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° Philipps Universita
..
t, Marburg, Germany

†Charles University, Prague, Czechoslovakia
‡University of Illinois at Urbana-Champaign, USA

December 1992

Abstract

We propose a general class of asymptotically distribution-free tests of a
linear hypothesis in the linear regression model. The tests are based on
regression rank scores, recently introduced by Gutenbrunner and
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1. Introduction

Several authors including Koul (1970), Puri and Sen (1985) and Adichie (1978)
have developed asymptotically distribution-free tests of linear hypotheses for the linear
regression model based upon aligned rank statistics. Excellent reviews of these results
including extensions to multivariate models may be found in Puri and Sen (1985) and
the survey paper of Adichie (1984). The hypothesis under consideration typically
involves nuisance parameters which require preliminary estimation; the aligned (or
signed) rank statistics are then based on residuals from the preliminary estimate. Alter-
native approaches to inference based on rank estimation have been considered by
McKean and Hettmansperger(1978), Aubuchon and Hettmansperger (1988) and Draper
(1988) among others.

A completely new approach to the construction of rank statistics for the linear
model has recently been introduced by Gutenbrunner and Jurec̀́ková (1992). Their
approach is based on the dual solutions to the regression quantile statistics of Koenker
and Bassett (1978). These regression rank scores represent a natural extension of the
"location rank scores" introduced by Hájek and S̀́idák (1967, Section V.3.5), which play a
fundemental role in the classical theory of rank statistics. In this paper we consider tests
of a general linear hypothesis for the linear regression model based upon regression rank
scores. These tests have the advantages of more familiar rank tests: they are robust to
outliers in the response variable and they are asymptotically distribution free in the sense
that no nuisance parameter depending on the error distribution need be estimated in order
to compute the test statistic. Furthermore, they are considerably simpler than many of
the proposed aligned rank tests which require preliminary estimation of the linear model
by computationally demanding rank estimation methods. The robustness of the proposed
tests and the sensitivity of the aligned rank procedures to response outliers is illustrated
in the sensitivity analysis of the example discussed in Section 2.

In the classical linear model,

(1.1)Y = Xβ + E ,

the vector β̂(α) ≡ (β̂1(α), ..., β̂p(α))′ ∈ Rp of αth regression quantiles is any solution of
the problem

(1.2)min
i =1
Σ
n

ρα (Yi − x1i ′t), t ∈ Rp

where

(1.3)ρα (u) = |u | {(1−α)I [u<0] + α I[u>0]}, u ∈ R1 .

Least absolute error regression corresponds to the median case with α = 1⁄2. In the one-
sample location model, with X = 1n , solutions to (1.2) are the ordinary sample quantiles:
when nα is an integer we have an interval of solutions between two adjacent order statis-
tics. Computation of the regression quantiles is greatly facilitated by expressing (1.2) as
the linear program

α1n ′u+ + (1−α)1n ′u− : = min

(1.4)Xβ̂ + u+ − u− = Y
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β ∈ Rp , u+, u− ∈ R+
n

and 1n = (1, ..., 1)′ ∈ Rn , with 0 < α < 1. Even in this form, the problem of finding all
the regression quantile solutions may appear computationally demanding, since there
would appear to be a distinct problem to solve for each α∈ (0,1). Fortunately, there are
only a few distinct solutions. In the location model we know, of course, that there are at
most n distinct quantiles. In regression, Portnoy(1991) has shown that the number of dis-
tinct solutions to (1.2) is Op(nlogn). Finding all the regression quantiles is a straightfor-
ward exercise in parametric linear programming. From any given solution for fixed α we
may compute the interval containing α for which is solution remains optimal, and one
simplex pivot brings us to a new solution at either endpoint of the interval. Proceeding in
this way we may compute the entire path β̂(.) which is a piecewise constant function
from [0,1] to Rp . Detailed descriptions of algorithms to compute the regression quantiles
may be found in Koenker and d’Orey(1990), and Osborne(1992). Finite-sample as well
as asymptotic properties of β̂(α) are studied in Koenker and Bassett (1978), Ruppert and
Carroll (1980), Jurec̀́ková (1984), Gutenbrunner (1986), Koenker and Portnoy (1987),
Gutenbrunner and Jurec̀́ková (1992), and Portnoy(1991b).

The regression rank scores introduced in Gutenbrunner and Jurec̀́ková (1992) arise
as a n-vector ân(α) = (ân 1(α), ..., ânn(α))′ of solutions to the dual form of the linear pro-
gram required to compute the regression quantiles. The formal dual program to (1.4) can
be written in the form

Y′â(α) : = max

(1.5)X′â(α) = (1−α)X′1n

â(α) ∈ [0, 1]n , 0 < α < 1

As shown in Gutenbrunner and Jurec̀́ková (1992), many aspects of the duality of order
statistics and ranks in the location model generalize naturally to the linear model through
(1.4) and (1.5). Moreover, as pointed out there, â is regression invariant with respect to
X1 , in the sense that â(α) is unchanged if Y is transformed to Y + X1γ for any γ∈ Rp .

To motivate our approach, consider {ân(α), 0 < α < 1} in the location model with
X = 1n . In this case, âni(α) specializes to

(1.6)âni(α) ≡ an
*(Ri , α) ≡

I
J
K
J
L 0

Ri−αn

1

if Ri/n < α
if (Ri−1)/n < α ≤ Ri/n

if α ≤ (Ri−1)/n

where Ri is the rank of Yi among Y 1 , ..., Yn . The function
an

*( j, α), j=1, ..., n, 0 < α < 1, coincides exactly with that introduced in Hájek and
S̀́idák (1967, Section V.3.5). Under the general model (1.1), both the finite-sample and
asymptotic properties of the regression rank scores and of the process
{ân(α), 0 < α < 1} are described in the next section. The regression rank score process
may be efficiently computed by standard parametric linear programming techniques,
essentially as a byproduct of the regression quantile computation requiring no additional
computational effort and only some additional storage. See Koenker and d’Orey(1990)
for algorithmic details.
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The formal duality between β̂(α) and â(α) implies that for i=1, ..., n

(1.7)âni(α) =

I
J
J
K
J
J
L

0

1

if

if

Yi<
j =1
Σ
p

xijβ̂j(α)

Yi>
j =1
Σ
p

xijβ̂j(α)

while the components of ân(α) corresponding to {i | Yi = xi ′β̂(α)} are determined by
the equality constraints of (1.5). Thus, as in the location model, the regression rankscore
for observation i is one while yi is above the αth quantile regression plane, and zero
when yi falls below this plane, and taking an intermediate value while yi falls on the αth
plane. Integrating the regression rankscore function for each observation over [0,1]
yields a vector of (Wilcoxon) ranks: observations falling "below" most of the others
receiving small ranks, while those falling "above" the others, and thus having rankscore
one over a wide interval, receive large ranks. This observation is completely transparent
in the location model where "above" and "below" have an obvious interpretation. In
regression, the interpretation of these terms relies on the optimization problem defining
the regression quantiles. The resulting rank scores illustrated, for example, in Figure 6.1,
are, we believe, a useful graphical diagnostic in linear regression in addition to their role
in formal hypothesis testing.

The next section of the paper surveys our results, establishes some notation, and
provides an illustrative example. Section 3 develops some theory of the regression rank
score process. Section 4 treats the theory of simple linear rank statistics based on this
process, and Section 5 contains a formal treatment of the proposed tests.

2. Notation and preliminary considerations

We will partition the classical linear regression model

(2.1)Y = Xβ + E

as

(2.2)Y = X1β1 + X2β2 + E

where β1 and β2 are p − and q −dimensional parameters, X = Xn is a known, n×(p+q)
design matrix with rows xni ′ = xi ′ = (x1i ′, x2i ′) ∈ R p +q , i=1, ..., n . We will assume
throughout that xi 1 = 1 for i = 1,...,n. Y is a vector of observations and E is an n×1
vector of i.i.d. errors with common distribution function F. As in the familiar two-
sample rank test, our test statistic is shift-invariant and hence independent of location.
Thus like other rank tests, hypotheses on the intercept cannot be tested. This is immedi-
ately apparent from the regression invariance of the test statistic noted above. The pre-
cise form of F need not be known but we shall generally assume that F has an absolutely
continuous density f on (A, B) where −∞ ≤ A = sup{x : F (x) = 0} and
+∞ ≥ B = inf{x : F (x) = 1}. Moreover, we shall impose some conditions on the tails of f
assuming, among other conditions, that f monotonically decreases to 0 when x → A + , or
x → B −. Define Dn = n −1X1 ′X1 ,
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(2.3)H1 = X1(X1 ′X1)−1X1 ′ and Qn = n −1(X2 − X̂2)′(X2 − X̂2)

with X̂2 = H1X2 being the projection of X2 on the space spanned by the columns of X1 .
We shall also assume

(2.4)
n→∞
lim Dn = D,

n→∞
lim Qn = Q

where D and Q are positive definite (p×p) and (q×q) matrices, respectively.

We are interested in testing the hypothesis

(2.5)H 0 : β2 = 0, β1 unspecified

versus the Pitman (local) alternatives

(2.6)Hn : β2n = n −1/2β0

with β0 being a fixed vector in Rq .

As in the classical theory of rank tests, we shall consider a score-function
ϕ : (0, 1) → R which is nondecreasing and square-integrable on (0, 1). We may then
construct scores based on the regression rankscore process following Hájek and S̀́idák,
(1967) as,

(2.7)b̂ni = −
0
∫
1

ϕ(t)d âni(t), i=1, ..., n.

Defining

(2.8)Sn = n −1/2(Xn 2 − X̂n 2)′b̂n

where b̂n = (b̂n 1, ..., b̂nn)′, we propose the following statistic for testing H 0 against Hn:

(2.9)Tn = Sn ′Qn
−1Sn / A 2(ϕ)

where

(2.10)A 2(ϕ) =
0
∫
1

(ϕ(t) −ϕ
h

)2dt, ϕ
h

=
0
∫
1

ϕ(t)dt

and with Qn defined as in (2.3). An important feature of the test statistic Tn is that it
requires no estimation of nuisance parameters, since the functional A(ϕ) depends only on
the score function and not on (the unknown) F. This is familiar from the theory of rank
tests, but stands in sharp contrast with other methods of testing in the linear model where
typically some estimation of a scale parameter of F is required to compute the test statis-
tic. See for example the discussion in Aubuchon and Hettmansperger (1988) and Draper
(1988).

We shall show in Section 5, that the asymptotic distribution of Tn under H 0 is cen-
tral χ2 with q degrees of freedom while under Hn it is noncentral χ2 with q degrees of
freedom and noncentrality parameter

(2.11)η2 = [γ2(ϕ, F) / A 2(ϕ)]β0 ′Qβ0

where
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(2.12)γ(ϕ, F) = −
0
∫
1

ϕ(t)df (F −1(t)).

Like A, γ is also familiar from the classical theory of rank tests. The test statistic Tn
is first-order asymptotically distribution free in the sense that the first-order term in its
asymptotic representation is exactly distribution free, as follows from (4.2). Moreover,
it follows from (2.11) that the Pitman efficiency of the test based on Tn with respect to
the classical F test of H 0 coincides with that of the two-sample rank test of shift in loca-
tion with respect to the t −test. For f unimodal, we obtain an asymptotically optimal test
if we take

(2.13)ϕ(t) = ϕf(t) = −
f (F −1(t))

f ′(F −1(t))hhhhhhhhh , 0 < t < 1.

Thus for Wilcoxon scores (see below) the asymptotic relative efficiency of the test
based on Tn relative to the classical F test is 3/π = .955 at the normal distribution and is
bounded below by .864 for all F. When F is heavy tailed this asymptotic efficiency is
generally greater than one, and can in fact be unbounded. For normal (van der Waerden)
scores (ϕ(u) = Φ−1(u)) the situation is even more striking. Here the test based on Tn has
asymptotic efficiency greater than one, relative to the classical F test, for all symmetric
F, attaining one at the normal distribution. See e.g. Lehmann (1959, p. 239), and Leh-
mann(1983, pp 383-87).

Let us now examine more closely the scores (2.7), which can be written as

(2.14)b̂ni = −∫ ϕ(t)âni ′(t)dt i=1, ..., n

where the functions ani ′(t) ≡ dani(t)/dt are piecewise constant on [0,1]. The piecewise
linearity of the regression rank scores follows immediately from the linear programming
formulation (1.5) of the dual, greatly simplifying the computation in (2.21). In the loca-
tion model, using (2.13) this reduces to the well-known Hájek and S̀́idák (1967) scores

b̂ni = n
Ri−1/n
∫

Ri/n

ϕ(t)dt, i =1, ..., n

There are three typical choices of ϕ:

(i) Wilcoxon scores: ϕ(t) = t − 1/2, 0 < t < 1. The scores are
b̂ni = −∫(t − 1/2)d âi(t) = ∫âi(t)dt − 1/2 while A 2(ϕ) = 1/12, and γ(ϕ, F) = ∫f 2(x)dx.
Wilcoxon scores are optimal when f is the logistic distribution.

(ii) Normal (van der Waerden) scores: ϕ(t) = Φ−1(t), 0 < t < 1, Φ being the d.f . of
standard normal distribution. Here A 2(ϕ) = 1 and γ(ϕ, F) = ∫f(F −1(Φ(x)))dx. These
scores are asymptotically optimal when f is normal.

(iii) Median (sign) scores: ϕ(t) = 1⁄2sign(t−1⁄2), 0 < t < 1, then (2.7) leads to the
form b̂ni = âni(1⁄2) − 1⁄2 which is 1⁄2 if the ith l 1 residual is positive and −1⁄2 if it is
negative, and between −1⁄2 and 1⁄2 otherwise.

REMARK. Using the standard reduction to canonical form e.g. Scheffé (1959, Section
2.6) or Amemiya (1985, Section 1.4.2), we may consider a more general form of the
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linear hypothesis

(2.)R′β = r ∈ Rq

where R is a (p + q) × q matrix of rank q < p. Let V be a (p + q) × p matrix such that
A = [V

... R]′ is nonsingular and R′V = 0. Set γ =Aβ and Z = XA−1 . Partitioning
γ = [γ1 ′ , γ2 ′]′ where γ1 = V′β and γ2 = R′β, under the hypothesis (2.22) we have

Y − XR(R′R)−1r = XV(V′V)−1γ1 + E.

Thus, in view of the equivariance of regression quantiles, see Koenker and Bassett(1978),
Theorem 3.2, we may define Ỹ = Y − XR(R′R)−1r, X̃1 = XV(V′V)−1 , X̃2 = XR(R′R)−1 ,
and proceed as previously discussed with (Ỹ, X̃1 , X̃2) playing the roles of (Y, X1 , X2).
By this device the tests described above and detailed in Section 5 below may be extended
to a wide range of applications including, for example, the hypotheses of parallelism and
coincidence of regression lines discussed by Adichie (1984) and others.

To illustrate the tests proposed above we consider briefly an example taken from
Adichie (1984, Example 3) dealing with the combustion of tobacco. The log of the leaf
burn (in seconds) of 30 batches of tobacco is thought to depend upon the percent compo-
sition of nitrogen, chlorine, and potassium. Adichie suggests testing the potassium effect
and describes an aligned rank version of the test. We are unable to reproduce some
details of his calculations, however, using his approach we get least squares estimates of
the nitrogen and chlorine effects of -.529 and -.290 with an intercept of 2.653. With
these preliminary estimates we obtain aligned (Wilcoxon) ranks

7 17 2 18 6 1 11 3 30 13
25 16 4 29 26 27 21 23 19 12
28 10 8 15 24 20 22 5 14 9

which yield a test statistic of 13.59 highly significant relative to the 1% χ1
2 critical value

of 6.63.

The full set of regression rank scores âi(t) for the restricted model ecluding potas-
sium for this data are illustrated in Figure 6.1. There are 34 distinct regression quantile
solutions and therefore each âni(t) is a piecewise linear function with at most 34 distinct
segments. Recall that âni(t) = 1 while the observed yi is above the tth regression quantile
plane, 0 while below, and takes some intermediate value when yi falls on the tth plane.
The plots ordered according to their Wilcoxon rank score, which may be computed as

b̂i = −
0
∫
1

(t − 1/2)d âi(t)=
0
∫
1

âi(t)dt − 1/2 . While the Wilcoxon rank scores provide an

unambiguous ranking of the observations, since the regression rank score functions typi-
cally cross in regression applications, in contrast to the location model, this ranking
depends upon the score function employed. The regression rank score plots give some
further visual evidence concerning the ranking of the sample observations. Note that if
âni(t) ≥ ânj(t) for all t, then b̂ni ≥ b̂nj for any montone score function ϕ. Numerical calcu-
lations give Wilcoxon ranks

-0.27 0.06 -0.41 0.09 -0.32 -0.48 -0.17 -0.38 0.48 -0.06
0.23 0.04 -0.37 0.42 0.28 0.37 0.19 0.41 0.15 -0.26
0.38 -0.16 -0.23 -0.01 0.33 0.12 0.15 -0.42 -0.10 -0.06
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and yield a test statistic of 13.17. In view of Theorem 5.1 the approximate p-value is
.0003. The two vectors of Wilcoxon ranks correspond closely. Observation 6 is smallest
in both rankings and observations 14 and 9 are largest in both. The simple correlation

between the two rankings is .978. Note that as a practical matter when ϕ
h

=
0
∫
1

ϕ(t)dt = 0,

we may omit the X̂2 term in the computation of Sn in (5.3) since b̂n is orthogonal to X1 .
This is in contrast with the aligned rank situation where the use of X2 − X̂2 is essential.

Corresponding calculations for the normal scores using

b̂i = −
0
∫
1

Φ−1(t)d âi(t) =
i =1
Σ
Jn

âi ′(t j)[φ(Φ−1(t j)) − φ(Φ−1(t j −1))]

where φ denotes the standard normal density, and ti is the ith regression quantile break-
point yields

-0.74 0.15 -1.41 0.23 -0.91 -2.13 -0.45 -1.17 2.08 -0.15
0.63 0.10 -1.25 1.44 0.78 1.15 0.50 1.35 0.40 -0.72
1.41 -0.40 -0.61 -0.03 0.94 0.30 0.39 -1.45 -0.26 -0.18

and a test statistic of 12.87. The corresponding normal score aligned rank statistic is
11.72.

Finally, regression rank score version of the sign test yields the scores

-1.00 1.00 -1.00 1.00 -1.00 -1.00 -1.00 -1.00 1.00 -1.00
1.00 1.00 -1.00 1.00 1.00 1.00 1.00 1.00 0.16 -1.00
1.00 -1.00 -1.00 -0.37 1.00 1.00 1.00 -1.00 -1.00 -0.79

and a test statistic of 8.42 while the aligned rank sign scores yield 10.20. Note that we
have multiplied the sign scores by 2 to conform to conventional useage. Obviously, all
versions of the tests lead to a decisive rejection of the null. Note that for the sign scores
the test coincides with the l 1 Lagrange multiplier test discussed in Koenker and
Bassett(1982).

Since an important objective of the proposed rank tests is robustness to outlying
observations, it is interesting to observe the effect of perturbing one of the y observations
of the Adichie data set on the aligned and rank scores versions of the test statistic. This
sensitivity analysis is illustrated in Figure 6.2. Even a modest perturbation in y 1 is
enough to confound the initial least squares estimate and reverse the conclusion of the
aligned rank test. Adding 10 to the first response, for example, alters the aligned Wil-
coxon test statistic from 13.58 to 5.7, which is no longer significant at 1%. and the vector
of ranks based on the perturbed data has a correlation of only .48 with the aligned ranks
based on the original data. The same perturbation of y 1 changes the Wilcoxon regression
rankscore test statistic from 13.17 to 14.70 with a correlation between the two rank vec-
tors of .87. A more robust initial estimator would improve the performance of the
aligned rank test somewhat. The regression rank score version of the test is seen to be
relatively insensitive to such perturbations. One should be aware that comparable pertur-
bations in the X2 design observations may wreck havoc even with the rank score form of
the test. Recent work of Antoch and Jurec̀́ková (1985) and deJongh, deWet, and Welsh
(1988) contain suggestions on robustifying regression quantiles and therefore the
corresponding regression rank scores to the effect of influential design points.
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Computation of the tests was carried out in S+ using the algorithm described in
Koenker and d’Orey (1987, 1990) to compute regression quantiles.

3. Properties of regression rank scores

Consider the linear regression model (2.1) with design Xn of dimension n × p. Let
β̂(α) ∈ Rp be the α−regression quantile and â(α) ∈ R n be the vector of αth regression
rank scores defined in (2.7). We see from the form of the linear constraints in (1.5) that
the regression rank scores are regression invariant, i.e.,

(3.1)ân(α, Y+Xb) = ân(α, Y), b ∈ Rp .

Moreover, in view of the invariance, we may assume

(3.2)
i =1
Σ
n

xij = 0, j=2, ..., p

without loss of generality.

Our primary interest in this section will be the properties of the regression rank
scores process

(3.4){ân(t) : 0 ≤ t ≤ 1}.

Gutenbrunner and Jurec̀́ková(1992) studied the process

(3.5)Wn
d = {Wn

d(t) = √ddn
i =1
Σ
n

dni âni(t) : 0 ≤ t ≤ 1}

and showed that Wn
d(t) = Un

d(t) + op (1) where

(3.6)Un
d(t) = n −1/2

i =1
Σ
n

dniI[Ei > F −1(t)]

as n → ∞ uniformly on any fixed interval [ε,1−ε], where 0 < ε < 1/2 for any appropri-
ately standardized triangular array {dni : i=1, ..., n} of vectors from Rq. They also
showed that the process (3.4) (and hence (3.5)) has continuous trajectories and, under the

standardization
i =1
Σ
n

dni = 0, (3.5) is tied-down to 0 at t = 0, and t = 1. The same authors

also established the weak convergence of (3.5) to the Brownian bridge over [ε, 1−ε].
Note however that Theorem V.3.5 in Hájek and S̀́idák (1967) establishes the weak con-
vergence of (3.5) to the Brownian bridge over the entire interval [0, 1] in the special case
of the location submodel. Here we extend the results of Gutenbrunner and Jurec̀́ková
(1992) into the tails of [0,1], in order to find the asymptotic behavior of the rank scores
and the test statistics (2.7) and (2.8), for which the score functions are not constant in the
tails.

It may be noted that this extension is rather delicate. If the rank scores involved
integration from ε to 1−ε (i.e., if ϕ were constant near 0 and 1), then the earlier
Gutenbrunner-Jurec̀́ková (1992) representation theorem could be used to obtain the
asymptotic distribution theory here under somewhat weaker hypotheses (see the remark
following Theorem 5.1). It is the desirability of treating such tests as the Wilcoxon and
Normal Scores Tests that requires the extensions here. Nonetheless, the fact shown here
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that the rank score process can be represented uniformly on an interval (αn
* , 1−αn

*) with
αn

* decreasing as a negative power of n (precisely, αn
* = n −1/(1+4b) for some b>0) is

rather remarkable and of independent theoretical interest.

To this end, we will assume that the errors E 1 , ..., En in (2.1) are independent and
identically distributed according to the distribution function F (x) which has an abso-
lutely continuous density f . We will assume that f is positive for A < x < B and
decreases monotonically as x→ A+ and x→ B− where

−∞ ≤ A ≡ sup {x : F (x) = 0} and +∞ ≥ B ≡ inf {x : F (x) = 1} .

For 0 < α < 1, let ψα denote the score function corresponding to (1.2):

(3.7)ψα (x) = α − I[x < 0], x ∈ R1 .

We shall impose the following conditions on F:

(F.1) |F −1(α) | ≤ c(α(1−α))−a for 0 < α ≤ α0 , 1−α0 ≤α < 1, where 0 < a ≤ 1⁄4 − ε,
ε > 0 and c > 0.

(F.2) 1/ f(F −1(α)) ≤ c(α(1−α))−1−a for 0 < α ≤ α0 and 1−α0 ≤ α < 1, c > 0.

(F.3) f (x) > 0 is absolutely continuous, bounded and monotonically decreasing as
x → A + and x → B −. The derivative f ′ is bounded a.e.

(F.4) | f (x)
f ′(x)hhhhh | ≤ c |x | for |x | ≥ K ≥ 0, c > 0.

REMARK. These conditions are satisfied, for example, by the normal, logistic, double
exponential and t distributions with 5, or more, degrees of freedom. Condition (F.1)
implies ∫ | t |4+δdF (t) < +∞ for some δ > 0. Hence using (F.4) also, F has finite Fisher
Information, a fact to be applied in Theorem 5.1.

The following design assumptions will also be employed.

(X.1) xi 1 = 1, i=1, ..., n

(X.2)
n→∞
lim Dn = D where Dn = n −1Xn ′Xn and D is a positive definite p × p matrix.

(X.3) n −1

i =1
Σ
n

||xi ||4 = O(1) as n → ∞.

(X.4)
1≤i≤n
max||xi || =O(n (2(b −a)−δ)/(1+4b)) for some b >0 and δ>0 such that 0 < b−a < ε/2

(hence 0 < b < 1⁄4 − ε/2).

We may now define

(3.8)αn
* = n −1/(1+4b) and σα =

f(F −1(α))

(α(1−α))1/2
hhhhhhhhhh, 0 < α < 1 .

Let C be a fixed constant and define

(3.9)Cn = C (log2n)
1⁄2 .

We now prove the following crucial lemma:

LEMMA 3.1 Assume that F satisfies (F.1) - (F.4) and that Xn satisfies (X.1) - (X.3).
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Then, as n → ∞,

(3.10)sup{ |rn(t, α) | : ||t|| ≤ Cn , αn
* ≤ α ≤ 1−αn

*}→
P

0

for Cn given by (3.9), where

rn(t, α) = (α(1−α))−1/2σα
−1

i =1
Σ
n

[ρα (Eiα − n −1/2σα xi ′t)− ρα (Eiα )]

(3.11)+ n −1/2(α(1−α))−1/2

i =1
Σ
n

xi ′tψα (Eiα ) − 1⁄2t′Dnt

and

(3.12)Eiα = Ei − F −1(α), i=1, ..., n.

PROOF.
(i) First fix α ∈ [αn

* , 1−αn
*] and t such that ||t|| ≤ Cn .

Define for some 0 < γ < b,

(3.13)Bn = max I
L n −2a /(1+4b) , n −(2−γ)(b −a)/(1+4b) , n −(b−γ)/(1+4b) M

O .

We wish to show that for any λ > 0

(3.14)P( |rn(t, α) | ≥ (λ+1)Bn) ≤ Kn −λ

with a fixed K > 0. To do this, we will use the Markov inequality

(3.15)P( |rn(t, α) | ≥ sn) ≤ exp(−usn)(M(u) +M(−u)), u > 0

where M (u) = Eexp(urn(t, α)).

Denote

(3.16)εni = εni(t, α) = n −1/2σα xi ′t
and

(3.17)Ri(t, α) = (α(1−α))−1/2σα
−1[ρα (Eiα−n −1/2σα xi ′t)−ρα (Eiα )]

+ n −1/2(α(1−α))−1/2xi ′tψα (Eiα )−1⁄2n −1(xi ′t)2 i=1, . . . , n.

By definition of Eiα , σα , ρα and ψα ,

Ri(t, α)+1⁄2n −1(xi ′t)2 = (α(1−α))−1/2σα
−1{(Eiα−εni)I[εni<Eiα <0]

(3.18)+ (εni−Eiα )I[0<Eiα <εni]}

and hence, uniformly for αn
* ≤ α ≤ 1−αn

* , ||t|| ≤ Cn and i=1, ...,n,

(3.19)|Ri(t, α) + 1⁄2n −1(xi ′t)2 | ≤ 2n −1/2(α(1−α))−1/2 |xi ′t | =O(n −(2a+δ)/(1+4b) (log2n)
1⁄2).

If uRi is bounded, that is, 0 < u < n (2a+δ)/(1+4b)(log2n)−1⁄2 , Taylor series expansion
yields

(3.20)log MRi
(u) ≤ uERi(t, α) + cu 2Var(Ri(t, α))

for some constant c > 0. By (3.18), for εni > 0 and for αn
* ≤ α ≤ α0 , 1−αn

* ≥ α ≥ 1−α0 ,
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ERi(t, α) = −1⁄2n −1(xi ′t)2 + (α(1−α))−1/2σα
−1

0
∫
εni

(εni−z) f(z + F −1(α))dz .

Now,

log f(z + F −1(α)) = log f(F −1(α)) +
0
∫
z

du
dhhh log f(u + F −1(α)) du ;

or, by condition F.4,

f(z + F −1(α)) ≤ f(F −1(α)) exp{
0
∫
z

(u + |F −1(α) |) du} .

Also by (3.8), 3.16) and the conditions,

εni |F −1(α) | = O(n −1⁄2 αn
−1⁄2−2a n 1+4b

2(b −a)−δhhhhhhhhh

(log2n)
1⁄2) → 0 .

Hence,

exp{
0
∫
z

(u + |F −1(α) |) du} ≤ 1 + c
0
∫
z

( |F −1(α) | + u) du .

Therefore,

ERi(t, α) = −1⁄2n −1(xi ′t)2 + (α(1−α))−1/2σα
−1 f(F −1(α)) {

0
∫
εni

(εni−z)dz

(3.21)+ O(1)
0
∫
εni

(εni−z)
0
∫
z

( |F −1(α) | + u) du dz} .

By (3.8) and (3.16), the first integral in (3.21) exactly cancels −1⁄2n −1(xi ′t)2 ; and, there-
fore, using conditions F.1 - F.4,

(3.21)ERi(t, α) ≤ c(α(1−α))−1/2−2an −3/2 |xi ′t |3 +c(α(1−α))−1−2an −2 |xi ′t |4 .

We get the same inequality for εni < 0. The same expressions are O(n −3/2 |xi ′t |3)
+ O(n −2 |xi ′t |4) if α0 ≤ α ≤ 1−α0 . Hence,

(3.22)
i =1
Σ
n

E |Ri(t, α) | = O
I
J
L
n 1+4b

−2(b −a)hhhhhhhh M
J
O
.

Similarly, using (3.18) and (3.21),

VarRi(t, α) ≤
I
J
L α(1−α)

f(F −1(α))hhhhhhhhh
M
J
O

2

{ f(F −1(α))
0
∫

| εni |

( | εni | −z)2 [1 +
0
∫
z

( |F −1(α) | +y) dy ] dz

+ f 2(F −1(α))

I
J
K
J
L

0
∫

| εni |

( | εni | −z) [1 +
0
∫
z

( |F −1(α) | +y) dy ] dz

M
J
N
J
O

2

}

Therefore, using (3.8),
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(3.23)
i =1
Σ
n

VarRi(t, α) ≤ c n −3/2 (α(1−α))−1⁄2

i =1
Σ
n

|xi ′t |3 = O
I
J
L
n 1+4b

−2bhhhhhh M
J
O

.

These results hold uniformly in α and t.
Hence, using (3.15) and (3.13) with u = log n/Bn = O(n 2a /(1+4b)), so that 3.20 holds,

P( |rn(t, α) | ≥ (λ+1)Bn) ≤ exp {−(λ+1)log n

+(Klog n /Bn).n 1+4b
−2(b −a)hhhhhhhh

+ (K log2n/Bn
2) . n 1+4b

−2bhhhhhh

}

(3.24)≤ n −λ

for n ≥ n 0 where K > 0 and n 0 do not depend on α and t.

(ii) Now apply the chaining argument to extend (3.24) uniformly in (t, α). Following
the proof of Lemma A.2 in Koenker and Portnoy (1987), choose intervals of length 1/n 5

covering [αn
* , 1−αn

*] and balls of radius 1/n 5 covering {t: ||t|| ≤ Cn}. Let {α1 , α2} lie in
one of the intervals and {t1 , t2} lie in one of the balls covering {t:||t|| ≤ Cn}. We now use
(3.18) to bound ∆i ≡ |Ri(t1 , α1) − Ri(t2 , α2) | . So define intervals J l

± as follows for
l = 1, 2:

J l
+ = [F −1(αl), εni(tl ,αl) + F −1(αl)] J l

− = [εni(tl ,αl) + F −1(αl), F −1(αl)] .

Also define (for l = 1, 2):

Gl(Ei) ≡ αl(1 − αl)

f(F −1(αl))hhhhhhhhhh(Ei − F −1(αl) − εni(tl ,αl))

Then, from (3.18),

(3.25)∆i = −
2n
1hhh(xi ′t1)2 +

2n
1hhh(xi ′t2)2 + H(Ei),

where

H(Ei) =

I
J
J
K
J
J
L

0

∆ i
*

G 2(Ei) − G 1(Ei)

G 1(Ei) − G 2(Ei)

otherwise

Ei ∈ (J1
+ ∩ J2

− ) ∪ (J1
− ∩ J2

+ )

Ei ∈ J1
− ∩ J2

−

Ei ∈ J1
+ ∩ J2

+

and

∆ i
* ≤ maxl=1, 2

I
J
L αl(1 − αl)

f(F −1(αl))hhhhhhhhhh | εni(tl ,αl) |
M
J
O

= maxl=1, 2

I
J
J
L (αl(1 − αl))

1⁄2

n −1⁄2 |xitl |hhhhhhhhhhhh
M
J
J
O
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≤
(αl(1 − αl))

1⁄2

Cn n −1⁄2 ||xi ||hhhhhhhhhhhh ≤ Cn n −1⁄2 n 1+4b
2(b −a)hhhhhhh

n 2(1+4b)
1hhhhhhhh

= Cn n
−

I
J
L 1+4b

2ahhhhhh
M
J
O → 0 .

Now note that for ||t|| ≤ Cn and αn
* ≤ αl ≤ 1 −αn

* ,

| εni(t1 ,α1) − εni(t2 ,α2) | ≤
minα f(F −1(α))

Cn n −1⁄2 ||xi ||hhhhhhhhhhhhhh | (α1(1 − α1))
1⁄2 − (α2(1 − α2))

1⁄2 |

+ Cn n −1⁄2 ||xi || |
f(F −1(α1))

1hhhhhhhhhh −
f(F −1(α2))

1hhhhhhhhhh | +
minα f(F −1(α))

c n −1⁄2 ||xi ||hhhhhhhhhhhhhh ||t1 − t2 || .

By conditions F.1 and F.2, for α ∈ [αn
* , 1 − αn

*], 1/α(1−α) ≤ n ,

minα f(F −1(α))
1hhhhhhhhhhhhhh ≤

(α(1−α))1+a

chhhhhhhhhhh ≤ n 5/4 ,

and

|F −1(α1) − F −1(α2) | ≤
minα f(F −1(α))

| α1 − α2 |hhhhhhhhhhhhhh ≤ n −3.75 .

Therefore, using X.4 and the fact that | α1 − α2 | ≤ n −5 and ||t1 − t2 || ≤ n −5 , it is
straightforward to show that the contributions to (3.25) excluding ∆ i

* are all o(1). Since,
Hl(Ei) = ∆i

* only if Ei is between F −1(α1) and F −1(α2) , (for otherwise, the intersec-
tions of intervals defining ∆ i

* must be empty), then

S ν

sup |
i =1
Σ
n

Ri(t1 , α1) −
i =1
Σ
n

Ri(t2 , α2) | ≤ o(1) + Ko(1)

where S ν denotes the covering set containing (α1 , t1) and (α2 , t2), and K is the number
of times Ei lies between F −1(α1) and F −1(α2). Now, K ∼ binomial(n, p) where p
is the probability that Ei lies between F −1(α1) and F −1(α2) with | α1 − α2 | ≤ n −5 .
Thus, since f is bounded, p ≤ c *n −3.75 ≤ n −2 . Therefore,

P
I
K
L S ν

sup |rn(t1 , α1) − rn(t2 , α2) | ≥ o(1) + λ o(1)
M
N
O

≤
k=λ
Σ
n I

L k
n M

O

I
J
L n 2

c *
hhh

M
J
O

k I
J
L
1 −

n 2

c *
hhh

M
J
O

n −k

≤ c ′n −λ .

Since the number of sets needed to cover the set S ≡[αn
* , 1−αn

*] ×{t : ||t|| ≤ Cn} is
bounded by n 5(p +1) we obtain from (3.24) for λ > 5(p +1)

P
I
K
L (α,t)∈ S

sup |rn(t, α) | ≥ (λ+1)Bn + o(1) + λ o(1)
M
N
O
≤ n 5(p +1)n −λ → 0 `

LEMMA 3.2. Assume the conditions of Lemma 3.1 and let dn = (dn 1 , . . . ,dnn)′ be a
sequence of q-vectors satisfying

(D.1)Xn ′dn = 0,
n
1hh

i =1
Σ
n

dni
2 → ∆2 , 0 < ∆2 < ∞
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(D.2)n −1

i =1
Σ
n

|dni |3 = O (1) as n→ ∞

(D.3)
1≤i≤n
max |dni | = O I

L n (2(b −a)−δ)/(1+4b) M
O.

Then, with S * = {(t, α) : ||t|| ≤ Cn , αn
* ≤ α ≤ 1 − αn

* },

(3.26)
(α,t)∈ S *

sup {(α(1−α))−1/2n −1/2 |
i =1
Σ
n

dni[ψα (Eiα−n −1/2σα xi ′t) − ψα (Eiα )] | } →
P

0

as n → ∞ for αn
* given in (3.8), and for Cn given in (3.9).

PROOF. Consider the model

Y = X*β* + E

where X* = (Xn | dn), β* = (β1 , . . . , βp , βp +1 , . . . , βp +q). Then

X* ′X* =

I
J
J
J
L

0

Xn ′Xn

dn ′dn

0
M
J
J
J
O

and the conditions of Lemma 3.1 are satisfied even when replacing X by X* and taking
t ∈ Rp +q . Now, the quantity in brackets in (3.26) is just the right derivative of (3.11)
with respect to the last q coordinates of t (evaluated when the last q coordinates of t are
zero). To obtain the desired uniform convergence, let fn(tt, α) denote the right hand
side of (3.11) without the last term, 1⁄2t′Dnt, and let g(t) ≡ 1⁄2t′Dt. Note that 1⁄2t′Dnt
can be replaced by g(t) since Dn → D. By Lemma 3.1, choose δn so that

(α,t)∈ S *
sup | fn(t, α) − g(t) | ≤ δn

2 .

Following Rockafellar (1970, Thm. 25.7, p. 248), the convexity of fn makes the differ-
ence quotients monotonic. That is, with u a properly chosen coordinate vector,

∂t j

∂hhh fn(t, α) ≤
δn

1hhh( fn(t + δnu, α) − fn(t, α))

≤
δn

1hhh(g(t + δnu) − g(t)) +
δn

2hhh O(δn
2) .

Replacing u by −u, the reverse inequality follows similarly (with minus signs on the right
side). Therefore,

| ∂t j

∂hhh( fn(t, α) − g(t) | ≤
|
|
| δn

g(t + δnu) − g(t)hhhhhhhhhhhhhhh −
∂t j

∂hhhg(t)
|
|
|
+ O(δn) .

Since3 g is a quadratic function, this last term tends to zero as a constant times δn (uni-
formly on S *). This gives (3.26), since the contribution of the final term of (3.11) van-
ishes when differentiating with respect to the last q coordinates and setting them to zero.
`
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Let β̂n(α) be the α−regression quantile corresponding to the reduced model (2.1)
with the design matrix of order (n×p); i.e., β̂n(α) is a solution of the minimization

(3.27)
i =1
Σ
n

ρα (Yi − xi ′t) : = min, t ∈ R p .

Analogously, define β(α) = (F −1(α), 0, 0, . . . , 0); that is, the solution to (3.27) when
the summation is replaced by expectation. The following theorem establishes the rate of
consistency of regression quantiles, and is needed for the representation of the dual pro-
cess.

THEOREM 3.1. Under the conditions (F.1) - (F.4) and (X.1) - (X.4),

(3.28)n 1/2σα
−1(β̂(α) − β(α)) = n −1/2(α(1−α))−1/2Dn

−1

i =1
Σ
n

xiψα (Eiα ) + op(1)

uniformly in αn
* ≤ α ≤ 1−αn

* . Consequently,

(3.29)α n
* ≤ α ≤ 1−αn

*
sup ||n 1/2σα

−1(β̂n(α) − β(α))|| =Op((log2n)
1⁄2) .

PROOF. If β̂n(α) minimizes (3.27), then

(3.30)Tnα = n 1/2σα
−1(β̂n(α) − β(α))

minimizes the convex function

(3.31)Gnα (t) = (α(1−α))−1/2σα
−1

i =1
Σ
n

[ρα (Eiα−n −1/2σα xi ′t)−ρα (Eiα )]

with respect to t ∈ R p . By Lemma 3.1, for any fixed C > 0

(3.32)||t||<Cn

min Gnα (t) =
||t||<Cn

min {−t′Znα + 1⁄2t′Dnt} + op(1)

uniformly in αn
* ≤ α ≤ 1−αn

* , where

(3.33)Znα = n −1/2(α(1−α))−1/2

i =1
Σ
n

xiψα (Eiα ).

It will be necessary to provide a probabilistic bound for
B ≡ sup{ Znα : αn

* ≤ α ≤ 1−αn
*}. Using the fact that

Znα ∼
(α(1 − α))

1⁄2

n −1⁄2
hhhhhhhhhhh

i =1
Σ
n

xi {(1−α)(I{F(Ei) ≤ α} − α) + α(I{F(Ei) ≤ 1−α} − (1−α))},

the invariance theorem of Shorack (1991) can be applied. By conditions X.3, X.4, and
the fact that αn

* > n −1⁄4 , equation (1.10) or (1.11) of Shorack (1991) implies that

B ≤ Op(1) + c sup{(s(1−s))−1⁄2 W(s) : αn
* ≤ s ≤ 1−αn

* }
for some constant c, where W(s) is a Brownian Bridge. This last supremum is bounded
by c(log2n)

1⁄2 + Op(1) (see, for example, Shorack and Wellner (1986), p. 599). Thus
Znα = Op((log2n)

1⁄2) uniformly on αn
* ≤ α ≤ 1−αn

* . Therefore, denoting
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(3.34)Unα =
t ∈ R p

arg min{−t′Znα+1⁄2t′Dnt},

we immediately get

(3.35)Unα = Dn
−1Znα = Op((log2n)

1⁄2)
uniformly in αn

* ≤ α ≤ 1−αn
* and

(3.36)
t ∈ R p
min {−t′Znα+1⁄2t′Dnt} = −1⁄2Znα Dn

−1Znα .

From (3.35) and (3.36), we can write

(3.37)−t′Znα + 1⁄2t′Dnt= 1⁄2{(t−Unα )′Dn(t−Unα )−Unα ′DnUnα }

and hence we could rewrite (3.10) in the form

(3.38)
(α,t)∈ S
sup |rn(t, α) | =

(α,t)∈ S
sup |

|{Gnα (t)−1⁄2[(t−Unα )′Dn(t−Unα )−Unα ′DnUnα ]} |
| →

p
0.

Inserting Unα = Op((log2n)
1⁄2), for t, we further obtain

(3.39)α n
* ≤ α ≤ 1 − αn

*
sup { |Gnα (Unα ) + 1⁄2Unα ′DnUnα | } = op(1).

We would like to show that

(3.40)α n
* ≤ α ≤ 1 − αn

*
sup {||Tnα−Unα ||} = op(1).

Consider the ball Bnα with center Unα and radius δ > 0. Then, for t ∈ Bnα ,

||t|| ≤ ||t−Unα || + ||Unα || ≤ δ +K 1 (log2n)
1⁄2

for some K 1 with probability exceeding 1 − ε for n ≥ n 0 . Hence, by (3.10),

(3.41)∆nα =
α n

* ≤ α ≤ 1 − αn
*

sup
t∈ Bnα

sup |rn(t, α) | →
P

0.

Following Pollard (1991), consider the behavior of Gnα (t) outside Bnα . Suppose
tα = Unα + kξ, k > δ and ||ξ|| =1. Let tα

* be the boundary point of Bnα that lies on the
line from Unα to tα , i.e., tα

* = Unα + δξ. Then tα
* = (1 − (δ/k))Unα +(δ/k)tα and hence,

by (3.38) and (3.39),

δ/kGnα (t) + (1−δ/k)Gnα (Unα ) ≥ Gnα (tα
* ) ≥ 1⁄2δ2λ0 + Gnα (Unα ) − 2∆nα

where λ0 is the minimal eigenvalue of D. Hence,

(3.42)||t−Unα ||≥δ
inf Gnα (t)≥ Gnα (Unα ) + (k/δ)(1⁄2δ2λ0 − 2∆nα ).

Using (3.39) the last term is positive with probability tending to one uniformly in α for
any fixed δ > 0. Hence, given δ > 0 and ε > 0, there exist n 0 and η > 0 such that for
n ≥ n 0 ,

(3.43)P (
α n

* ≤ α ≤ 1 − αn
*

inf [
||t−Unα ||≥δ

inf Gnα (t) − Gnα (Unα )] > η)> 1 − ε

and hence (since the event in (3.43) implies that Gnα must be minimized inside the ball
of radius δ) P (

α n
* ≤ α ≤ 1 − αn

*
sup ||Tnα − Unα || ≤ δ) → 1 for any fixed δ > 0, as n → ∞.
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Finally, equation (3.29) follows using the argument after (3.33). `
The following theorem approximates the regression rank score process by an empir-

ical process.

THEOREM 3.2. Let dn satisfy (D.1) - (D.3), Xn satisfy (X.1) - (X.4) and F satisfy
(F.1) - (F.4). Then

(3.44)
α n

* ≤ α ≤ 1 − αn
*

sup { |n −1/2(α(1−α))−1/2

i =1
Σ
n

dni(âni(α) − ãi(α)) |} →
p

0

as n →∞, where

(3.45)ãi(α) = I[Ei ≥ F −1(α)], i=1, ...,n.

PROOF. Insert n 1/2σα
−1(β̂n(α) − β(α)) for t in (3.26) and notice (3.29) and the fact that

(3.46)
α n

*≤α≤1−αn
*

sup {n −1/2(α(1−α))−1/2

i =1
Σ
n

dniI[Yi = xi ′β̂(α)]} →
p

0,

from which (3.44) follows. `
The following theorem which follows from Theorem 3.2 is an extension of

Theorem V.3.5 in Hájek and S̀́idák (1967) to the regression rank scores. Some applica-
tions of this result to Kolmogorov-Smirnov type tests appears in Jurec̀́ková (1991).

THEOREM 3.3. Under the conditions of Theorem 3.2, as n → ∞,

(3.47)
0≤α≤1
sup { |n −1/2

i =1
Σ
n

dni(âni(α) − ãni(α)) |} →
P

0

Moreover, the process

(3.48){∆−1n −1/2

i =1
Σ
n

dni âni(α) : 0 ≤ α ≤ 1}

converges to the Brownian bridge in the Prokhorov topology on C [0, 1].

PROOF. By Theorem 3.2,

(3.49)
α n

*≤α≤1−αn
*

sup |n −1/2

i =1
Σ
n

dni(âni(α) − ãni(α)) | →
p

0.

Further, using the fact that
i =1
Σ
n

(1 − âni(α)) = nα, due to the linear constraints in (1.5),

0≤α≤α n
*

sup |n −1/2

i =1
Σ
n

dni âni(α) | =
0≤α≤α n

*
sup |n −1/2

i =1
Σ
n

dni(1 − âni(α)) | ≤ n 1/2

1≤i ≤n
max |dni | αn

*

(3.50)= O
I
J
L
n

1/2 +
1+4b

2(b −a)−δhhhhhhhhh −
1+4b

1hhhhhh M
J
O
= O(n −2δ)

and we obtain an analogous conclusion for
1−αn

*≤α≤1
sup |n −1/2

i =1
Σ
n

dni âni(α) | . On the other
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hand,

0≤α≤α n
*

sup |n −1/2

i =1
Σ
n

dni ãi(α) | =
0≤α≤α n

*
sup |n −1/2

i =1
Σ
n

dni(I[Ei < F −1(α)] − α) |

(3.51)≤
1≤i ≤n
max |dni | . Op(αn

*(1−αn
*))1/2 = op(1)

and analogously

1 − αn
*≤α≤1

sup |n −1/2

i =1
Σ
n

dni ãi(α) | = op(1).

Thus (3.47) follows, and consequently (3.48). `

4. Asymptotic properties of simple linear regression rank scores statistics

Maintaining the notation of Section 3, let ϕ(t) : 0 < t < 1 be a nondecreasing
square-integrable score-generating function and let b̂ni , i=1, ...,n be the scores defined by
(2.7). Let {dn} be a sequence of vectors satisfying (D.1) - (D.3) . Following Hájek and
S̀́idák (1967), we shall call the statistics

(4.1)Sn = n −1/2

i =1
Σ
n

dni b̂ni

simple linear regression rank-score statistics, or just simple linear rank statistics. Our
primary objective in this section is to investigate the conditions on ϕ under which we
may integrate (3.47) and obtain an asymptotic representation for Sn of the form

(4.2)Sn = n −1/2

i =1
Σ
n

dniϕ(F(Ei)) + op(1).

We shall prove (4.2) for ϕ satisfying a condition of the Chernoff-Savage(1958) type;
thus our results will cover Wilcoxon, van der Waerden (Normal), and median scores,
among others.

THEOREM 4.1. Let ϕ(t) : 0 < t < 1, be a nondecreasing square integrable function
such that ϕ′ (t) exists for 0 < t < α0 , 1−α0 < t < 1 and satisfies

(4.3)| ϕ′(t) | ≤ c(t(1−t))−1−δ*

for some δ* < δ where δ is given in condition (X.4), and for t ∈ (0, α0) ∪ (1−α0 , 1).
Then, under (F.1) - (F.4), (X.1) - (X.4) and (D.1) - (D.3), the statistic Sn admits the
representation (4.2) and hence is asymptotically normally distributed with zero expecta-
tion and with variance

(4.4)∆2(
0
∫
1

ϕ2(t)dt − ϕ
h

2), ϕ
h

=
0
∫
1

ϕ(t)dt.

PROOF. Let us consider Sn defined in (4.1) with the scores (2.7). Integrating by parts
(notice that âni(t) − ãi(t) = 0 for t = 0, 1), we obtain
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(4.5)−n −1/2

i =1
Σ
n

dni
0
∫
1

ϕ(t)d(âni(t) − ãi(t)) = n −1/2

i =1
Σ
n

dni
0
∫
1

(âni(t) − ãi(t))dϕ(t) ,

which we must show is op(1). We shall split the domain of integration into the intervals
(0, αn

*], (αn
* , α0), [α0 , 1−α0], (1−α0 , 1−αn

*), [1−αn
* , 1) and denote the respective

integrals by I 1 , ... ,I 5 . Regarding Theorem 3.2, we immediately get that I 3 →
P

0 by the
dominated convergence theorem. Similarly, for some δ* > 1⁄2,

| I 2 | ≤
α n

*
∫
α0

| ϕ′(t) | |n −1/2

i =1
Σ
n

dni(âni(t) − ãi(t)) |dt

≤ c
α n

*
∫
α0

(t (1−t))−1−δ*
(t (1−t))1/2 . |n −1/2(t (1−t))−1/2

i =1
Σ
n

dni(âni(t) − ãi(t)) |dt

= c
α n

*
∫
α0

(t (1−t))−δ*−1/2dt . op(1) = op(1).

Finally,

| I 1 | ≤ n −1/2

1≤i≤n
max |dni |

0
∫

α n
*

| ϕ′(t) |
i =1
Σ
n

| âni(t) − ãni(t) |dt ≤I 11 + I 12

where

(4.6)I 11 = n −1/2

1≤i≤n
max |dni |

0
∫

α 0
*

| ϕ′(t) |
i =1
Σ
n

(1 − âni(t))dt

and

(4.7)I 12 = n −1/2

1≤i≤n
max |dni |

0
∫

α n
*

| ϕ′(t) |
i =1
Σ
n

(1 − ãi(t))dt.

Then

I 11 ≤ n 1/2

1≤i≤n
max |dni |

0
∫

α n
*

t −δ*
dt= O(n

1/2 +
1+4b

2(b −a)−δhhhhhhhhh −
1+4b

(1−δ*)hhhhhhh

) = O(n −2(δ−δ*)).

Finally,

I 12 = n −1/2

i =1
Σ
n

dni
0
∫

α n
*

ϕ′ (t)I[t > F (Ei)]dt = n −1/2

i =1
Σ
n

dni[ϕ(αn
*) − ϕ(F (Ei))]I(F (Ei) < αn

*]

Now we may assume that ϕ(αn
*) < 0 for n ≥ n 0 , since otherwise if ϕ were bounded from

below then I 12 →
P

0. Hence

Var(I 12) ≤ n −1

i =1
Σ
n

dni
2 E([2ϕ(F (Ei))]

2I[F (Ei) < αn
*]) ≤

0
∫

α n
*

ϕ2(u)du . O (1) → 0
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due to the square-integrability of ϕ. Treating the integrals I 4 , I 5 analogously, we arrive
at (4.5) and this proves the representation (4.2). `

5. Tests of linear subhypotheses based on regression rank scores

Returning to the model (2.2), assume that the design matrix X = (X1
... X2) satisfies

the conditions (X.1) - (X.4), (2.3) and (2.4). We want to test the hypothesis
H 0 : β2 = 0 (β1 unspecified) against the alternative Hn : β2n = n −1/2β0 (β0 ∈ R q fixed).

Let ân(α) = (ân 1(α), ..., ânn(α)) denote the regression rank scores corresponding to
the submodel

(5.1)Y = X1β1 + E under H 0 .

Let ϕ(t) : (0, 1) → R 1 be a nondecreasing and square integrable score-generating func-
tion. Define the scores b̂ni , i=1, ...,n by the relation (2.7), and consider the test statistic

(5.2)Tn = Sn ′Qn
−1Sn/A 2(ϕ)

where

(5.3)Sn = n −1/2(Xn 2 − X̂n 2)′b̂n

and where Qn and A 2(ϕ) are defined in (2.4) and (2.10), respectively. The test is based
on the asymptotic distribution of Tn under H 0 , given in the following theorem. Thus, we
shall reject H 0 provided Tn ≥ χq

2(ω), i.e. provided Tn exceeds the ω critical value of the
χ2 distribution with q d.f. The same theorem gives the asymptotic distribution of Tn
under Hn and thus shows that the Pitman efficiency of the test coincides with that of the
classical rank test.

THEOREM 5.1. Assume that X1 satisfies (X.1) - (X.4) and (X1
... X2) satisfies (2.3) and

(2.4). Further assume that F satisfies (F.1) - (F.4). Let Tn defined in (5.3) and (5.4) be
generated by the score function ϕ satisfying (4.3), and nondecreasing and square-
integrable on (0, 1).

(i) Then, under H 0 , the statistic Tn is asymptotically central χ2 with q degrees of free-
dom.

(ii) Under Hn , Tn is asymptotically noncentral χ2 with q degrees of freedom and with
noncentrality parameter,

(5.4)η2 = β0 ′Qβ0
. γ2(ϕ, F)/A 2(ϕ)

with

(5.5)γ(ϕ, F) = −
0
∫
1

ϕ(t)df(F −1(t)).

REMARKS.

(i) If ϕ is of bounded variation and is constant near 0 and 1, the representation given in
Theorem 2 (ii) of Gutenbrunner and Jurec̀́ková (1992) could be used to provide the
conclusion of Theorem 5.1 under somewhat weaker hypotheses; namely, (X.1),
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(X.2), maxi ||xi || =o(n 1/2), F has finite Fisher Information, and 0 < f < ∞ on
{0 < F < 1}.

(ii) The analogy between the location and regression models concerning the noncentral-
ity parameter γ(ϕ, F) may be extended in the following way: instead of defining
local alternatives via (2.6), the definition of Behnen (1972) can be generalized to the
regression model. That is, with Fi(t) = F(t − x 1i ′β1) and Gi = L(Yi), consider

H 0 : Gi = Fi vs. Hn :
dHi

dGihhhh = 1 + x 2i ′β2nhn(Fi)

where

β2n = n −1/2β0 , hn
L 2
→ h ∈ L 2(0, 1), and maxi ||x 2i || ||hn ||∞3 = o(n 1/2).

In this setting, even without the assumption of finite Fisher Information, (4.2)
implies that the conclusion of Theorem 5.1 holds with γ(ϕ, F) in (5.4) replaced by
the F −independent constant

γ*(ϕ, h) =
(∫(ϕ(u) − ϕ

h
)2du∫(h(u) − h

h
)2du)1/2

∫(ϕ(u) − ϕ
h

)(h (u) − h
h

)du
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh ,

i.e., the correlation of the functions ϕ and h. Such local alternatives provide insight
into the structure of the regions of constant efficiency for regression rank tests.

PROOF.

(i) It follows from Theorem 4.1 that, under H 0 , Sn has the same asymptotic distribu-
tion as

S̃n = n −1/2(Xn 2 − X̂n 2)′b̃n

where b̃n = (b̃n 1 , ..., b̃nn)′ and b̃ni = ϕ(F(Ei)), i=1, ...,n. The asymptotic distribution
of S̃n follows from the central limit theorem and coincides with q−dimensional nor-
mal distribution with expectation 0 and the covariance matrix Q . A 2(ϕ).

(ii) The sequence of local alternatives Hn is contiguous with respect to the sequence of

null distributions with the densities {
i =1
Π
n

f(ei)}. Hence, (4.1) holds also under Hn

and the asymptotic distributions of S̃n under Hn coincide. The proposition then fol-
lows from the fact that the asymptotic distribution of S̃n under Hn is normal
Nq(γ(ϕ, F)Qβ0 , QA 2(ϕ)). `
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