PENALIZED TRIOGRAMS:
TOTAL VARIATION REGULARIZATION FOR BIVARIATE
SMOOTHING
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ABSTRACT. Hansen, Kooperberg, and Sardy (1998) introduced a family of contin-
uous, piecewise linear functions defined over adaptively selected triangulations of
the plane as a general approach to statistical modeling of bivariate densities, regres-
sion and hazard functions. These triograms enjoy a natural affine equivariance that
offers distinct advantages over competing tensor product methods that are more
commonly used in statistical applications.

Triograms employ basis functions consisting of linear “tent functions” defined
with respect to a triangulation of a given planar domain. As in knot selection
for univariate splines, Hansen, et al adopt the regression spline approach of Stone
(1994). Vertices of the triangulation are introduced or removed sequentially in an
effort to balance fidelity to the data and parsimony.

In this paper we explore a smoothing spline variant of the triogram model based
on a roughness penalty adapted to the piecewise linear structure of the triogram
model. We show that the proposed roughness penalty may be interpreted as a total
variation penalty on the gradient of the fitted function. The methods are illustrated
with both real and artificial examples, including an application to estimated quantile
surfaces of land value in the Chicago metropolitan area.

»

“Goniolatry, or the worship of angles, ...
Pynchon (1997)

1. Introduction

Piecewise polynomial functions, or splines, have proven to be an extremely powerful
concept throughout approximation theory and the statistical literature on smooth-
ing. Like the eponymous drafting instrument, splines are an elegantly simple, yet
eminently practical tool. In the statistical literature on splines there continues to be
a vigorous debate over the relative merits of penalty methods for smoothing splines,
versus regression splines relying on knot selection. Both computational tractability
and statistical efficiency play important roles in this debate, and the resulting rivalry
has significantly broadened the scope of both approaches.
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2 PENALIZED TRIOGRAMS

Hansen, Kooperberg, and Sardy (1998) have recently introduced a class of linear
spline models for bivariate smoothing problems. These triogram models are defined on
triangulations of polyhedral planar domains. Knot selection strategies adapted from
the regression spline methods of Stone, Hansen, Kooperberg, and Troung (1997) are
proposed to control the degree of smoothness of the estimates. The primary objective
of the present paper is to explore a smoothing spline approach to the estimation of
triograms. The roughness penalty we employ may be interpreted as an extension to
bivariate settings of the total variation roughness penalty suggested in Koenker, Ng,
and Portnoy (1994) for univariate smoothing problems.

2. On Roughness Penalties
In its classical univariate form the (cubic) smoothing spline solves the problem of
finding a function g minimizing

n
(0= 9(@))? + 4 [ (" (@),
i=1
over a Sobolev space of continuous functions with absolutely continuous first deriv-
ative and square-integrable second derivative. The tuning parameter A controls the
smoothness of the fitted function. In this form the estimator g is a natural cubic
spline with knots at the observed z;’s and may be interpreted as an estimate of the
conditional mean function. The penalty term may be interpreted as a prior belief that
the L, norm of ¢” is unlikely to exceed a specified bound controlled by the choice of

A

2.1. Total Variation Roughness in the One-dimensional Case

There have been numerous efforts to explore alternative forms of both the fidelity
and roughness penalties to achieve modified objectives. One such effort is described
in Koenker, Ng, and Portnoy (1994), where a non-parametric approach to estimating
conditional quantile functions is suggested based on minimizing

(2.1) Z pr(yi — g(2:)) + M (9),

where p;(u) = u(t — I(u < 0)) generates a fidelity term appropriate for conditional
quantile estimation, and the roughness penalty J(g) is taken to be the total variation

of the first derivative of g. If ¢’ is absolutely continuous, we can also write, Natanson
(1974, Theorem IX.4.8),

22) 10) =V(e) = [ 19" @]da.

This establishes a clear link of the total variation roughness penalty to the classi-
cal L, penalty. For smooth functions, the total variation penalty is simply the L,
analogue of the classical L, smoothing spline penalty. Mammen and van de Geer
(1997) have studied total variation penalties with Ly fidelity in the univariate setting;
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together with Portnoy (1997), they have explored the asymptotic behavior of related
estimators.

From a theoretical perspective, the use of total variation penalties enables the fit
to mimic sharp bends, spikes and edges more easily than the conventional L, penal-
ties. For this reason, total variation penalties have received considerable attention
in the image processing literature dating back to Rudin, Osher, and Fatemi (1992),
see also Rudin and Osher (1994). In contrast to the penalty (2.2), which penalizes
variation in the derivative of g, the imaging literature has focused primarily on vari-
ation of the function itself. See Tasdizen, Whitaker, Burchard, and Osher (2002) and
Scherzer (1998) for exceptions. Total variation penalties applied on the function itself
have been recently considered also in the statistical literature, by Nicholls (1998) and
Davies and Kovac (2001). This approach permits discontinuities in the fitted func-
tions, and thus helps to illuminate statistical aspects of related work on total variation
penalties for bivariate functions used for edge detection and image segmentation.

From a more pragmatic viewpoint, total variation penalties are well matched for the
quantile regression fidelity since they preserve the linear programming formulation of
the optimization problem defining the estimator. Solutions to the problem (2.1) take
the form of piecewise linear functions with jumps in their derivative at a few of the
observed z;’s. The L; nature of the total variation penalty imposes a rather different
shrinkage effect than the classical L, penalty. Just as ordinary ¢; regression seeks to
identify p basic observations whose exact fit characterizes the p-dimensional parameter
estimate, the Ly penalty acts more like a model selection device by identifying a small
number of critical x; points at which ¢’ will be allowed to jump. The number of these
selected jump points is controlled by the parameter A\, and provides a natural measure
of the dimensionality of the fitted. See Section 4.7 below and Tibshirani (1996) and
Donoho, Chen, and Saunders (1998) for related discussion of the model-selection,
shrinkage effects of L; type penalties.

2.2. Thin Plate Penalties for Bivariate Smoothing
The extension of univariate smoothing splines to bivariate situations, and beyond,
raises new questions about how to measure the roughness of surfaces. The thin plate
smoothing splines of Harder and Desmarais (1972) whose theory was developed by
Duchon (1976,1977), Meinguet (1979), Wahba and Wendelberger (1980), and others,
minimize

n

(2.3) D (= 9@ ya)? + A (g, 2,11 - 119),

=1

with the roughness penalty defined as

@4) 2|2 = / / | V| 2dedy = / / (2, + 2%, + g2,)dedy.
n n
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A considerable computational simplification is achieved in the classical form of thin-
plate setting, when {2 is taken to be all of R?; however, as noted by Green and
Silverman (1994), there can be considerable disparities between such solutions and
solutions based on versions of the penalty defined over restricted domains.

If g(z,y) = h(z) for some h, then a straightforward computation shows that, on
rectangular 2 = () x (2,

(2.5) J(g, 2,1 113) = J(h, 2, || - |[2) p(22),

where J(h, (21, || - |3) specializes to the classical univariate penalty [(¢”(z))*dz, and
1(£25) denotes the Lebesgue measure of 2. Thus, the thin plate penalty (2.3) may be
viewed as a natural bivariate extension of the classical univariate roughness penalty.
This raises the following questions. Can we, by analogy with the univariate total
variation penalty (2.2), define a bivariate roughness penalty? How should we define
total variation of the gradient of a function of two variables?

2.3. Total Variation in Higher Dimensions
The quest for a satisfactory definition of total variation for functions from R* to
R™ has engaged the mathematical community for more than a century. Only for
k = 1, and m arbitrary, does the classical univariate definition of Jordan (1881)
adapt in a straightforward way, see Dinculeanu (1967). Early definitions for £ > 2 and
m = 1 by Tonelli (1926, 1936), and others suffered from coordinate-dependence and
attendant reliance on rectangular domains—a drawback in nonparametric regression,
as we argue below. The first orthogonally-invariant definitions were introduced by
Kronrod (1949, 1950) in the spirit of the Banach indicatrix theorem. However,
eventually the approach based on the Vitali formula interpreted in the language of
Schwartzian distribution prevailed; Ambrosio, Fusco, and Pallara (2000) give a recent
account of the theory developed in the context of geometric measure theory and
variational calculus, tracing its origins back to Fichera (1954) and De Giorgi (1954).
As in the theory of Sobolev spaces, the formalism of distributions is needed only for
differentiation and limit transitions; the functions under consideration remain stan-
dard. A convenient initial step is to outline the functional domain in a qualitative
way, without recourse to any particular total variation functional. Functions with
bounded variation are defined to be those whose derivatives, in the sense of distri-
butions, are measures. The defined functions encompass not only smooth functions
with bounded variation, but also, for instance, piecewise linear or piecewise constant
(that is, discontinuous) functions (with bounded variation). For a smooth function f
from R* to R™, we define

(2.6) VILQ. 1) = /Q | V|l da:

here dz denotes (multiple) integration with respect to k-dimensional Lebesgue mea-
sure. The functional V', initially defined for smooth functions, is lower semicontinuous,
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hence it can be extended to a broader domain via the approach of Serrin (1961):
(2.7) V(f) =liminf V(f*),

where the right-hand side expression denotes the inf of lim inf V'( f*) over all sequences
f¥ approaching f in the sense of distributions. It can be shown that the extended V'
assigns a finite value to every function with bounded variation; that is, the extension
is nontrivial.

For a function g from R? to R we thus define a penalty

(2.8) Jg, 20 1) =V (Ve 2.1 - |) = / /Q | V) d dy.

This penalty assigns a finite value to every function whose gradient has bounded
variation—in particular, to every piecewise-linear continuous function on bounded
domains with finite number of linear pieces. This is in contrast with the behavior
of the thin-plate functional (2.4). Since the latter is also lower semicontinuous, one
may contemplate an extension analogous to (2.7) also for this functional. However, as
shown by Serrin (1961), any such an extension assigns +oo to any f with discontinuous
derivatives; in particular, any function with a spike or a sharp ridge is evaluated as
infinitely rough.

Any penalty of the form (2.8) can be considered an extension of the univariate
penalty (2.2), regardless of the choice of the norm.

Theorem 2.1. Suppose that g is a function from R? to R such that g(x,y) = h(z)
for some h. There is a constant ¢ depending only on the choice of the matriz norm
in (2.8), but not on g, such that for any 2 = 2, X 2,

(2.9) J(g, 2, (|- 1) = ¢ J(h, 021, ][ - ]]) |42},
where J(h, 21,1 - ||) = [q, |h"(x)| dz, and [$%| denotes the Lebesgue measure of (2.

Proof. Let ¢ be the norm of the 2 X 2 matrix containing 1 in the upper left corner
and zeros elsewhere. By the properties of the norm, the norm of the matrix containing
u instead of 1 in the upper left corner and zeros otherwise is c|u|. Note that in the
Hessian, all second-order partial derivatives are zero, except for g..(z,y) = h"(z);
thus

o2l =c [[ @) dsdy
2
and (2.9) follows by the Fubini theorem for all smooth g and hence by extension for
all g under consideration. [ ]

2.4. The Choice of the Norm: Invariance and Equivariance
For denoising images with a view toward reconstructing discontinuities in derivatives,
Scherzer (1998) proposed using the penalty corresponding to the ¢; norm in (2.6); for
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smooth functions ¢ from R? to R this penalty is equal to

(2.10) 19,2, 1) = / / (19s0] + 21gsy| + |90y ddly.

A related penalty has been recently proposed in the statistical literature by He, Ng,
and Portnoy (1998), who introduced a bivariate form of the quantile smoothing spline
using a roughness penalty that sums univariate total variation of the function along
rectangular grid lines. Their roughness penalty may be viewed as a total variation
of the gradient in the Tonelli-Cesari vein of (2.6), with the ¢; norm applied to the
diagonal of the Hessian,

(2.11) (g, 2|l - |anr) = / / (19as] + |95 )dzdy.

Their formulation gives rise to bilinear tensor product splines that are continuous and
piecewise linear on the grid lines, and bilinear on the rectangular patches between grid
lines. Similar tensor product splines have also been widely used in the least-squares
regression spline literature.

One potential disadvantage of the tensor product formulation is its lack of orthog-
onal equivariance. Functions well oriented with respect to the xy-axes may prove to
be much more difficult to fit when the observations are rotated. Invariance considera-
tions, as stressed by Green and Silverman (1994), provide valuable guidance through
the forest of potential definitions of roughness penalty functionals.

The requirement of orthogonal invariance for the penalty J leads to the condition

(2.12) IUTHU|| = [|H],

satisfied by any orthogonal matrix U and any symmetric matrix H. There are many
norms satisfying this property—apparently any norm which is a symmetric function
of the eigenvalues satisfies (2.12). The leading example of such a norm is the Hilbert-
Schmidt (Frobenius, Euclidean) norm of the matrix. The resulting penalty is, for
sufficiently smooth g, given by

Ko 2,11+ I0) = [ \fo2+ 208+ gy dady
02

Other possibilities include the spectral norm, the maximal absolute value of the eigen-
values, or absolute value of the trace.
Another attractive property of total variation roughness penalties, particularly
when paired with absolute error fidelity, is their scale equivariance. If ¢ minimizes
n
(213) S e = gl + (9,2, - )

i=1

then cg minimizes (2.13) with z; replaced by cz;, provided that J(cg,$2,| - ||) =
le| (g, £2,]-]]). This is clearly not the case for the thin-plate penalty, but for Gaussian
fidelity the thin plate penalty is well matched in this sense.
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3. Triograms

Efficient numerical solution of the variational problems arising from general forms of
roughness penalties based on total variation appears quite challenging. However, by
restricting the domain of functions over which we are optimizing some progress can
me made. One such restriction leads to penalized versions of the piecewise linear
triograms of Hansen, Kooperberg, and Sardy (1998).

Let U be a compact region of the plane, and let A denote a collection of sets {J; :
i =1,...,N} with disjoint interiors such that & = Usead. In general the collection
A is called a tessellation of 4. We will be concerned only with the case that the
0 € A are planar triangles, in which case A is called a triangulation. The continuous
functions g on U that are linear when restricted to § € A are called triograms. Their
collection G associated with the triangulation A is a finite-dimensional linear space.

3.1. A Roughness Penalty for Triograms

As already pointed out, thin-plate penalties are inappropriate for triograms, since
their penalties assign infinity to any function with a discontinuity in the gradient, and
thus the thin plate penalty is inherently incapable of discriminating among triograms.
Roughness penalties based on the total variation of the gradient are more promising.
Fortuitously, it also turns out that the troublesome choice of a norm disappears; once
we insist on a coordinate-independent penalty for triograms, all penalties coalesce.

Theorem 3.1. Suppose that g : R? — R is a piecewise-linear function on the tri-
angulation A. For any coordinate-independent penalty of the form (2.8), there is a
constant ¢ dependent only on the choice of the norm such that,

(3.1) T(g,2,11- 1) = e 1IVad = Vg, |l llell

where e runs over all the interior edges of the triangulation, ||e|| is the Euclidean
length of the edge e, and |Vg} — Vg_ || is the Euclidean length of the difference
between gradients of g on the triangles adjacent to e.

Proof. Evaluating J, we split the integration domain (2 to disjoint pieces whose
contribution to J is determined separately. First, the contribution of all linear parts,
the interiors of the triangles, is 0; the second derivatives vanish thereon.

The contribution of an edge e is the corresponding term in (3.1): consider the
quadrilateral region consisting of two triangles adjacent to the edge. Extend the
functions on the triangles linearly to have a rectangular domain—this should not alter
the penalty. Coordinatewise independence then allows for rotating the rectangle so
that its edges are parallel to xy-axes; the application of Theorem 2.1 then gives the
desired result.

The final, and only technical part of the proof is to show that the contribution
of any vertex of the triangulation is 0. This is done employing the definition (2.7).
The sequence ¢” approximating g is obtained via mollification: g” is taken to be the
convolution of g with v2¢(vz,vy), where ¢ is a smooth function assigning 0 to all
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values outside the unit circle whose integral is equal to 1. A common example of such
a ¢(x,y) is a multiple of exp(—1/(1 — 2? — %?)) on the unit circle and 0 elsewhere.
When v — 00, ¢g¥ approaches g in the distributional sense. The contribution of the
vertex is bounded from above by

(3.2) lim inf / / V2% || de dy,
V—00

where B, is the circle centered at the vertex with radius 1/v. Since any two norms
on a finite-dimensional vector space are equivalent, (3.2) is bounded from above by
a constant multiple of (3.2) with the Hilbert-Schmidt norm, the constant depending
only on the original norm. In what follows, C' stands for a generic constant. Since
the derivatives of g in the neighborhood of the vertex are piecewise constant, with
finitely many pieces, we have

// V2 (vu, vo)gu(z — u, y — v) dudv
< 1/// |V2¢z(yu, vu)ge(r — u,y — v)| du dv
< V//C ‘;ﬂ(ﬁw(l/u, m))| dudv < CI// | (u, )| dudv = Cu;

1922 (%,y)| =

the same inequalities hold for the other terms in the Hessian V%", the constants
being independent of x, y, and v. By the properties of the Hilbert-Schmidt norm,

// ||V2g”||dxdy§// Cvdxdy=Cv .
v BV

The last term goes to 0 when v — oco. Note that for the thin-plate penalty the bound
for the elements of the Hessian would be Cv?, and the contribution of the vertex
would not vanish, though it would be finite. ]

The crucial consequence of Theorem 3.1 is that, from the variational point of view,
there is only one viable form of the total variation penalty penalizing the gradient
of triograms: that given by formula (3.1). Penalized quantile triograms, functions
minimizing

n
(3.3) > oz = g(ziy) + A (g, 2,11 - 1)
i=1
over the space of triograms G can be then found as a solution of a linear programming

problem as we show in the next section.

4. Computation of Penalized Triograms
Modern linear programming methods provide an extremely efficient means of solving
for penalized triogram estimators. We will briefly describe how to express elements
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of the linear space G in terms of a finite set of basis functions, and then show how
the fidelity and penalty terms can be written as piecewise linear functions of the
coefficients of this expansion. This leads to a linear programming formulation of
(3.3) for which interior point, log-barrier methods exploiting the sparsity of the linear
algebra offer an efficient solution strategy.

4.1. A Basis for G
A basis for the linear space G consists of the linear “tent” functions, {B;(u)},_,, that
may be expressed in terms of the barycentric coordinates of points u represented by

the vertices vy, v9, v3 of the triangle 6 containing u,

3
uj =Y Bi(wv; j=1,2.
i=1
and satisfying the condition

1= ZBi(u).

Solving for the B;(u)’s we obtain by Cramer’s rule, provided the vertices aren’t
collinear,

A(U'a V2, U3)
By(u) = a2 08)
I(U) A(’Ul, V2, U3) ’

where
1 V11 V21 V31

A(vl,vg,vg):§ Vig U2 U3z
1 1 1

is the signed area of the triangle §. The remaining B;(u) are defined analogously by
replacing the vertex v; by u. Clearly, the {B;(u)} are linear in u on 4, and satisfy the
interpolation conditions that B;(v;) = 1 for ¢ = j and = 0 otherwise; thus they are
linearly independent. They are also affine equivariant; that is, for any non-singular,
2 x 2 matrix A, and vector b € R?,

Bi(u) = Bj (Au+0b) uel,

where {B;(u)} are formed from the vertices {v;}’_; and {B;}} are formed from the
vertices {Av; + b} ,. In particular, the basis is equivariant to rotations of the coor-
dinate axes, a property notably missing in many other bivariate smoothing methods.
Like their univariate B-spline basis function counterparts they satisfy 0 < B;(u) <1
with
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4.2. Computing the Fidelity
Any function g € G may be expressed in terms of the barycentric basis functions and
the values (; that it takes at the vertices of the triangulation as:

g9(z,y) = Z BiBi(z,y).

Thus, we can express the fidelity of the function, g(x,y), fitted to the observed sample,
{(zs,¥i,2i),1 =1,...,n} in ¢; terms as,

n n
D olz =@yl =Y |z —al B,
i=1 =1

where the p-vectors a; denote the “design” vectors with elements, a;; = (Bj(zi, v:))-
In the simplest case there is a vertex at every point (z;,v;) and the matrix A = (a;;)
is just the n-dimensional identity. However, one may wish to choose p < n and
there would be a need to compute some nontrivial barycentric coordinates for some
elements of the matrix A.

4.3. Computing the Penalty
Fix the triangulation A and consider the triogram g € G on a specified triangle 6 € A.
Let {(xi,ys,2), 1 = 1,2,3} denote the points at the three vertices of 5. We have

zi = 0y + 012 + O2y; 1=1,2,3,

where 6 denotes a vector normal to the plane representing the triogram restricted to
0. Solving the linear system, we obtain the gradient vector,

Vs = ( 01 ) _ [det(D)]—l ( (y2—y3) (ya—w) (1 —v2) ) 2 ’

0 (x3 —x2) (1 —3) (22— 71) 23

where D is the 3 by 3 matrix with columns [1, z, y]. This gradient is obviously constant
on ¢ and linear in the values of the function at the vertices. Thus, for any pair of
triangles d;,0; with common edge ey ;) we have the constant gradients Vgs,, Vgs,
and we can define the contribution of the edge to the total roughness of the function
as,

lcel = [n5(Vgs, — Vas,)| - lleng)
= |[(Vgs = V&)l - llexqlls

where 7;; denotes the unit vector orthogonal to the edge. The second formulation
follows from the fact that 7;; is just the gradient gap renormalized to have unit
length; this can be easily seen by considering a canonical orientation in which the
edge k(i,7) runs from (0,0) to (1,0). The penalty is then computed by summing
these contributions over all interior edges.
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Since the gradient terms are linear in the parameters ; determining the function
at the vertices, the penalty may also be expressed as a piecewise linear function of

these values, i.e.,
>l =D IniBl
k k

where the index k£ runs over all of the edges formed by the triangulation A. The
problem of optimizing the fidelity of the fitted function subject to a constraint on the
roughness of the function may thus be formulated as an augmented linear ¢; problem
minimizing,

n M
(4.1) D lz—alBl+ A |hiBl.
=1 k=1

This approach to estimating penalized median surfaces may be immediately extended
to estimation of penalized quantile surfaces by minimizing,

n M
(4.2) D oz —alB)+ A |hiBl.
=1 k=1

4.4. Penalized Triograms for Conditional Mean Models
A corresponding penalized least squares problem may be formulated to minimize

n M
(4.3) > (s —alB)?+A) (hp).
i=1 k=1
Like the median regression problem this may be viewed as an augmented regression

problem with response vector (z7,07) € R*™M and design matrix [AT:H"]" where
A = (a]) and H = (hj). This L, variant of penalized triogram has been explored
further by Hansen and Kooperberg (2002). It may be noted that the primal-dual
interior point methods used to mininize (4.1) begin their iterations by solving (4.3),
and continue to take iteratively reweighted least squares steps until a solution is

reached with at least p zero residuals.

4.5. Penalized Triograms as Linear Programs
The problem (4.1) is piecewise linear in (3, so it is straightforward to reformulate it

as a linear program. Let
A
=k ]

where A denotes the matrix with rows (a])", and H = (h])¥,, and denote the
augmented response vector as ( = (z7,07)". The problem (4.1) of minimizing the ¢,
norm of the vector ( — X3 may be expressed as

min {1"u+1"v|( = X+ u—v, € RP,u>0,v>0}.

(B,u,v)
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So we are minimizing a linear function subject to linear equality and inequality con-
straints. The simplex algorithm provides an efficient solution method for moderate
size problems of this type, but recent development of interior point methods provide
an effective strategy even for extremely large problems. In effect, the interior point
approach replaces the inequality constraints by a logarithmic barrier penalty func-
tion, and rather than traversing outside edges of the constraint set, it takes Newton
type steps from the interior of the constraint set toward the boundary solution. See
Portnoy and Koenker (1997) for a detailed discussion.

A salient feature of the polyhedral structure of the underlying optimization is that
solutions can be characterized by a set of “basic variables”. In the present case this
basic set, h, consists of p elements of the first n + M integers. Solutions may be
written as,

B(h) = X (h)*¢(h),
where X (h) denotes the p by p submatrix of X with rows indexed by h, and ((h)
denotes the p corresponding elements of (. (When multiple solutions exist they
constitute a convex polyhedral set with solutions of the form () as extreme points.)
Some of the rows of X (h) will be drawn from the upper A part of the X matrix, and

some will come from the lower, AH part. If we now evaluate the fit at the n observed
points we have
¥ = (9(=i))is = AX(h)7¢(h).

For any element ¢ € h, the product z] X (h)~' is a unit basis vector e; such that
z; X(h)~'¢(h) = e]¢(h) = ¢;. When 4 comes the first n integers, so z; is a row of
A, this implies that the ¢th data point is interpolated, since for these points (; = z;.
When i comes from the set {n + 1,....n + M} the ith fitted value is determined
by the contribution of the penalty part of the X matrix, in conjunction with the
interpolated points. Thus, only a subset of the n observations, say p, of them, are
needed to describe the fit. Of course all of the observations are needed to determine
which observations are interpolated, but once the fit is found, it can be described
completely if one knows the p, points that are interpolated, the triangulation, and
the value of \. We will interpret p, as an effective dimension of the fitted model.
As X increases, p, decreases; near A = 0 all of the observed points are interpolated,
and for sufficiently large A only the 3 points necessary to determine the best fitting
“median plane” need to be interpolated.

4.6. On Sparsity

A crucial feature of the penalized triogram estimators described above is the sparsity
of the augmented design matrices. In the fidelity component A, rows have at most
three non-zero elements needed to represent the barycentric coordinates of the (x;, y;)
points not included as vertices of the triangulation. For observations whose (x;,y;)
points are included as vertices of the triangulation, the vector a; is one in only one
element and zero everywhere else. In the penalty matrix H, each row has four nonzero
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entries corresponding to the contribution of the four vertices of the quadrilateral
corresponding to each edge. The remaining elements of each hy row are zero. This
sparsity of the design matrix contrasts sharply with the situation for thin plate splines
where the corresponding matrices for the penalty component are dense.

To appreciate the consequences of this it may help to consider an example. Suppose
we have n = 1600 observations and we introduce vertices at each of the points,
{(zs,y;) : i = 1,...,n}. The resulting matrix A is just the n = 1600 identity matrix.
The number of interior edges of the Delaunay triangulation is given by e = 3n —
2c¢ — 3, where ¢ denotes the number of exterior edges, see Okabe, Boots, Sugihara,
and Chiu (2000). So the matrix H is 4753 by 1600 in a typical example, and the
augmented /; regression problem is thus, 6353 by 1600. This may at first sight
appear computationally intractable, and would be intractable on most machines using
conventional statistical software. But recognizing the sparsity of the problem, that
is, noting that only 0.2 percent of the more than 10 million elements of the design
matrix are nonzero, reduces the memory requirement and computational complexity
of the problem from about 80Mb to only 160Kb.

In our Matlab and R implementations only the nonzero elements of the design
matrix are stored, along with their identifying indices. This drastically reduces the
memory requirements of the computations and improves efficiency. As we note more
explicitly below, fitting our penalized quantile triograms requires only a few seconds
for our smaller examples, and up to about a minute on the larger ones in our Matlab
implementation. Much better performance is attained in R where the computations
are recoded in fortran using widely available sparse matrix libraries. See Koenker and
Ng (2002) for details.

4.7. Automatic )\ Selection

Despite numerous reservations expressed in the literature about over reliance on auto-
matic methods for selecting smoothing parameters, regularization methods not con-
fronting the problem of selecting A would be considered incomplete. A full discussion
of this deep and delicate subject is beyond the our present scope; instead, we mention
several approaches that we have considered in the course of our investigations.

Rudin, Osher, and Fatemi (1992) propose a discrepancy method, choosing A to
match a preselected fidelity value. We employ this method in our first example in the
next section where we choose A to match the fidelity achieved by other smoothing
method. See Wahba (1990) for further comments on this approach.

One can also base a A selection criterion on a reasonable measure for the effec-
tive dimension of a fit g, for given A. As with other ¢; type estimation methods,
such a measure is provided by simply counting the number p, of interpolated obser-
vations in the fidelity component of objective function. The recent work of Meyer
and Woodroofe (2000) gives an additional support for this choice—they consider the
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divergence,

div(g Za g(x;)

as a general measure of effective dimension for nonparametric regression. For linear
estimators this measure yields the trace of the corresponding linear operator, which
has been suggested for classical smoothing splines by several other authors. The
complementary quantity, n minus the effective dimension, is sometimes referred to
as “equivalent degrees of freedom.” For monotone regression estimation, Meyer and
Woodroofe (2000) show that the pool adjacent violators algorithm yields a piecewise
constant estimate, § with div(g) equal to the number of distinct values taken by g.
For our total variation penalized quantile triograms div(g) = p, the number of points
interpolated by g, a fact that follows from the concluding comments of Section 4.5.

Once the effective dimension, p,, of the fit is defined, it can be plugged into any of
the well-known model selection criterion. Koenker, Ng, and Portnoy (1994) suggest
using the Schwarz (1978) criterion in their one-dimensional context. In our setting
SIC selects A minimizing

SIC(A) = log(n ZpT 2 — (x5, :))) + .5n 1pylogn.

Analogously, we may define a version of the Akaike criterion and there are certainly
other possible uses for p, in this vein.

Rather than simply counting the number of observations in the fidelity component
with absolute residuals smaller than a specified tolerance, p, can be obtained by
computing the trace of the hat matrix in the final weighted least squares step of the
interior point algorithm. This approach has the added advantage that it suggests
a linearized form of the generalized cross-validation criterion that can be used for
A selection. Finally, classical cross validation is also entirely feasible in small to
moderate size problems, and further work on computational shortcuts may be able
to extend the range of applicability of these methods.

4.8. On Triangulations
Up to this point we have taken the form of the triangulation, A, as fixed. It is now time
to consider how to determine A given the observations, {(z;,y;,2), i = 1,...,n}. In
full generality, as we have already suggested, this is an extremely challenging problem
that involves a delicate consideration of the function being estimated. This draws us
back into vertex insertion/deletion schemes like those described by Hansen, Kooper-
berg, and Sardy. Since it was our intention from the beginning to circumvent these
aspects of the problem, replacing such model selection strategies by shrinkage gov-
erned by our proposed roughness penalty, we will focus on the classical triangulation
method of Delaunay.

A simple, direct characterization of the Delaunay triangulation may be stated for
points in general position in the plane. We will say that points in R? are in general
position if no three points lie on a line, and no four points lie on a circle. The Delaunay
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triangulation of a set of points V = {v; € R? : 4 = 1,...n} in general position consists
of all triangles whose circumscribing circle contains no V-points in their interior.
There is a vast literature on how to compute the Delaunay triangulation.

Another way to characterize the Delaunay triangulation is that it maximizes, the
minimum angle occurring in the triangulation. This maxmin property was long con-
sidered a major virtue of the Delaunay method for reasons of numerical stability.
Relatively recently, however, it has been noted by Rippa (1992) that the benefits of
this prejudice against long, thin triangles depend upon the eventual application of
the triangulation. If, for example, the objective is to find a good interpolant for a
function whose curvature happens to be very large in one direction and small in the
other, then long thin triangles may be very advantageous.

The sensitivity of the approximation quality to the choice of the triangulations
suggests the need for careful selection, especially if a small number of vertices are
employed. An advantage of penalty methods in this respect is that their reliance on
a considerably larger set of vertices can compensate to some degree for deficiencies
in the triangulation. One may restrict attention to Delaunay triangulations based on
the observed (z,y) points, but it is straightforward to incorporate “dummy vertices”
at other points in the plane, vertices that contribute to the penalty term, but not to
the fidelity. By so doing one can ameliorate the effect of the initial triangulation and
refine the fit to achieve more flexibility. This approach is illustrated in the treatment
of the examples.

4.9. Boundary and Qualitative Constraints

A triogram is convex if and only if it is convex on all pairs of adjacent triangles. This
condition is easily checked for each quadrilateral since it reduces to checking a linear
inequality on the values taken by the function at the four vertices of the quadrilat-
eral. Imposing convexity on penalized triogram fitting thus amounts to adding m
linear inequality constraints to the problems already introduced, where m denotes
the number of interior edges of the triangulation. This is particularly straightforward
in the case of the quantile fidelity given the linear programming formulation of the
optimization problem. Similarly, it is straight forward to impose constraints on the
boundary of the fitted surface if prior information about how to treat these edges is
available.

5. Examples

5.1. Cobar mining data

The first example employs data consisting of 38 measurements on the “true width”
of an ore-bearing rock layer from a mine in Cobar, Australia. This data has been
analyzed with two types of thin-plate penalty methods in Green and Silverman (1994);
hence we may refer interested readers to their analyses and figures for comparisons.
In accord with Green and Silverman, we do not employ an automatic method for
A selection, but rather provide two exploratory fits for different A, to illustrate the
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FIGURE 5.1. Median Contour Plots of the Cobar Ore Data

virtues of the smoothing method. We selected two \’s yielding the same (¢s) fidelity
for our fits as that achieved by Green and Silverman for their two reported fits, an
interpolatory and a smoothing one. The contour plots of the two fits are illustrated
in Figure 5.1. The plot on the left interpolates all 38 of the observed points and
corresponds to A = .001, while the right plot interpolates 23 of the observed points
and corresponds to A = .088. The observed zy points are indicated by the solid
circles, dummy vertices by the points.

We restrict the domain of our analyses to the convex hull of the observed data;
Green and Silverman used a slightly larger domain. To increase the flexibility of the
fitted surface we have added 388 dummy vertices (zy-points) that have no influence
on the fidelity term, but are treated just as the observed zy points in the basis
expansion and penalty term. The dummy vertices are generated randomly from a
uniform distribution on the specified domain.

5.2. A Monte-Carlo Experiment
In our second example we consider estimating the function

40exp(8((z — .5)% + (y — .5)?))
exp(8((z — 2)° + (y — 7)) + exp(8((z = .7)* + (y — .2)%)))
The function has a ridge along the 45 degree line and therefore presents a challenge to
tensor product methods. It has been previously considered by Gu, Bates, Chen, and

Wahba (1989), Breiman (1991), Friedman (1991), He and Shi (1996), and Hansen,
Kooperberg, and Sardy (1998), among others. Using the experimental design of

go(x,y) = (
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Distribution | L; tensor L, triogram Ls tensor L, triogram
Normal 0.609 0.442 0.544 0.3102
(0.095) (0.161) (0.072) (0.093)

Normal Mixture 0.691 0.515 0.747 0.602
(0.233) (0.245) (0.327) (0.187)

Slash 0.689 4.79 31.1 171.1
(6.52) (125.22)  (18135) (4723)

TABLE 5.1. Comparative MISE for fitting the Gu, Bates, Chen and
Wahba function.

He and Shi (1996), we compare their L; and Ly tensor product regression spline
estimators with the L; and L, versions of the penalized triogram. The (z;,y;)’s are
generated as independent uniforms on [0, 1]?, and we generate

zi = go(4, yi) + u;

with iid u;. Three distributions for the u; are considered: standard normal N (0, 1);
the normal mixture, .95N (0, 1) +.05M (0, 25); and slash, N'(0,1)/U[0, 1]. The sample
size is n = 100. As a measure of performance we focus exclusively on

MISE = average{n_1 Z(ﬁn(xi, Yi) — (go(ws, yi))2}=

averaging over the R = 1000 replications.

In Table 6.1 we report He and Shi’s results for their tensor product regression
splines, and the corresponding results for the L, and L, penalized triogram approach.
The selection of A for the triogram fitting was made by minimizing SIC()\) over a
grid A = 107/%° with 4 = —20, —19, ..., 0. This procedure yielded a fit with median py
of 16.

The performance of the L; triogram estimator is quite good for the normal and
normal mixture error distributions. He and Shi (1996) also report performance of
MARS (Friedman (1991)) and PIMPLE (Breiman (1991)), which they find less satis-
factory than their tensor product approach. However, it appears that the L; triogram
fails badly for the slash distribution. It is worth delving into this failure a bit further.
The first observation to be made is that the failure is due entirely to two spectacular
disasters out of the 1000 replications. If we drop the two worst replications, the slash
entry in the table changes from 4.79 (125.22) to .486(3.25), and now appears quite
competitive. What went wrong? In each case the explanation lies in a single outlying
z; value that happened to occur on the convex hull of the observed (x;,y;) points.
Since the boundary edges of the triangulation do not contribute to the penalty, the
only consequence of over-zealous fitting of such points is the associated interior con-
necting edge effects. For sufficiently small values of A this contribution is dominated
by the gain in fidelity achieved by exact fitting of the outlying point.
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First quartile Median Third quartile

F1GuRE 5.2. Contours of Quartile Surfaces of Chicago Land Values.

5.3. Chicago Land Values

Our final example involves estimating a model for Chicago land values. The data
consist of 1194 vacant land sales occurring at 758 distinct sites in the Chicago met-
ropolitan area during the period 1995-1997. We take the sale price of the land in
dollars per square foot as z; and (z;,¥;). In Figures 5.2 we illustrate three contour
plots corresponding to fitted surfaces estimated by solving the problem (4.2) for the
three quartiles 7 € {.25,.50,.75} of the land value distribution. In these plots Lake
Michigan appears in the upper right corner and the Interstate highways are indicated
in grey to provide landmarks for the metropolitan area. The central business district
appears in each of the plots as a closed contour of high land value near the lake. The
scattered points in the plots indicate the locations of the observed land sales used
to fit the land value surfaces. In each case the smoothing parameter A is chosen,
somewhat arbitrarily, to be .25. This value is intermediate between the value selected
by the SIC and AIC criteria mentioned in Section 4.7 In our judgment SIC yields
a somewhat oversmoothed fit, with p, = 57, while AIC yields a a somewhat under-
smoothed fit, with p, = 220, for the median model. Contours are labeled in dollars
per square foot. We would like to emphasize that it may be advantageous in many
smoothing problems to estimate a family of conditional quantile curves, or surfaces,
since the commonly assumed iid error model is rarely really plausible. For land val-
ues, or annual temperatures, or snowfalls, it seems useful to have some estimate of
the way variability varies over the domain.
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FiGURE 5.3. Perspective Plot of Median Chicago Land Value.

We illustrate a perspective plot of a median fit of the Chicago land value distribution
in Figure 5.3. This fit again corresponds to the A = .25. It is possible to recognize the
peak corresponding to the central business district, and another mode further north
along the lake, The perspective plot is somewhat difficult to interpret without further
geographical reference points like those of Figure 5.2, but it does illustrate the ability
of the penalized triogram to capture the sharp peaks of the land value distribution.

Among several possible refinements of this simple model for land values, we note
that it is quite straightforward to add other covariates like the parcel size in a partially
linear model formulation. See Koenker and Mizera (2002) for further details on this
approach.

6. Conclusions
We believe that regularization, or shrinkage, methods offer a promising complemen-
tary approach to knot selection for triogram models. Roughness penalties based on
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total variation seem particularly well-suited. They satisfy natural equivariance re-
quirements and are computationally very attractive. There are many possible lines of
development for penalized triograms: from fundamental questions about the geomet-
ric measure theory of total variation of vector valued functions, to pragmatic issues
of algorithmic design. Further work is clearly necessary, but a strong prima facie
case has been made for the attractive features of total variation penalties and their
application to triogram estimation.
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