 lines of Ratfor (com-
pared to about 1000 lines of C); this compiles into 2500
lines of Fortran. This expansion ratio is somewhat
higher than average, since the compiled code contains
unnecessary occurrences ofCOMMON declarations. The
execution time of the Ratfor version is dominated by
two routines that read and write cards. Clearly these
routines could be replaced by machine coded local ver-
sions; unless this is done, the efficiency of other parts
of the translation process is largely irrelevant.

4. EXPERIENCE

Good Things
‘‘It’s so much better than Fortran’’ is the most common
response of users when asked how well Ratfor meets
their needs. Although cynics might consider this to be
vacuous, it does seem to be true that decent control
flow and cosmetics converts Fortran from a bad lan-
guage into quite a reasonable one, assuming that For-
tran data structures are adequate for the task at hand.
Although there are no quantitative results, users feel
that coding in Ratfor is at least twice as fast as in For-
tran. More important, debugging and subsequent revi-
sion are much faster than in Fortran. Partly this is sim-
ply because the code can beread. The looping state-
ments which test at the top instead of the bottom seem
to eliminate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is easy to do
structured programming in Ratfor; this self-discipline
also contributes markedly to reliability.
One interesting and encouraging fact is that programs
written in Ratfor tend to be as readable as programs
written in more modern languages like Pascal. Once
one is freed from the shackles of Fortran’s clerical
detail and rigid input format, it is easy to write code
that is readable, even esthetically pleasing. For exam-
ple, here is a Ratfor implementation of the linear table
search discussed by Knuth [7]:

A(m+1) = x
for (i = 1; A(i) != x; i = i + 1)

;
if (i > m) {

m = i
B(i) = 1

}
else

B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including a sub-
set of the Ratfor preprocessor itself, can be found in
[8].

Bad Things
The biggest single problem is that many Fortran syntax
errors are not detected by Ratfor but by the local For-
tran compiler. The compiler then prints a message in
terms of the generated Fortran, and in a few cases this
may be difficult to relate back to the offending Ratfor
line, especially if the implementation conceals the gen-
erated Fortran. This problem could be dealt with by
tagging each generated line with some indication of the
source line that created it, but this is inherently imple-
mentation-dependent, so no action has yet been taken.
Error message interpretation is actually not so arduous
as might be thought. Since Ratfor generates no vari-
ables, only a simple pattern ofIF’s and GOTO’s, data-
related errors like missingDIMENSION statements are
easy to find in the Fortran. Furthermore, there has been
a steady improvement in Ratfor’s ability to catch trivial
syntactic errors like unbalanced parentheses and
quotes.
There are a number of implementation weaknesses that
are a nuisance, especially to new users. For example,
keywords are reserved. This rarely makes any differ-
ence, except for those hardy souls who want to use an
Arithmetic IF. A few standard Fortran constructions are
not accepted by Ratfor, and this is perceived as a prob-
lem by users with a large corpus of existing Fortran
programs. Protecting ev ery line with a ‘%’ is not really
a complete solution, although it serves as a stop-gap.
The best long-term solution is provided by the program
Struct [9], which converts arbitrary Fortran programs
into Ratfor.
Users who export programs often complain that the
generated Fortran is ‘‘unreadable’’ because it is not
tastefully formatted and contains extraneousCONTINUE

statements. To some extent this can be ameliorated
(Ratfor now has an option to copy Ratfor comments
into the generated Fortran), but it has always seemed
that effort is better spent on the input language than on
the output esthetics.
One final problem is partly attributable to success —
since Ratfor is relatively easy to modify, there are now
several dialects of Ratfor. Fortunately, so far most of
the differences are in character set, or in invisible
aspects like code generation.

5. CONCLUSIONS
Ratfor demonstrates that with modest effort it is possi-
ble to convert Fortran from a bad language into quite a
good one. A preprocessor is clearly a useful way to
extend or ameliorate the facilities of a base language.
When designing a language, it is important to concen-
trate on the essential requirement of providing the user
with the best language possible for a given effort. One
must avoid throwing in ‘‘features’’ — things which the
user may trivially construct within the existing frame-
work.
One must also avoid getting sidetracked on irrelevan-
cies. For instance it seems pointless for Ratfor to pre-
pare a neatly formatted listing of either its input or its

-- --

- 10 -

output. The user is presumably capable of the self-dis-
cipline required to prepare neat input that reflects his
thoughts. It is much more important that the language
provide free-form input so hecan format it neatly. No
one should read the output anyway except in the most
dire circumstances.

Acknowledgements
C. A. R. Hoare once said that ‘‘One thing [the lan-
guage designer] should not do is to include untried
ideas of his own.’’ Ratfor follows this precept very
closely — everything in it has been stolen from some-
one else. Most of the control flow structures are taken
directly from the language C[4] developed by Dennis
Ritchie; the comment and continuation conventions are
adapted from Altran[10].
I am grateful to Stuart Feldman, whose patient simula-
tion of an innocent user during the early days of Ratfor
led to several design improvements and the eradication
of bugs. He also translated the C parse-tables andYA CC

parser into Fortran for the first Ratfor version of Ratfor.

References
[1]B. G. Ryder, ‘‘The PFORT Verifier,’’Software—
Practice & Experience,October 1974.
[2]American National Standard Fortran. American
National Standards Institute, New York, 1966.
[3]For-word: Fortran Development Newsletter,August
1975.
[4]B. W. Kernighan and D. M. Ritchie,The C Program-
ming Language,Prentice-Hall, Inc., 1978.
[5]D. M. Ritchie and K. L. Thompson, ‘‘The UNIX
Time-sharing System.’’CACM, July 1974.
[6]S. C. Johnson, ‘‘YACC — Yet Another Compiler-
Compiler.’’ Bell Laboratories Computing Science
Technical Report #32, 1978.
[7]D. E. Knuth, ‘‘Structured Programming with goto
Statements.’’Computing Surveys, December 1974.
[8]B. W. Kernighan and P. J. Plauger,Software Tools,
Addison-Wesley, 1976.
[9]B. S. Baker, ‘‘Struct — A Program which Structures
Fortran’’, Bell Laboratories internal memorandum,
December 1975.
[10]A. D. Hall, ‘‘The Altran System for Rational Func-
tion Manipulation — A Survey.’’ CACM, August
1971.

-- --

- 11 -

Appendix: Usage onUNIX and GCOS.
Beware — local customs vary. Check with a native before going into the jungle.

UNIX
The programratfor is the basic translator; it takes either a list of file names or the standard input and writes Fortran on
the standard output. Options include−6x, which usesx as a continuation character in column 6 (UNIX uses& in col-
umn 1), and−C, which causes Ratfor comments to be copied into the generated Fortran.
The programrc provides an interface to theratfor command which is much the same ascc. Thus

rc [options] files

compiles the files specified byfiles. Files with names ending in.r are Ratfor source; other files are assumed to be for
the loader. The flags−C and−6x described above are recognized, as are

−c compile only; don′t load
−f sav e intermediate Fortran .f files
−r Ratfor only; implies−c and−f
−2 use big Fortran compiler (for large programs)
−U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOS
The program./ratfor is the bare translator, and is identical to theUNIX version, except that the continuation convention

is & in column 6. Thus

./ratfor files >output

translates the Ratfor source onfilesand collects the generated Fortran on file ‘output’ for subsequent processing.
./rc provides much the same services asrc (within the limitations ofGCOS), regrettably with a somewhat different syn-
tax. Options recognized by./rc include

name Ratfor source or library, depending on type
h=/name make TSS H∗ file (runnable version); run as /name
r=/name update and use random library
a= compile as ascii (default is bcd)
C= copy comments into Fortran
f=name Fortran source file
g=name gmap source file

Other options are as specified for the./cccommand described in [4].

TSO, TSS, and other systems
Ratfor exists on various other systems; check with the author for specifics.

