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Abstract. The penalized least squares interpretation of the classical random ef-
fects estimator suggests a possible way forward for quantile regression models with
a large number of “fixed effects”. The introduction of a large number of individual
fixed effects can significantly inflate the variability of estimates of other covariate
effects. Regularization, or shrinkage of these individual effects toward a common
value can help to mollify this inflation effect. A general approach to estimating
quantile regression models for longitudinal data is proposed employing `1 regular-
ization methods. Sparse linear algebra and interior point methods for solving large
linear programs are essential computational tools.

1. Introduction

Recent contributions to the literature on linear and nonlinear mixed models have
emphasized the strong link with penalty methods for nonparametric function estima-
tion. Shrinkage of highly overparameterized models toward simpler, plausible models
suggested by prior smoothness considerations shares many common features with
the shrinkage of nominal effects toward common values based on prior beliefs about
their exchangeability. The dominant paradigm in the random effects, mixed model
literature has been a Gaussian structure in which covariates exert a pure location
shift effect on the response variable. In some applications it is of interest to explore
a broader class of covariate effects, while still accounting for individual specific ef-
fects. Such models enable the investigator to explore various forms of heterogeneity
associated with the covariates under less stringent distributional assumptions.

The almost exclusive focus on least squares estimators under Gaussian conditions
for longitudinal data analysis can be taken as a challenge: Can a more flexible, more
robust approach to longitudinal data analysis be forged outside the Gaussian random
effects framework? I will argue that quantile regression might play a constructive role
in such a development.

The construction of infant and adolescent growth charts provides a motivating ap-
plication in which a functional component as well as ordinal and nominal factors may
appear. It is of obvious importance to construct reference growth charts that accu-
rately represent the conditional quantiles of the growth distribution without unduly
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2 Quantile Regression for Longitudinal Data

constraining the estimation process by unverifiable distributional assumptions. Sev-
eral authors including D.R Cox and M.C. Jones in the discussion of Cole (1988) have
suggested that quantile regression methods may offer advantages over parametric ap-
proaches to the analysis of such growth charts. A challenge in these applications is
to respect the longitudinal structure of most growth data allowing individual specific
effects while allowing covariates to play a more flexible role.

The quantile regression problems that will be considered generally involve a large
number of cross-sectional “individuals” observed over a relatively short number of
time periods. Typical reference growth charts are based on several hundred individ-
uals with about 10 to 20 measurements per individual. When each cross-sectional
observation is allowed an individual specific location shift effect; as a consequence the
parametric dimension of the resulting estimation problem can be quite large. Com-
putational methods that exploit the inherently sparse nature of the linear algebra for
interior point solution of the resulting linear programming problems play an essential
role.

2. Models and Methods

Consider the classical linear random effects model,

(2.1) yij = x>ijβ + αi + uij j = 1, ...mi, i = 1, ..., n,

which we will write in matrix form as,

y = Xβ + Zα + u.

The matrix Z represents an incidence matrix that identifies the n distinct individuals
in the sample. In the growth curve setting the subscript i would index individual
patients, and the subscript j would index the mi distinct measurements made on
the ith patient. We begin by recalling an instructive characterization of the random
effects estimator under Gaussian conditions.

2.1. Gaussian Random Effects as Penalized Least Squares. Suppose u and α
are independent Gaussian vectors with u ∼ N (0, R) and α ∼ N (0, Q). Observing
that v = Zα+ u has covariance matrix

Evv> = R + ZQZ>,

we can immediately deduce that the minimum variance unbiased estimator of β is,

β̂ = (X>(R + ZQZ>)−1X)−1X>(R + ZQZ>)−1y.

This estimator is certainly not very appealing from a robustness standpoint, but the
optimization problem that gives rise to β̂ is suggestive of a larger class of possible
candidate estimators under non-Gaussian conditions.

Proposition. β̂ solves min(α,β) ‖y −Xβ − Zα‖2
R−1 + ‖α‖2

Q−1, where ‖x‖2
A = x>Ax.
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Proof: Differentiating we obtain the normal equations,

X>R−1Xβ̂ +X>R−1Zα̂ = X>R−1y

Z>R−1Xβ̂ + (Z>R−1Z +Q−1)α̂ = Z>R−1y

Solving, we have β̂ = (X>Ω−1X)−1X>Ω−1y where

Ω−1 = R−1 −R−1Z(Z>R−1Z +Q−1)−1Z>R−1.

But Ω = R + ZQZ>, see e.g. Rao(1973, p 33.).
This result has a long history. Robinson (1991) attributes the normal equations

above to Henderson (1950). Goldberger (1962) introduced the terminology “best
linear unbiased predictor”, subsequently rendered as BLUP, to describe the estimator
β̂ and its associated “estimator” α̂ of the random effects. The implicit estimation of
the random effects may appear strange, but viewing the random effects estimator as
a penalized least squares estimator opens the door to the consideration of alternative
measures of fidelity and alternative penalties. By shrinking the unconstrained α̂’s
toward a common value we achieve not only improved performance of the individual
fixed-effect estimates, but also improve the performance of the estimate of β. In the
Bayesian paradigm the penalty formulation is natural, as emphasized by Lindley and
Smith (1972), and many subsequent authors. Alternatives to the Gaussian penalty
‖α‖2

Q−1, such as those proposed below would simply reflect differences in prior beliefs
about the distribution of the α’s.

2.2. Quantile Regression with Fixed Effects. Contemplating the extension of
the model (2.1) to models for conditional quantile functions we must first confront
the question: What role should the α’s play? Generally, the α’s would be intended to
capture some individual specific source of variability, or “unobserved heterogeneity,”
that was not adequately controlled for by other covariates in the model. For example,
in a study of the effect of a dietary intervention on blood pressure, it would be
desirable to estimate departures from individuals’ idiosyncratic levels. If the number
of observations mi were large for each individual then we might even hope to estimate
a distributional shift αi(τ) for each individual. This would certainly be useful for
groups of individuals: a distributional shift for men versus women, or for blacks
versus whites. However, in most applications the mi, the number of observations on
each individual, would be relatively modest and then it is quite unrealistic to attempt
to estimate a τ -dependent, distributional, individual effect. At best we may be able to
estimate an individual specific location-shift effect, and even this may strain credulity.

We will consider the following model for the conditional quantile functions of the
response of the jth observation on the ith individual yij,

(2.2) Qyij
(τ |xij) = αi + x>ijβ(τ) j = 1, ...mi, i = 1, ..., n.
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In this formulation the α’s have a pure location shift effect on the conditional quantiles
of the response. The effects of the covariates, xij are permitted to depend upon the
quantile, τ , of interest, but the α’s do not.

To estimate the model (2.2) for several quantiles simultaneously, we propose solving,

(2.3) min
(α,β)

q
∑

k=1

n
∑

j=1

mi
∑

i=1

wkρτk
(yij − αi − x>ijβ(τk))

where ρτ (u) = u(τ − I(u < 0)), denotes the piecewise linear quantile loss function
of Koenker and Bassett (1978). The weights wk control the relative influence of the
q quantiles {τ1, ..., τq}, on the estimation of the αi parameters. The choice of the
weights, wk, and the associated quantiles τk, is somewhat analogous to the choice of
discretely weighted L-statistics, as for example in Mosteller (1946). In the Monte-
Carlo section below we use Tukey’s trimean as a prototype assigning weights, .25,
.5, and .25 to the quartiles. Koenker (1984) considered an analogous situation in
which only the intercept parameter was permitted to depend upon τ and the slope
parameters associated with the included covariates were constrained to be identical
for several τ ’s. In this case the slope parameters are estimated were estimated as re-
gression L-statistics. In the present instance, it is the α parameters that are estimated
as discretely weighted L-statistics.

Solving the problem (2.3) may appear somewhat quixotic when the dimensions
n, m and q are large. In least squares applications the usual strategy would be to
transform y and X to deviations from individual means, and then compute β̂ from
the transformed data. For quantile regression this decomposition of projections isn’t
available and we are required to deal directly with the full problem. Fortunately,
in typical applications the problem is quite sparse, that is the design matrix of the
full problem is mostly zeros. Storing the dense version of this matrix with all the
zeros treated as double precision floats may well be infeasible, but standard sparse
matrix storage schemes only require space for the non-zero elements and their indexing
locations. This dramatically reduces the memory requirements in large problems.

Interior point methods for solving (2.3) proceed iteratively by solving a sequence of
diagonally weighted least squares steps using a Cholesky factorization. The sparsity of
the design is typically preserved quite well in this factorization, as noted by Saunders
(1994), and the computational effort is roughly proportional to the number of non-zero
elements. Implementations of this approach for the public domain dialect R, Ihaka
and Gentleman (1996), of Chambers (1998) S language are discussed in Koenker and
Ng (2003) and are available on CRAN at www.r-project.org.

2.3. Penalized Quantile Regression with Fixed Effects. We have seen that the
optimal estimator for the Gaussian prototype model (2.1) involves shrinking the α̂’s
toward a common value. When the xij component of the model contains an intercept,
as we will henceforth assume, this common value can be taken to be the conditional
central tendency of the response at a point determined by the centering of the other
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covariates. In the quantile regression version of the model (2.2) this would be some
corresponding conditional quantile of the response, although we would require further
conditions including symmetry of the τk’s and the wk’s to be specified.

Particularly when n is large relative to the mi’s shrinkage may be advantageous in
controlling the variability introduced by the large number of estimated α parameters.
For the quantile loss function, ρτ it is convenient to consider the `1 penalty,

P (α) =

n
∑

i=1

|αi|

in place of the conventional Gaussian penalty. This choice maintains the linear pro-
gramming form of the problem and also preserves the sparsity of the resulting design
matrix. Several authors, notably Tibshirani (1996) and Donoho, Chen, and Saunders
(1998), have pointed out that `1 shrinkage offers some statistical advantages over
more conventional Gaussian `2 penalties in addition to its computational advantages.

We will consider estimators solving the penalized version of (2.3)

(2.4) min
(α,β)

q
∑

k=1

n
∑

j=1

mi
∑

i=1

wkρτk
(yij − αi − x>ijβ(τk)) + λ

n
∑

i=1

|αi|.

For λ → 0 we obtain the fixed effects estimator described above, while as λ → ∞
the α̂i → 0 for all i = 1, 2, ..., n and we obtain an estimate of the model purged of the
fixed effects. Note that since the xij component is assumed to contain an intercept,
in either case we will also have q, τ -specific, estimates of the intercept. If we consider
the special case that mi ≡ m for all i, we can write the design matrix for a single
quantile as,

[X
...In ⊗ em]

where X = (xij) is nm by p, and em denotes an m-vector of ones. The design matrix
for q > 1 may be written as,

[W ⊗X
...w ⊗ (In ⊗ em)].

Appending the the penalty term we have the augmented design matrix,
[

W ⊗X w ⊗ (In ⊗ em)
0 λIn

]

.

which has dimension qnm + n by qp + n. The corresponding response vector is
ỹ = ((w ⊗ y)>0>n )>. These dimensions may seem even more daunting than before,
but again we should emphasize that the sparsity of the design matrix comes to the
rescue. Even quite large problems of this type can be handled successfully on rather
modest machines.
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3. Asymptopia

The existence of the parameter α whose dimension, n, is tending to infinity raises
some fundamentally new issues for the asymptotic analysis of the quantile regression
estimator. To address these issues it seems prudent to begin with a relatively simple
setting in which we focus on estimation of a single conditional quantile function. We
will restrict attention to balanced designs with mi = m for all i = 1, ..., n. Then,
since Z = In⊗em, we have Z>Z = mIn. We will begin by considering the fixed effect
estimator, and then turn to the penalized estimator. Both m and n will be assumed
to tend to infinity. Convergence in distribution will be denoted by the symbol ;.

Consider the objective function

Vmn(δ) =

m
∑

j=1

n
∑

i=1

ρτ (yij − ξij(τ) − z>ijδ0/
√
m− x>ijδ1/

√
mn) − ρτ (yij − ξij(τ))]

where ξij(τ) = αi + x>ijβ(τ). Note that

δ̂ =

(

δ̂0
δ̂1

)

=

( √
m(α̂− α)√

mn(β̂(τ1) − β(τ1))

)

minimizes the function Vmn. We will impose the following regularity conditions:

A1. The yij are independent with conditional distribution functions, Fij , given xij ,
and differentiable conditional densities, 0 < fij < ∞, with bounded derivatives f ′

ij ,
at ξij(τ), for j = 1, ..., m, i = 1, ..., n,

A2. Let ω = τ(1 − τ) and denote Φ = diag(fij(ξij(τ))). The limiting forms of the
following matrices are positive definite:

D0 = lim
m→∞
n→∞

ω

m

(

Z>Z Z>X/
√
n

X>Z/
√
n X>X/n

)

,

D1 = lim
m→∞
n→∞

m−1

(

Z>ΦZ Z>ΦX/
√
n

X>ΦZ/
√
n X>ΦX/n

)

.

A3. max 1≤i≤n
1≤j≤m

||xij|| < M .

The condition A1 is now quite familiar in the quantile regression literature. Con-
dition A2 is not, but if one supposes for a moment that the model is of the pure
location shift form (2.1), then D1 simplifies somewhat and A2 reduces to a condition
on the matrices X>X/(mn) and Z>Z/m. We have seen that the latter is equal to In,
and the former condition is again familiar. If Z>X = 0 so that there is no “between”
variability in the x’s, then the expressions simplify considerably, but this case is quite
atypical, and generally we would expect that there would be some non-orthogonality
between the individual effects and the other covariates and thus some potential im-
provement in the estimation of β’s due to control of the α’s by shrinkage toward a
common value. These expectations are confirmed in the next section through a small



Roger Koenker 7

simulation experiment. Condition A3 could be relaxed at the cost of some added
complication of the argument.

Theorem 1. Under conditions A1-3, with na/m → 0 for some a > 0, the δ̂1 com-

ponent of the minimizer, δ̂, converges in distribution to a Gaussian random vector

with mean zero and covariance matrix given by the lower p by p block of the matrix

D−1
1 D0D

−1
1 .

Proof: Two distinct arguments will be given. The first should be regarded as purely
heuristic, since it overlooks the complications introduced by the infinite dimensional
nature of α. (An alternative view of the first argument is that it applies to situations
in which m tends to infinity, and n is fixed.) The second explicitly concentrates out

the α parameter focusing on the finite dimensional asymptotic behavior of β̂(τ). The
equivalence between the two results is established with the aid of a matrix identity
formulated as Lemma 1.

Part 1. The function Vmn can be decomposed into two parts using the identity of
Knight (1998),

ρτ (u− v) − ρτ (u) = −vψτ +

∫ v

0

(I(u ≤ s) − I(u ≤ 0))ds

where ψτ (u) = τ − I(u < 0) denotes the quantile influence function. We will write,

Vmn(δ) = V (1)
mn(δ) + V (2)

mn(δ)

where vij = z>ijδ0 + x>ijδ1/
√
n and,

V (1)
mn(δ) = −m−1/2

∑

j

∑

i

ψτ (yij − ξij(τk))vij

V (2)
mn(δ) = −m−1/2

∑

j

∑

i

∫ vij

0

(I(yij ≤ ξij(τ) + t/
√
m) − I(yij ≤ ξij(τ)))dt

The first term is asymptotically Gaussian. Let Ψk = diag(ψτ (yij − ξij(τ))) and
note that EΨemne

>
mnΨ = ωImn. Conditions A2-3 imply a Lindeberg condition and

we have,

V (1)
mn(δ) = −m−1/2(Z>Ψδ0 +X>Ψδ1/

√
n) ; −Bδ.
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The second term is asymptotically quadratic in δ. Note that

EV (2)
mn(δ) = m−1

∑

j

∑

i

∫ vij

0

√
m(Fij(ξij(τ) + t/

√
m) − Fij(ξij(τ)))dt

= m−1
∑

j

∑

i

∫ vij

0

fij(ξij(τ))tdt+ o(1)

=
1

2m

∑

j

∑

i

fij(ξij(τ))(z
>
ijδ0 + x>ijδ/

√
n)2 + o(1)

=
1

2m
(δ>0 Z

>ΦZδ0 + 2δ>0 Z
>ΦXδ1/

√
n + δ>1 X

>ΦXδ1/n) + o(1)

→ 1

2
δ>D1δ.

The variance of V
(2)
mn(δ) converges to zero by Condition A3. The limiting form of the

objective function is thus

V0(δ) = −δ>B +
1

2
δ>D1δ

where B is a zero mean Gaussian vector with covariance matrix D0. In finite dimen-
sional settings, i.e. with n fixed in the present instance, convexity of the objective
function, Vmn, and the uniqueness of the minimum of V0, yields uniformity in δ. so
δ̂ converges to the the argmin of V0 completing the argument as in Knight and Fu
(2000).

Part 2. Given the infinite dimensional nature of α there may be some legitimate
doubt about the validity of the foregoing approach. A more rigorous argument can
be made by explicitly replacing the α̂’s by their Bahadur representation and thereby
concentrating out their effect, expressing the objective function solely in terms of the
finite dimensional parameter β. Using the reparameterization of the previous argu-
ment, note that for any fixed δ1, we can consider the behavior of δ̂0i, which depends
only on the m observations for the ith subsample. It follows from the argument of
Ruppert and Carroll (1980) that uniformly for ‖ δ1 ‖< ∆1 and |δ0i| < ∆0,

‖ gi(δ0i, δ1) − gi(0, 0) − E(gi(δ0i, δ1) − gi(0, 0)) ‖= op(1)

where

gi(δ0i, δ1) = −m−1/2
m

∑

j=1

ψτ (yij − ξij(τ) − x>ijδ1/
√
nm− δ0i/

√
m)
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with ψτ (u) = τ − I(u < 0). Expanding we have,

E(gi(δ0i, δ1) − gi(0, 0)) = m−1/2

m
∑

j=1

[Fij(ξij(τ) + x>ijδ1/
√
nm+ δ0i/

√
m) − τ ]

= m−1/2
m

∑

j=1

fij(ξij(τ))[x
>
ijδ1/

√
nm+ δ0i/

√
m] + op(1).

Optimality of the δ̂0i implies that gi(δ0i, δ1) = o(m−1), letting f̄i = m−1
∑m

j=1 fij,

δ̂0i = f̄−1
i [m−1

m
∑

j=1

fij(ξij(τ))x
>
ijδ1/

√
n+m−1/2

m
∑

j=1

ψτ (yij(τ) − ξij(τ))] +Rmi.

Substituting the δ̂0i’s, we will denote,

G(δ1) =
−1√
mn

n
∑

i=1

m
∑

j=1

xijψτ (yij(τ) − ξij(τ) − x>ijδ1/
√
nm− δ̂0i/

√
m).

Again, uniformly for ‖ δ1 ‖< ∆1, one can show that,

‖ G(δ1) −G(0) −E(G(δ1) −G(0)) ‖= op(1),

and at the minimizer, G(δ̂1) = o((mn)−1). Expanding, as above,

E(G(δ1) −G(0)) =
1√
mn

n
∑

i=1

m
∑

j=1

fijxij(x
>
ijδ1/

√
nm+ δ̂0i/

√
m)

=
1

mn

n
∑

i=1

m
∑

j=1

fijxij(x
>
ijδ1 − f̄−1

i m−1

m
∑

j=1

fijx
>
ijδ1)

+
1√
mn

n
∑

i=1

m
∑

j=1

fijxij f̄
−1
i m−1/2

m
∑

j=1

ψτ (yij − ξij(τ))

+
1√
mn

n
∑

i=1

m
∑

j=1

fijxijRmi/
√
m+O(m−1/2),

where the order of the final term is controlled by the bound on the derivative of the
conditional density. Setting the foregoing expression equal to G(0) and solving for δ̂1
yields, in somewhat more convenient matrix notation,

δ̂1 = (X>M>

Z̃
ΦMZ̃X)−1(X>M>

Z̃
Ψ +Rmn)

where MZ̃ = I − PZ̃ , PZ̃ = Z(Z>ΦZ)−1Φ, and Ψ denotes the mn vector (ψτ (yij −
ξij(τ))), and

Rmn =
1√
mn

n
∑

i=1

m
∑

j=1

fijxijRmi/
√
m+O(m−1/2).
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The remainder term, Rmn, has dominant component that comes from the Bahadur
representation of the α̂’s. By A1 and A3, we have for a generic constant K,

Rmn = m−1/4 K√
n

n
∑

i=1

R0i + op(m
−1/4)

The analysis of Knight (2001) shows that the summands converge in distribution, that
is as m → ∞, we have m1/4Rmi ; R0i, where the R0i are functionals of Brownian
motion. Independence of the yij, and the condition on the growth of m ensures
tha contribution of the remainder is negligible. Denoting the limiting form of the
matrices:

D̃1 = lim
m→∞
n→∞

(mn)−1X>M>

Z̃
ΦMZ̃X

and

D̃0 = lim
m→∞
n→∞

ω

mn
X>M>

Z̃
MZ̃X

we have, neglecting the penalty term of the objective function,

δ̃1 ; N (0, D̃−1
1 D̃0D̃

−1
1 ).

The next lemma verifies that this form of the covariance matrix is identical to the
lower diagonal block of the matrix D−1

1 D0D
−1
1 derived previously.

Lemma 1. (D−1
1 D0D

−1
1 )22 = D̃−1

1 D̃0D̃
−1
1 .

Proof: Standard partitioned inverse formulae give,

mn(D−1
1 D0D

−1
1 )22 =

(

−FE−1 E−1
)

(

Z>Z Z>X
X>Z X>X

) (

−FE−1

E−1

)

= E−1[F>Z>ZF −X>ZF − F>Z>X +X>X]E−1

where E = X>ΦX−X>ΦZ(Z>ΦZ)−1Z>ΦX = mnD̃1, and F = (Z>ΦZ)−1Z>ΦX =
PZ̃X. The result then follows by noting that the term in square brackets is equal to
X>M>

Z̃
MZ̃X.

3.1. Asymptotics for the Penalized Quantile Regression Estimator. To ex-
plore the asymptotic behavior of the penalized quantile regression estimator solving
(2.3) we will maintain the assumption of a balanced design and consider simultane-
ously estimating q quantiles. Let

Vmn(δ) =

q
∑

k=1

m
∑

j=1

n
∑

i=1

wk[ρτk
(yij − ξij(τk) − z>ijδ0/

√
m− x>ijδk/

√
mn)

− ρτk
(yij − ξij(τk))] + λm

n
∑

i=1

|αi − δ0i/
√
m| − |αi|,
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where ξij(τk) = αi + x>ijβ(τk). Note that

δ̂ =











δ̂0
δ̂1
...

δ̂q











=











√
m(α̂− α)√

mn(β̂(τ1) − β(τ1))
...√

mn(β̂(τq) − β(τq))











minimizes the function Vmn. We will impose the modified regularity conditions:

B1. The yij are independent with conditional distribution functions, Fij , given xij ,
and differentiable conditional densities, 0 < fij < ∞, with bounded derivatives f ′

ij ,
at ξij(τ), for j = 1, ..., m, i = 1, ..., n,

B2. Let Ω denote the q by q matrix with typical element τk ∧ τl − τkτl and Φk =
diag(fij(ξij(τk))). The limiting forms of the following matrices are positive definite:

D0 = lim
m→∞
n→∞

m−1

(

w>ΩwZ>Z w>ΩW ⊗ Z>X/
√
n

WΩw ⊗X>Z/
√
n WΩW ⊗X>X/n

)

,

D1 = lim
m→∞
n→∞

m−1









∑

wkZ
>ΦkZ w1Z

>Φ1X/
√
n · · · wqZ

>ΦqX/
√
n

w1X
>Φ1Z/

√
n w1X

>Φ1X/n · · · 0
...

. . .
...

wqX
>ΦqZ/

√
n 0 · · · wqX

>ΦqX/n









.

B3. max 1≤i≤n
1≤j≤m

||xij|| < M .

Theorem 2. Under conditions B1-3, provided that λm/
√
m→ λ0, and na/m→ 0 for

some a > 0, the first component δ̂1 minimizing Vmn has the same limiting distribution

as the as the first component of the minimizer of,

V0(δ) = −δ>B +
1

2
δ>D1δ + λ0δ

>s

where B is a zero mean Gaussian vector with covariance matrix D0, and s = (s>0 0>pq)
>

and s0 = (sgn(αi)).

Proof: A sketch of the heuristic form of the argument for the previous result is
provided. The function Vmn can be decomposed into three parts using the identity of
Knight (1998),

ρτ (u− v) − ρτ (u) = −vψτ +

∫ v

0

(I(u ≤ s) − I(u ≤ 0))ds

where ψτ (u) = τ − I(u < 0) denotes the quantile influence function. We will write,

Vmn(δ) = V (1)
mn(δ) + V (2)

mn(δ) + V (3)
mn(δ),
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where vijk = z>ijδ0 + x>ijδk/
√
n and,

V (1)
mn(δ) = −m−1/2

∑

k

∑

j

∑

i

wkψτk
(yij − ξij(τk))vijk

V (2)
mn(δ) = −m−1/2

∑

k

∑

j

∑

i

wk

∫ vijk

0

(I(yij ≤ ξij(τk) + t/
√
m) − I(yij ≤ ξij(τk)))dt

V (3)
mn(δ) = λm

∑

i

|αi − δ0i/
√
m| − |αi|.

The first term is asymptotically Gaussian. Let Ψk = diag(ψτk
(yij − ξij(τk))) and

note that Ψkemne
>
mnΨl = (τk ∧ τl − τkτl)Imn. Conditions A2-3 imply a Lindeberg

condition and we have,

V (1)
mn(δ) = −m−1/2

∑

k

wk(Z
>Ψkδ0 +X>Ψkδk)

; −Bδ.

The second term is asymptotically quadratic in δ. Note that

EV (2)
mn(δ) = m−1

∑

k

∑

j

∑

i

wk

∫ vijk

0

√
m(Fij(ξij(τk) + t/

√
m) − Fij(ξij(τk)))dt

= m−1
∑

k

∑

j

∑

i

wk

∫ vijk

0

fij(ξij(τk))tdt+ o(1)

=
1

2m

∑

k

∑

j

∑

i

wkfij(ξij(τk))(z
>
ijδ0 + x>ijδk/

√
n)2 + o(1)

=
1

2m

∑

k

wk(δ
>
0 Z

>ΦkZδ0 + 2δ>0 Z
>ΦkXδk/

√
n + δ>k X

>ΦkXδk/n) + o(1)

→ 1

2
δ>D1δ.

The variance of V
(2)
mn(δ) converges to zero by Condition A3. Finally,

V (3)
mn(δ) =

λm√
m

n
∑

i=1

δ0isgn(αi) → λ0δ
>
0 s.

Convexity of the objective function, Vmn, and the uniqueness of the minimum of V0

yields uniformity in δ completing the argument as above. This representation
yields an explicit expression for the asymptotic bias as a function of the parameter λ
that controls the degree of shrinkage.
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Figure 4.1. Shrinkage of the fixed effect parameter estimates, α̂i. The
left panel illustrates an example of the `1 shrinkage effect. The right
panel illustrates an example of the `2 shrinkage effect.

4. Monte-Carlo

In this section a very brief glimpse into the finite sample behavior of the penalized
quantile regresion estimator is offered. I begin by contrasting the shrinkage effect of
`1 and `2 penalty methods. Consider a simple example with n = 50 and m = 5 and
response generated by the model,

yij = αi + uij

with αi’s iid from the χ2
3 distribution, and uit iid also from χ2

3. In the left panel of
Figure 1 we illustrate the estimated, α̂i’s as a function of the regularization parameter
λ. Here we have used the estimator (2.3) with weights w = (.25, .50, .25) on the three
quartiles. The xij ’s were generated as Gaussian according to (4.3) below. In the right
panel we illustrate the corresponding shrinkage effects for the `2 Gaussian penalty
method. The `1 shrinkage method is more tolerant of large discrepancies; note that
the gradient condition condition involves only the signs of the estimated effects, not
their magnitudes, so highly unusual αi’s can be substantially shrunken toward zero
without the extreme prejudice implied by the `2 criterion.

Two simple versions of our basic model are considered in the simulation exper-
iments. In the first, reported in Table 1, the scalar covariate, xij , exerts a pure
location shift effect. In the second, reported in Table 2, xij has a both a location and
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scale shift effect. In the former case the response, yij, is generated by the model,

(4.1) yij = αi + xijβ + uij

while in the latter case,

(4.2) yij = αi + xijβ + (1 + xijγ)uij.

Without loss of generality we will take β = 0. Interest will focus on the effect of the
covariate, xij , at the median. Sample sizes are fixed, with n = 50, and m = 5 for both
versions of the model. In the first version of the model the covariate effect is clearly
zero, in the second version of the model it depends on the choice of the quantile of
interest and the form of the error distribution. In all cases the reported entries are
based on 400 replications of the simulations.

A critical aspect governing the performance of penalty methods in these settings
is the “between” versus “within” variability of the covariate. A convenient way to
summarize this is the interclass correlation coefficient. If we generate xij ’s as

(4.3) xij = γi + vij

with γi and vij independent and identically distributed over i and i, j respectively,
then the interclass correlation coefficient,

ρx = σ2
γ/(σ

2
γ + σ2

u),

see e.g. Scheffé (1959, p. 223) is just the ordinary correlation coefficient between
any two xij and xik observations with j 6= k. We take ρx = .5 in our simulations.

We consider three variants of model 1. In all three variants the xij ’s are generated
from (4.3) with both γi’s and vij’s as Gaussian with unit variance. The response y is
then generated from (4.1). In the first variant both the αi’s and uij’s are standard
Gaussian, in the second variant both are Student t on three degrees of freedom, and
in the third variant both are central χ2

3. The interclass correlation coefficient of the
response is 0.50 for all three variants.

Six estimators are considered: three from the least squares family, three from the
quantile regression family. The ordinary least squares estimator (LS) simply ignores
the αi effects entirely, maximally shrinking all of these estimates to zero. The penal-
ized least squares estimator (PLS) is the classical random effects estimator for the
model (2.1) using the (known) optimal variance ratio. The least squares fixed effects,
or “within” estimator (LSFE) simply implements the unpenalized least squares esti-
mator of the model (2.1). Correspondingly, the ordinary quantile regression estimator
(QR) fully shrinks the α̂i’s to zero, the fixed effects estimator (QRFE) shrinks them
not at all, and the penalized quantile regression estimator (PQR) shrinks them with
λ chosen to be the ratio of scale parameters σu/σα. The quantile regression estima-
tors minimize the objective function (2.4) with weights (.25, .5, .25) associated with
the three quartiles. In the subsequent tables, however, we focus exclusively on the
performance of the median slope estimate, as a way to compare with the least squares
estimation of the slope of the conditional mean relationship. Bias is computed in each
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case with respect to the true slope parameter, which in all but one case is zero. The
exceptional case is described in more detail below.

LS PLS LSFE QR PQR QRFE
N
Bias 0.0031 0.0048 0.0056 0.0048 0.0067 0.0047
RMSE 0.0847 0.0604 0.0668 0.0977 0.0781 0.0815
t3
Bias -0.0062 -0.0054 -0.0051 -0.0063 -0.0101 -0.0082
RMSE 0.1377 0.1031 0.1143 0.1274 0.0881 0.0921
χ2

3

Bias -0.0068 0.0002 0.0032 -0.0052 0.0063 0.0072
RMSE 0.2155 0.1503 0.1650 0.2362 0.1506 0.1513

Table 4.1. Location-Shift Model

Table 1 reports the results of the location shift simulations. Bias is small in all
cases. In the Gaussian setting we see roughly the anticipated efficiency loss due to
estimating the median rather than the mean. The gain from penalization, while
not overwhelming, is certainly worthwhile. In the t3 setting the penalized quantile
regression estimators do considerably better than their least squares competitors. In
the χ2

3 case the penalized quantile regression esimator does only slightly better than
the unpenalized fixed effects procedure, but both are competitive with the penalized
least squares results.

LS PLS LSFE QR PQR QRFE
N
Bias 0.0000 0.0010 0.0012 -0.0020 -0.0021 -0.0022
RMSE 0.0559 0.0501 0.0542 0.0638 0.0526 0.0556
t3
Bias -0.0045 0.0000 0.0008 -0.0044 -0.0015 0.0021
RMSE 0.0948 0.0806 0.0870 0.0758 0.0620 0.0693
χ2

3

Bias 0.0617 0.0609 0.0608 0.0317 -0.0055 -0.0128
RMSE 0.1608 0.1292 0.1368 0.1627 0.1042 0.1092

Table 4.2. Location-Scale-Shift Model

In the location-scale version of the model we adopt the same three distributions
for generating the αi’s and the uij’s. In the location-scale model it is important that
the resulting linear quantile functions do not cross, an eventuality we avoid by now
taking the xij ’s as χ2

3 instead of Gaussian, thus ensuring that the scale parameter will
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be positive. In the Gaussian and t3 cases, since we are focusing on the estimation of
the median effect, by symmetry the effect of the covariate xij on median response is
still zero. However, in the χ2

3 case the median effect is,

β(1/2) = β + γQu(1/2),

which in our case with β = 0 and γ = 1/10, is .236.
In Table 2 we report the results of the location-scale model simulations. Again,

we see that the quantile regression estimators perform quite well in the t3 case, but
they now are also quite competitive even in the Gaussian case, a finding that may be
attributed to the effect of the heteroscedasticity in this formulation of the model. It is
also apparent that the imposing more agressive shrinkage is helpful in these cases. The
comparison of performance in the χ2

3 case is somewhat difficult, since the procedures
are inherently estimating different functions. The quantile regression methods are all
intended to estimate the conditional median function and do reasonably well in the
sense that the bias is still very modest. The least squares estimators are targeting the
conditional mean function, which is now nonlinear in xij , so we have evaluated both
bias and root mean square error as if the least squares methods were also estimating
the conditional median function. This obviously puts the least squares methods at
some disadvantage.

5. Extensions

Many issues remain to be investigated. As in most problems of regularization
there are serious issues about the choice of the regularization parameter, λ; only a
prima facie case has been made that some degree regularization is desirable, decid-
ing precisely how much shinkage poses challenging new questions. There are many
variants of the model that would extend the oneway layout structure for the fixed
effects. These include the incorporation of ordinal factors and nonparametric smooth-
ing components. The analysis of the performance of the methods for fixed mi sample
sizes is also a critical direction for future research. Applications to reference growth
curves would appear to be a natural laboratory for further development of quantile
regression models for longitudinal data.
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