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Abstract

This paper constitutes a brief, rather idiosyncratic, survey of rank
tests stressing their connection in linear model applications to the
theory of quantile regression through the formal duality of linear pro-
gramming.

1 Introduction

Milton Friedman, who was present at the conception of rank tests in the late
1930’s, but abandoned his progeny for more lucrative economic pursuits later
in his career, left the idea of statistical inference based on ranks in the foster-
care of a fortuitous sequence of statisticians who have nourished the infant
through a robust adolescence. Friedman’s (1937) paper “The use of ranks to
avoid the assumption of normality implicit in the analysis of variance” to-
gether with the papers of Hotelling and Pabst(1936), and Kendall (1938) are
usually credited with initiating the rank based approach to statistical infer-
ence. Spearman’s(1904) paper is, of course, also fundamental. The appear-
ance of Wilcoxon(1945) and Mann and Whitney(1948) on tests for location
shift based on ranks, and the subsequent analysis of these tests by Hodges
and Lehmann (1956) and Chernoff and Savage (1958) firmly established the
subject as a precocious challenger to classical likelihood based methods of
inference. The rigorous reformulation of the asymptotic theory of rank tests

introduced by Héjek and developed by Hajek and Sidak (1967) and others,
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in conjunction with the emergence of robustness as a major theme of statis-
tical research in the late 1960’s gave a significant impetus to the growth of
rank based methods. Work by Jureckova , Jaeckel, Hettmansperger, Adichie,
Puri, Sen and others yielded important extensions of rank based inference
and estimation methods for the linear model.

Nevertheless, like Friedman, econometricians have, for the most part, re-
sisted the allure of rank tests. Of the 355 citations containing the phrase
“rank tests” in the Current Index to Statistics from 1975 to 1993, none ap-
pear in an econometric journal. Nor does the phrase make an appearance
in any of the econometrics texts which happen to grace my bookshelves.
It may, therefore, appear quixotic to prepare a paper on this subject for
an econometric audience. But econometrics has, in recent years, enthusias-
tically embraced other aspects of nonparametric statistics, and to a lesser
degree shown a willingness to consider robustness as an important attribute
of statistical procedures, so the time may finally be right for us to recognize
an econometric orphan who has wandered so long in the statistical wilderness.

There are many excellent treatments of the vast literature on rank tests
ranging from elementary textbooks like Mosteller and Rourke(1973) to more
advanced texts like Hajek (1969) and Lehmann(1975) as well as the impor-
tant monographs of Héjek and Sidak (1967) and Hettmansperger (1984). In
addition there are excellent surveys on aligned rank tests for linear model
applications by Adichie (1984) and the important monograph by Puri and
Sen (1985). My own interest in rank-based inference was stimulated by the
thesis work of Cornelius Gutenbrunner (1986) undertaken under the direc-
tion of Jana Jureckova . Gutenbrunner’s research established an intimate
link between the Hajek and Siddk approach to linear rank statistics and for-
mulation of quantile regression appearing in Koenker and Bassett (1978).
This link, which is based on a formal linear programming duality between
sorting and ranking, will be central focus of this survey. It affords a unified
perspective on the construction of rank tests for a broad spectrum of linear
model applications.

1.1 An Example

As an introduction to rank tests in an elementary setting, I would like to
begin by comparing the performance of the Wilcoxon-Mann-Whitney test
for location shift with the classical two sample t-test. Let Xi,...,X, be
a random sample of “control” observations from the distribution function



F(x) and Y7, ..., Y, denote a random sample of “treatment” observations from
F(z —0). Suppose we wish to test the hypothesis of “no treatment effect”
Hy : 8 = 0 against the alternative H; : 6 > 0.

If F' were known to be Gaussian, we would immediately compute the
sample means X,, and Y, and then compute the test statistic

T = (X, - Y,)/s

2:

where s = o%(n™! +m™!), replacing o* by

n m

52 =(n4+m—2"1 (X — X))+ 3(Yi — V)

if necessary. If T' exceeded ®~'(1 — a) we would reject Hy at level a, if o2
were known, replacing the normal critical value by its corresponding ¢,,4,,_2
value if 0?2 needed to be estimated.

Mann and Whitney’s(1947) proposed alternative to the two sample ¢-test
is based on the statistic,

n m

Si=3 > 1(Yi> X))
i=1j=1
We simple count the number of pairs of observations — one from each sample
— for which the treatment observation exceeds the control observation. If
Sy is large it suggests that treatment observations are generally larger than
controls, and Hy should be rejected.

How is this connected to ranks? Wilcoxon(1945) suggests an alternative
formulation: pool the two samples and compute the rank of each observation
in the pooled sample. Let Sy denote the sum of the treatment observation
ranks, again if Sy is large it suggests rejection of Hy. It is easy to show that

so the Mann-Whitney and Wilcoxon forms of the test are actually equivalent.
One of the most attractive features of this test is that its null distribution is
independent of the form of F' generating the original observations. To see this,
let Zy,...,Z, denote Xy,..., X, and Z,11, ..., Z,1,, denote Y7,....Y,,. Under
Hy, the Z; are iid. Thus for any permutation (i1, ...,%n4m) of (1,...,n + m),
(Ziyy s Zi

of “ties”

»+m) has the same distribution as (Z1, ..., Zn4m). So, in the absence

{Rl =T, ---aRn—I—m = rn—l—m} = {Z“ << Zin+m}



where R; is the rank of the ith observation in the pooled sample and r;, = j.
It follows that the (n 4+ m)! possible events {R1 = r1, ..., Rutm = Tnim | are
equally likely. Since Sy is a function solely of these ranks its distribution
under Hj is also independent of F'. For modest n, m we can compute exact
critical values for the test based on combinatorial considerations, see e.g.
Mosteller and Rourke(1973) or Lehmann (1975) for details. For large n,m

we can rely on the fact that under Hy,
91 = (Sl — ,LL1)/O'1 ~ N(O, 1)

where 1y = mn/2 and 6} = nm(n + m — 2)/12. Even for modest sample
sizes this approximation is quite good.

It is tempting to think that the main reason for preferring the Wilcoxon
test to the ¢-test is the fact that it has a guaranteed probability of Type
I error for quite arbitrary distributions F', while the exact theory of the t-
statistic depends on the normality of the observations. However, as long as
F has a finite second moment and n and m are reasonably large, the critical
values of the ¢ distribution are also reasonably accurate for the ¢ statistic.
It is power considerations that constitute the most compelling case for the
Wilcoxon test under non-Gaussian conditions.

Exact power comparisons are rather impractical for small sample sizes,
but asymptotic results are very revealing. In the late 1940’s Pitman proposed
considering sequences of local alternatives of the form

Hnﬁnzﬂo/\/ﬁ

and showed that at the normal model F' = ®, the limiting ratio of sample
sizes required to achieve the same size and power with the Wilcoxon and
the t-test is 3/7 ~ .955. This ratio, which is usually referred to as the
asymptotic relative efficiency, or ARE, of the two tests provides a natural
measure of their relative performance. If, for example, at the normal model
1000 observations are required to achieve power .95 at level .05 for a given
alternative with the Wilcoxon test, this implies that the same power and
level would be achievable with the t-test with roughly 955 observations. So
transforming to ranks has “wasted” about 5 percent of the observations. This
loss of information is hardly surprising since the optimality of the t-test at
the normal model is a cornerstone of statistical thinking.

What happens in non-Gaussian situations? The following table presents
the asymptotic relative efficiency of the Wilcoxon test relative to the t-test
in the location shift problem for eight well-known Fs.
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TABLE 1.1: ARE of Wilcoxon and t-Tests of Location Shift
F Normal | Uniform | Logistic | Exp | t3 | Exp | LNormal | ¢,
ARE 955 1.0 1.097 1.5 119 3 7.35 00

The striking feature of this table is not the modest loss of information
at the normal model, but the enormous gains achieved by transforming to
ranks in certain non-Gaussian situations. We would need 50 percent more
observations if we foolishly used the t-test instead of the Wilcoxon test at the
double exponential distribution and seven times as many observations at the
lognormal distribution. In the latter case, note that if we were to do the log
transformation to get back to normality the Wilcoxon test is unaffected, since
ranks are invariant to monotone transformations. So the transformation to
ranks achieves most of what we could have achieved had we known that the
log transformation was appropriate. For extremely heavy-tailed distributions
the advantage for the rank test is even more pronounced.

The message of Table 1.1 is a familiar one from robust statistics: if we are
willing to pay a small insurance premium (5% efficiency loss) at the Gaussian
model we can protect ourselves against the extremely poor performance of
least-squares based methods in heavy-tailed situations. The 5 percent pre-
mium seems very modest, particularly in view of the huge improvement in
the lognormal case, but one may wonder whether there are other plausible
distributions for which the asymptotic relative efficiency of the two tests is
even worse than the .955 in the Gaussian case. This question was answered
originally by Hodges and Lehmann(1956) too. To find the f which minimizes
ARE, one must minimize the Ly norm of the density subject to the constraint
that the density has variance one. This turns out to be isomorphic to a stan-
dard problem in kernel density estimation. The least favorable density turns
out to be the one generating the Epanechnikov kernel, and this solution gives
a lower bound to the ARE of about .864. Thus, even in non-Gaussian cases,
the t-test can never be more than about 15% better than the Wilcoxon test

of location shift, but can be arbitrarily worse as indicated in the Table.

1.2 Linear Rank Statistics

A more general approach to two sample rank tests is suggested by considering
the distribution of the ranks when the X's are generated from f(z) and the
Y’s from f(y — 6). Let R denote the vector of ranks from the combined



sample Z = (X1, ..., X,,, Y1, ..., Y,,,), so

n n+m
) = o e B -
B n+m m 0)
B /51<...<£n+m 1:[ f " 1;[ J)

where §.. = 2(,,), j =1,...,n+ m. But the density of the order statistics
Z)s - Lngm) When Zy, .. Z, . are iid with density [(z)is nIT f(&,) so

1 —9)
It DI
where Fy designates that the expectation is taken with respect to the density
f(z—0). For any fixed alternative 8 , the optimal rank test could be computed
as the likelihood ratio based on this expression for the density. A more
practical option involves computing a locally most powerful test based on
the score function

dlog fr(R; 0)

TP YL 7
To illustrate, suppose f is logistic, so

flz) =€ /(1 + €)= F(2)(1 = F(2)).
Then, —f'(x)/f(z) =2F(x) =1, and F(Z(i)) =¢/(n+ m+ 1) so the locally
most powerful rank test of Hy: 6 = 0 is based on the sum of the ranks and
hence is the Wilcoxon-Mann-Whitney test. In contrast, if f were Gaussian,
so —f'(x)/ f(x) = x we may approximate the optimal rank test by using the
statistic,

<RJ))

ZCI) (Ri/(n+m+1))

proposed by van der Waerden. Alternative approximations for K7 with
Z; Gaussian have also been suggested, see e.g. Hettmansperger(1984). In
general the approximate test statistic

S P(Rif(n 4 m+ 1)/ f(Bif(n + m+ 1))

=1

may be used since Z(;) = F'(Ug;y) where Uy, ..., Upqy, are iid uniform on (0,1),
and EUG =1i/(n +m +1).



1.3 Asymptotics of Linear Rank Statistics

The monograph of Hajek and Sidék (1967) constituted a complete reappraisal
of the theory of rank statistics and provided an elegant general approach to
the study of the asymptotic theory of linear rank statistics. For any sam-
ple {Y1,Y5, ..., Y, }, and associated ranks {Ry, Ry, ..., R}, Hijek and Sidak

introduced the rank generating functions:

1 ift < (R —1)/n
0 if Ri/n <t

These functions “generate the ranks” of the Y’s in the sense that, integrating
with respect to Lesbesgue measure,

by = /01 G(0)di = (Ry — 1/2)/n

while more general notions of “ranks” may be obtained by replacing Les-
besgue measure by alternative score functions (t). For example, p(t) =
1/2sgn(t — 1/2) generates sign scores,

) +1/2 if R, >n/2+1
b = / ail)do(l) = ai(1/2) —1/2=1 0 otherwise
—1/2 if R < n/2

The invariance of the ranks to monotone transformations means that the R;’s
may also be viewed as the ranks of the uniform random sample {U;,...,U,}
with U; = F(Y;), and the rank generating functions a;(¢) may be seen as re-
placing the indicator functions I(Y; > F~'(¢)) = I(U; > t), by the smoother
“trapezoidal” form given by ((1)) Thus the rank generating functions behave
like an empirical process as the following result shows.

Theorem 1 (Hdjek and Siddk (1967, Thm V.3.5) ) Let ¢, = (¢14, ..., o) be

a triangular array of real numbers satisfying
max(c¢; — ¢)?/ Z(CZ -2’ =0 (2)

and assume that {Y1,....,Y,} constitute a random sample from an absolutely
continuous distribution I'. Then, the process

T n

Zn(t) = [ _(ei = 1712 Y (e = )as(t)



converges weakly to a Brownian Bridge process on C[0,1].

In the two sample problem the ¢;,’s may be taken as simply the indicator
of which sample the observations belong to, and the “Lindeberg condition”
(2) is satisfied as long as ny/n stays bounded away from 0 and 1. A limiting
normal theory for a broad class of linear rank statistics of the form

S =D (eni — &)1 Y (cni — Ea)bs

where b; = Jai(t)de(t) is immediate. In particular, for square integrable
¢ :[0,1] = R we have the linear representation

Sn = D = €)"172 D (eni — Ea)(U:) + 0p(1), (3)
and consequently, S,, is asymptotically Gaussian under the null with mean
0 and variance A%(p) = [(p(t) — ¢)*dt where ¢ = [(t)dl. Behavior un-
der sequences of local alternatives can be studied using standard contiguity
results.

Thus, for example, in the two-sample location shift model with local
alternatives H, : &, = &o/y/n we have S, asymptotically Gaussian with
mean w(p, F)(>X(cin — En)2)1/250 and variance A*(¢) where

S, F) = [ JF (Ddg(t).

In the Wilcoxon case where ¢ is Lesbesgue measure A*(p) = 1/12 and w? =
[ f*(z)dz which yield the expression evaluated to produce Table 1.1. An
important virtue of such rank tests is that the test statistic and its limiting
behavior under the null hypothesis are independent of the distribution F
generating the observations. See Draper(1988) for a detailed discussion of
the problems related to the estimation the the nuisance parameter w? in the
Wilcoxon case.

1.4 Duality of Ranks and Quantiles

It is worth emphasizing at this point that the only computation required for
the simple linear rank tests described above involves sorting and ranking the
sample observations. To extend these ideas to more general models it is help-
ful to embed these operations into an optimization framework as suggested
in Koenker and Bassett(1978). Recall that the solutions to the problem

lgéig;pf(yi — ), (4)
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where p,(u) = u(r — I(u < 0)) are the " quantiles, én('r) = Y(lrn]-1), and
by varying 7 and solving (4), we sort the sample y’s. This is a parametric
linear program of a particularly simple form:

min Vu+(1—m)'v |1, +u—v=
(§7u7v)eRxR?{ ptt (1 =7l [ 1€ v}

where 1,, denotes an n-vector of ones. We may call this the primal problem.
The corresponding dual problem

max {y'a|llla =(1 —7)n,a €10,1]"} (5)

has as solutions the Hajek -Sidék rank generating functions a;(¢) defined in
(1). So just as the primal problem sorts the sample observations, the dual
problem ranks the observations. Neither problem is terribly interesting in
the one-sample model since we already have a painfully obvious way to sort
and rank observations. However, for more general parametric models it is far
less clear how to sort or rank the observations and the optimization approach
suggests a reasonable way to do both operations.

2 Regression Quantiles and Rank Scores
For the classical linear regression model

yi=z.0+u, 1=1,2,..n,
Koenker and Bassett (1978) proposed solving

A

Bn(7) = argminpere E p-(yi — xib). (6)

i=1

These p-dimensional “regression quantiles” determine a sequence of hyper-
planes which estimate the conditional quantile functions of the response vari-
able y. As in the one sample model, as 7 varies over [0, 1] we have a paramet-
ric linear program which can be solved efficiently. See Koenker and d’Orey

(1987, 1993) for details on computation. The dual problem corresponding to
(6) is

a(t) = argmax {y'a|X'a = (1 — 7)X'1,,a € [0,1]"} (7)



In the one sample problem, where X = 1,,, a;(7) specializes to rank generat-
ing functions of Hajek and Sidék . This was first noted by Gutenbrunner and
Jureckova (1992), who provided a detailed study for the regression model of
a;(t), which they called the regression rankscore process. In regression, these
regression rankscore functions are no longer of the simple “trapezoidal” form
(1), indeed they can even be non-monotone, but like the primal regression
quantile process they are easily computed via parametric linear programming
methods, and as we describe in the next section, they provide a natural way
to extend linear rank statistics to more general linear models.

2.1 Rank Tests of Linear Hypotheses in Regression

Now consider the partitioned linear model
Y=X0+7Z7v+u

where 3 and v are p and q dimensional parameters, and u is a vector of iid
errors with common distribution function F. Suppose we are interested in
testing the hypothesis Hy : v = 0, with 8 unspecified versus the (Pitman)
local alternatives, H,, : v = vo/+/n. Gutenbrunner, Jureckova , Koenker and
Portnoy(1993), hereafter GJKP propose the test statistic,

To = 8,Q; " Sa /A% () (8)

where S, = (Z — Z)b,, b, = (Jla(t)de(t)r,, Z = X'(X'X)'X'Z,
Qn = (7 — Z)’(Z — 2), with A%(¢) as defined following (3). An important
feature of the test statistic T), is that it requires no estimation of nuisance
parameters, since the functional A(y) depends only on the score function
and not on F. This is familiar from the theory of rank tests, but stands
in sharp contrast with other methods of testing in the linear model where
typically some estimation of a scale parameter of F is required to compute
the test statistic. Wald and Likelihood ratio tests based on regression quan-
tiles require estimation of the so-called sparsity or quantile density function.
Tests based on the least squares estimator of course require estimation of the
nuisance parameter o2,

The following finite sample invariance result, which follows easily from
Theorem 3.2 of Koenker and Bassett (1978), proves to be quite useful in
the sequel, extending well-known invariance properties of least squares based
tests to the class of rank tests based on S,,.
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Lemmal Let S, (X, 7Z,y) = (7 — ZA)’]A)n defined following (2.3), and P be
an arbitrary nonsingular p X p matriz, M an arbitrary p x ¢ matriz and ~
an arbitrary p-vector. Then for any ¢ such that [} o(t)dt =0, S,(XP, 7 +
XM, y+ Xv)=5.(X,7,y).

The asymptotic distribution of 7, under H,, is shown by GJKP(1993) to

be non-central y* with ¢ degrees of freedom and noncentrality parameter

n? =W (e, F)/A*(¢)]76Qo0

where Qg = lim,, o, @,/n. Thus the asymptotic relative efficiency of these
tests with respect to the classical F' test is therefore identical to the location
shift tests considered earlier. In particular, for the Wilcoxon scores ¢(t) =
t — 1/2 we may refer directly to Table 1.1. For f unimodal, we can obtain
an asymptotically optimal test if we take

I A IO
9‘9(3) - SOF( ) - f(F_l(S)) ? 0< <L

Thus in the Gaussian case we are led to pg(s) = ®7'(s). Computing the
vector b, = (I;Z) may appear to pose serious problems since it requires the
entire sample path of the n-vector {a,(r) : 7 € [0,1]}. Fortunately, this
problem is easily manageable. The function a,(7). is piecewise linear and
continuous with breaks at 0 = 7 < 71 < ... < 7y_1 < 77 = 1. Portnoy(1991)
has shown that .J, is asymptotically O,(nlogn). The solution, as noted
above, at these .J breakpoints is easily computed by standard parametric
linear programming methods (see Koenker and d’Orey (1987, 1993)) and
linear interpolation recovers the rest of the function.

Three score functions play prominent roles in the application of rank
tests. The piecewise linearity of a,(7) may be exploited to simplify the b,
integrals, as the following examples illustrate.

1 1lcoxon scores: p(s) = s — . Integration by parts yields,
i) Wil ) 1/2. Integration b ield
. 1
b = —/ (s —1/2)déi(s)
0
1
— /&i(s)ds—l/Q
0

= 2_: 1/2(ai(7j1) + @i(7)) (741 — 75) — 1/2
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(ii) Normal (van der Waerden) scores: ¢(s) = ®7!(s);0 < s < 1.
Denoting the standard normal df and density by ® and ¢ respectively,
and using the fact that the function a}(7) is piecewise constant, we
have:

The use of the sign scores of T,, was already considered in Koenker and
Bassett (1982), however there was some ambiguity there as to how the signs
corresponding to the p zero residuals of the restricted model should be eval-
uated. The regression rank score approach resolves this point by evaluating
a;(1/2) — 1/2 which lies in the open interval (—1/2,1/2) for these observa-
tions.

2.2 Confidence Intervals via Inversion of Rank Tests

An interesting application of this rank test approach involves the construction
of confidence intervals for the parameters of linear quantile regression esti-
mators. This problem has received considerable recent attention with several
authors focusing on bootstrap methods. See for example Buchinsky (1994),
Hahn (1995) and Parzen, Wei, Ying (1994). The emphasis on resampling
methods reflects a dissatisfaction with earlier methods, e.g., Koenker and
Bassett (1982), Welsh (1988), based on estimation of the sparsity function.
Huskova (1994) has proposed sequential procedures based on the regres-
sion rankscore process and suggested inverting rank score tests to obtain
sequential, fixed length confidence intervals. For general score functions this
inversion is computationally rather difficult; however, in one important spe-
cial case it turns out to be very tractable. This is the case of constructing

12



a confidence interval for a single parameter in a simple linear quantile re-
gression model. Consider the special case of the previous testing problem in
which X, consists of a single covariate, say 3, and following Koenker (1994)
write

y = X161 + 2282 + u.
Suppose we would like to test the hypothesis

Ho:f3;=¢

at the 7-th quantile regression. The score function appropriate at the 7-th
quantile is ¢, (t) = 7 — [(t < 7) which is the obvious generalization of sign
scores for the case of median (/1) regression. Our test would be based on the
regression rank score process
mas {(y — wa€Val Xfa = (1 = 1) X]1) )
a€l0,1|?
which corresponds to fitting the restricted model under the null hypothesis.
By the foregoing theory, under Hy,

Su(€) = n7M22hb, (€) v N(0, A%()g?)

where b,, = (IA)m),

1
bul€) = [ anilt: i (1) = ani(rs€) = 7
ani(7;€) denotes elements of the solution to ((9)) and

@ =n"lah(I — X, (X X1) 7' X)) zs.

Once again the computational burden of the test may appear daunting, but
like the problem of computing the sample path of G,(7), parametric linear
programming may be employed. The function a,,(7; &) is piecewise constant
in £ for fixed 7; ¢ may be gradually altered without compromising the opti-
mality of an initial £ = & as long as the signs of the residuals in the primal
quantile regression problem don’t change, that is as long as the new y — z5¢
doesn’t cross the 7-th quantile regression plane determined by the response
vector y—z9&y. When £ eventually hits this boundary the solution is updated
by making a single simplex pivot. The process continues in this way until
Sn(€) exceeds a chosen critical value. Since S,(€) is piecewise constant it

13



seems useful to adopt a linear interpolation of the function to construct the
confidence interval. See Beran and Hall (1993) for a detailed analysis of such
interpolation schemes for the case of ordinary sample quantiles.

The resulting intervals unlike the more conventional Wald-type intervals
based on estimation of the sparsity function are not symmetric. They are
however centered on the point estimate BQ(T) in the sense that Sn(BQ(T)) =0,
a fact that follows immediately from the constraint X’a(7) = (1—7)X'1 in the
unconstrained problem. Since the steps taken in the parametric programming
implementation of the computations are extremely simple, the confidence
intervals obtained by this rank test inversion are comparable to those based
on sparsity estimation in terms of computational effort. Resampling methods
are obviously considerably more demanding in this respect.

3 Rank Tests for Heteroscedasticity

As the confidence interval example illustrates, it is fruitful to consider alter-
native forms of the rank test score function specificly tailored to interesting
alternative hypotheses. Another example of this sort involves tests for het-
eroscedasticity. There is a well established rank test literature on two-sample
tests for equality of scale. These tests can be easily adapted to the linear
model to provide an interesting class of new tests for heteroscedasticity.
This approach has been developed by Gutenbrunner (1994) who consid-
ered a very general class of heteroscedasticity tests, for the linear model

y= XG4+ u.

Following Gutenbrunner, we may consider a family of error densities of the
form

N(u) = e folue™)

A may be regarded as scale parameter. We will partition X

where o; = ¢

as X = [1:X;:X,] with a third component of X, X3, reserved as a possible
determinant of A, but not appearing in X. Let p; denote the column rank of

X;. The model takes the form
y=XG4+Xv

where ¥ = diag (0;) and the {v;}’s are iid. We may formulate the hypothesis
of homoscedasticity by expressing A as the linear function of the

A= X36 + X305
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and we will test

H0252:0, 53:0

versus
H, : 6 =m2/\/n, b35=ns/V/n.

Note that the decomposition of the covariates permits X; to influence only
location, X3 only scale, and X3 both location and scale. For the §3 component
of the test we require a score function appropriate to testing equality of scale
in the two sample problem. For given f, the optimal rank score function for
this purpose is given by, see e.g. Hajek and Sidak (1967),

f'(F (u))
S ()

In the normal case the optimal score function is thus ¢(u) = (&' (u))?, a

pa(u) = —1 = F™ ()

U-shaped function characteristic of the score functions for rank tests of scale.
Ignoring for the moment the d; component of the alternative hypothesis we
could base a test of Hy versus H,, on the statistic

T, = SLQ7" 5,/ A%(¢)

where as in ((8)), for an appropriate choice of
S, = (Xs— Xa)b,

b = ([ atde(0)L,

A

X = X(X'X)'X'X;
Qn = (X3—X3)(X5— Xs).

To deal with the 3 component of the alternative hypothesis we have two
options. One is to make some preliminary estimate the regression effect of X,
on location and construct a rank test based on ranks of the recentered obser-
vations, i.e., residuals. Such aligned rank tests have an extensive literature,
and are particularly attractive in problems of testing for regression shift. See
Adichie (1984) and Puri and Sen (1985) for detailed discussions. However,
as noted in Gutenbrunner, Jureckova and Koenker (1995) and elsewhere, the
aligned rank approach to testing for regression-in-scale is well-suited to mod-
els in which the underlying error density is symmetric, but in the event of
asymmetric densities alignment tends to confound location and scale effects.
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Following Gutenbrunner (1994) we may construct tests sensitive to the
09 component based on the L-statistic

B = [ Bt

where v is a finite signed measure designed to provide an L-estimator of scale.
The choice of a good v is obviously also dependent on f. It is well known,
see, e.g., Serfling (1980), that the optimal choice of v is that generated by

= (- 5)

so for example at the normal model we would choose J(u) = ®~!(u). As long
as we choose J to satisfy J = [ J(u)du = 0 so v(0,1) = 0, the estimator is
invariant to regression shift, since the transformation y — y + X implies
B = B+ L

Partitioning (8%) = (85, (51.); (B35,,)") to conform with our original par-
titioning of 3 we may take Bé‘n as an estimator of &, for suitable choice of the

the “signed density”

measure v. Gutenbrunner and Jureckovd (1992) can then be used to show
that

(B, = Ba(v)) ~ N(0,6% (v, F)Q3")
where

Ba(v) = v(0,1)53y + &y /01 F_l(u)dl/(u)

9 uNv—uv
7w [ | Fa
Q' = lim ™' (X; — X2)'(Xz = X5)

and X, is the projection of X3 on [1:X;]. Therefore at the null, having chosen
v such that v(0,1) = 0, 2(v) = 0 and we have

Ton = no~ (v, F)(/égn)/Qz/Ngn ~ X’Zz'

While under H,,, T, is noncentral th with non centrality parameter, { =

o (v, F)myQama.
Gutenbrunner (1994) suggests two alternative estimators of the nuisance
parameter o%(v, F'), one for the case in which v has a signed density .J, the
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other intended for the case in which v is discrete. In the former case we have,
integrating by parts,

)=~ [ [ ) = P @) ()~ ([ F )T )

where j(u)A = u.J(u). Under the null this can be estimated by replacing
F~"(u) by Bo(u), i.e. by

520y = [ [ olew) = o)) () ()~ ( [ Bow)d (w))*

In the latter case we require direct estimation of the sparsity function

d
s(u) = o= F7 (u) = 1/ f(F7(u))
by, for example, the difference quotient,

sn(u) = (2hn) ™ (Bo(u + ) = Bo(u = b))

which can be substituted into our initial expression to obtain

on(v) = //(u A v —uv)s,(u)s,(v)dv(u)dv(v).

As noted by Gutenbrunner, the rate of convergence of the former approach is
O(n~'/?), while the latter is slower due to the estimation of the sparsity func-
tion. Tests related to the discrete approach were proposed by Koenker and
Bassett (1982), but it now seems preferable to avoid the sparsity estimation
problem by adopting the smoother form of the measure v.

The classical theory of L-statistics admits two equivalent formulations.
One may either consider weighted averages of the order statistics with weights
generated by a fixed function, say .J, or equivalently, we may consider ran-
domly weighted averages of the original observations with the weights deter-
mined by the ranks of the observations. Thus, we have

n

i J(if(n+ 1)) X = Y J(Ri/(n + 1)) X;.

i=1
These two approaches diverge in the linear model yielding two distinct ap-

proaches to L-statistics, as noted by Gutenbrunner and Jureckova (1992).
To see this consider weights defined by

wi=- " () dan (1)
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for J of bounded variation with J > 0, [.J(t)dt = 1. Gutenbrunner and
Jureckova (1992) consider the weighted least squares estimator

B = (X'WX)'X'Wy

with W = diag (w;). In the simple case of the .J function corresponding
to the trimmed mean, J,(u) = (1 —2a) ' I(a < u < (1 — a)) were already
proposed in Koenker and Bassett (1978) and studied by Ruppert and Carroll
(1980), and correspond to least squares estimation based on the observations
lying between the ath and (1-— oz)th regression quantile planes. By relating
this approach to rank statistics via the regression rank score process the
formulation of Gutenbrunner and Jureckova has unified the theory. And from
a practical standpoint it has clarified the role of the zero-residual observations
for this version of trimmed least squares. For general .J taking both positive
and negative values we may write J = J* —J~, and w = wt — w™. This is
essential for scale estimators. Thus we may replace the L-estimators of type 1
discussed above with these L-estimators of type 2 and proceed as before. This
approach is elaborated in Gutenbrunner, Juretkova and Koenker (1995).

Combining the R and L components of the heteroscedasticity tests de-
scribed above is straightforward particularly if we have orthogonality among
the components of X which implies independent y? components. The or-
thogonal case actually involves no sacrifice in generality, since the invariance
lemma of Section 2.1 may be used to transform to this case.

4 Rank Tests for Time Series Models

Much of the theory surveyed in the previous sections may be applied directly
to linear time-series models. Koul and Saleh (1995) have studied applica-
tions to stationary AR(p) models. Koul and Mukerjee (1994) have studied
applications to long-memory processes. There has been considerable recent
research on aligned rank tests in time-series applications, see e.g., Hallin
and Puri (1992,1994), and Campbell and Dufour (1995). It would be very
interesting to compare the performance of various rank based tests in this
context carefully evaluating the influence of preliminary estimators for the
aligned tests, as well as the effect of the choice of score functions. There is a
strong sense, reading the empirical literature in time series econometrics, that
robust methods of inference are needed, particularly because innovation dis-
tributions appear to be long-tailed. Rank-based methods which traditionally
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have offered reliable size and greatly improved power in such circumstances
would seem to be very promising.

Two particularly exciting new arenas of application for rank-based in-
ference in econometrics are tests of nonstationary hypotheses and inference
for ARCH-type models. In Hasan and Koenker (1994) tests of the unit root
hypothesis are proposed using the regression rank score approach of Guten-
brunner, Jureckova , Koenker and Portnoy (1993). Related tests have also
been suggested by Hercé (1995). Monte Carlo simulations corroborate the
attractive robustness of these methods relative to the well-established least-
squares based tests proposed by Dickey and Fuller (1979) and others.

ARCH and related stochastic volatility models also provide a fertile field
for rank based inference since they extend in an important way the more
traditional heteroscedastic models of economics discussed in Section 3. Some
initial steps in this direction have been taken in Koenker and Zhao (1995).

5 Conclusion

Statistical inference based on ranks continues to provide an extremely at-
tractive alternative to classical, likelihood-based, inference methods. The
approach to rank-based inference introduced by Gutenbrunner and Jureckova
(1992) has significantly expanded the scope of these methods by providing an
elegant generalization of the Héjek and Siddk rankscore functions to linear
models with nuisance parameters, thus circumventing alignment and prelim-
inary estimation problems. Many interesting opportunities remain. We have
focused exclusively on hypotheses related to location and scale shift, but
broader classes of hypotheses including those of Kolmogorov-Smirnov form
could be considered. See, e.g., Jureckova (1992). And there many potentially
important extensions of these methods to the realm of nonlinear models.
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