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Abstract. Empirical Bayes methods offer valuable tools for a large class of com-
pound decision problems. In this tutorial we describe some basic principles of the
empirical Bayes paradigm stressing their frequentist interpretation. Emphasis is
placed on recent developments of nonparametric maximum likelihood methods for
estimating mixture models. A more extensive introductory treatment will eventu-
ally be available in Koenker and Gu (2024). The methods are illustrated with an
extended application to models of heterogeneous income dynamics based on PSID
data.

1. Introduction

Empirical Bayes decision theory as introduced by Robbins (1951, 1956) represented
a challenge to both the Wald (1950) and Savage (1954) strands of classical decision
theory. Together with the revelations of Stein (1956) on the inadmissibility of the sam-
ple mean of a multivariate Gaussian vector in dimensions greater than two, Robbins’
results showed that compound decision problems, that is, ensembles of exchangeable
decision problems could be fruitfully combined to yield improved decisions for the
entire ensemble. In effect, prior information could be extracted from the ensemble
yielding decision rules that performed better than classical procedures that treated
each problem in isolation.

A simple example illustrating the benefit of this “borrowing of strength” from
several related problems appears in Robbins (1951). Suppose we observe independent
realizations, Y1, · · · , Yn with each Yi ∼ N (θi, 1) and θi ∈ {−1, 1}. Our objective is to

choose θ̂ = (θ̂1, · · · , θ̂n) to minimize the aggregate loss,

L(θ̂,θ) = (2n)−1

n∑
i=1

|θ̂i − θi|.

The minimax rule for any single component of this problem is to choose θ̂i = sgn(yi).
Robbins shows that this rule is also minimax for every component of the entire vector.
The least favorable configuration of the θi is one for which each component is ±1 with
equal probability as if decided by a coin flip. This minimax rule yields an expected
loss of Φ(−1) ≈ 0.159; it is also the minimax regret procedure. Can we do any better
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2 Empirical Bayes

than this? Suppose, having seen the entire sample, y1, · · · , yn, we find that most of
observations are positive. Should we really stick stubbornly with the minimax view
that the θi take values, ±1 with equal probability? It seems rather perverse. Suppose
we knew that the probability that θ = 1 was p, then we could easily compute the
conditional probability that θ = 1 given any particular y as,

Pp(θ = 1|y) = pφ(y − 1)

pφ(y − 1) + (1− p)φ(y + 1)
.

Evaluating the standard Gaussian density, φ, and simplifying we obtain the alterna-
tive decision rule,

θ̂i = sgn(y + 0.5 log(p/(1− p))).

Robbins suggests that we might estimate the probability p by p̂ = (ȳ + 1)/2, and
consider a plug-in version of this revised decision rule. The logit adjustment has the
desirable effect of biasing our estimates toward the more likely of the two alternatives,
for example if p̂ = 3/4 we would use θ̂i = sgn(yi + .549), reflecting our evidence that
Yi = 1 was more likely than its alternative. This is an empirical Bayes procedure.
There has been no reliance on subjective prior information, nor on the pessimistic
principle of minimaxity, only the empirical evidence of the observed sample has been
relied upon. Robbins’ method of moments estimator of p, could be replaced by other
approaches such as maximum likelihood or even a formal conjugate Bayes procedure
with a Beta prior, but ignoring the information contained in the ensemble of problems
can be extremely costly in this setting. With our hypothetical p = 3/4 the asymptotic
risk of using p̂ is reduced by about 20 percent. This is a leading example of Robbins’
claim for the “asymptotic sub-minimaxity” of empirical Bayes procedures relative to
the minimax procedures of Wald.

For the Bayesophobic the foregoing example should raise no anxieties, they need
only consider how to go about constructing a reasonable estimate of the probabil-
ity p. Likewise, Bayesians should be entirely comfortable computing a full posterior
for p that could be used to inform their decisions about the θi’s. More complicated
compound decision problems will require more complicated estimation of the mixture
structure of the problem, and therein lies the charm of the empirical Bayes approach.
Bayesian language and the machinery of Bayesian computation will prove to be conve-
nient, but no further commitment to the catechism of the Reverend Bayes is required.
Indeed, we will argue that empirical Bayes methodology represents an alloy of the
best features of the frequentist and Bayesian traditions.

2. The Compound Decision Paradigm

Suppose that we are faced with an exchangeable, i.e. permutation invariant, en-
semble of related problems:

Yi ∼ φ(y|θi), i = 1, 2, · · · , n,
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where φ denotes some familiar – usually exponential family – density, indexed by
parameters, θi, that express the underlying heterogeneity of the problems. Our task
is to choose a decision rule, δ : Y → A, mapping realizations Y = (Y1, · · · , Yn) in
the sample space, Y , to actions, a = δ(Y ), in an action space A that minimize the
compound risk,

Rn(δ,θ) = n−1E
n∑

i=1

L(δi(Y ), θi).

Following Robbins (1956) we will restrict attention to simple, symmetric decision rules
for which δi(y1, · · · , yn) = δ(yi). Such rules are now often referred to as separable
rules. The function, δ may depend upon the entire sample, but given our objective
and the exchangeable probabilistic structure of the problems there seems to be little
merit in venturing beyond this class. With this restriction we can write,

Rn(δ,θ) = n−1E
n∑

i=1

L(δ(Yi), θi)

= n−1

n∑
i=1

∫
L(δ(y), θi)φ(y|θi)dy

=

∫ ∫
L(δ(y), θ)φ(y|θ)dGn(θ)dy

where Gn(θ) = n−1
∑n

i=1 1(θi ≤ θ) denotes the empirical distribution function of the
θi’s. This is obviously an oracle risk function since we do not know Gn, but it provides
a natural benchmark for evaluating the performance of various feasible decision rules.

How related do the problems need to be? Robbins (1951) infamously opined,

No relation whatever is assumed to hold among the unknown param-
eters θi. To emphasize this point, Y1 could be an observation on a
butterfly in Ecuador, Y2 on an oyster in Maryland, Y3 the temperature
of a star, and so on, all observations being taken at different times.

Of course, this is a bit disingenuous since we have already asserted that observations
share a common conditional density, and that they are exchangeable. Ultimately, this
issue of relatedness, or what Efron (2010) refers to as relevance, is bound up with the
form of the mixing distribution Gn.

Theorem 1 (Fundamental Theorem of Compound Decisions). For separable decision
rules compound risk is equal to the Bayes risk of a single copy of the compound decision
problem with respect to the “prior” Gn.



4 Empirical Bayes

Thus, an optimal decision rule for our compound decision problem can be expressed
as a Bayes rule minimizing posterior loss with respect to the “prior” Gn:

Bn(δ) =

∫ {∫
Θ

L(δ(y), θ)φ(y|θ)dGn(θ)

}
dy.

=

∫ {∫
Θ

L(δ(y), θ)h(θ|y)dθ
}
f(y)dy.

where h(θ|y) = φ(y|θ)dGn(θ)/f(y), is the posterior distribution of θ given Y = y,
and f(y) =

∫
φ(y|θ)dGn(θ) is the marginal density of the Yi.

There are many ways to break the appealing simplicity of the Fundamental Theo-
rem. Exchangeability of our latent parameters, θi, is a powerful condition. We might
suppose instead that they followed some non-degenerate stochastic process; designing
simple decision rules would become much more difficult. A common feature of most
empirical Bayes applications in economics is that observations, Yi arrive with some
associated measure of precision, say σi. Separable rules, δ(Yi) no longer suffice, but
if we consider expanding the class of decision rules to take the form δ(Yi, σi) then we
can write,

Rn(δ,θ) := n−1E
∑
i=1

L(δ(Yi, σi), θi)

= n−1
∑
i=1

∫ ∫
L(δ(y, σ), θi)f(y, σ|θi)dydσ.

In so doing we have not made any assumption about the nature of the dependence
between θi and σi. We will discuss several variants of such models in Section 6. The
presence of covariates is another source of potential jeopardy for the Fundamental
Theorem. For panel data the familiar Mundlak (1978) critique argues that fixed
effects estimation is preferable to random effects due to presumed dependence between
the latent “individual specific” effects and the observed covariates. This view seems
overly dogmatic in settings where the latent structure is of primary interest. Indeed,
much of the recent applied literature using empirical Bayes methods opts instead
for a preliminary projection step to remove covariate effects. When the covariate
dimension is low then it is feasible to embed profile likelihood methods as we shall
see in Section 6. Greenshtein and Ritov (2019) offer some other innovative ideas for
handling covariates in the empirical Bayes framework.

From a formal Bayesian perspective exchangeability of the Yi’s yields via de Finetti’s
theorem a mixture representation of the Bayes risk with a generic prior, G, replacing
the frequentist, Gn. At this point the two warring perspectives are essentially indis-
tinguishable; controversy arises only when we begin to ask where can we find a viable
G that will enable us to make good decisions. In the absence of a priori knowledge of
G, this apparently requires some way to estimate the empirical distribution function
Gn of the latent parameters θi. In our introductory example with θi ∈ {−1, 1} this
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entailed estimating a scalar probability, more general settings demand more. We will
consider parametric models for Gn in the next section, and then proceed to consider
nonparamtric methods in the following section. Robbins with characteristic wit re-
ferred to this task as “Estimating the Inestimable” in a lecture series presented at
Berkeley in the late 1980s.

3. Parametric Priors

When in doubt about the form of an unknown distribution, the Gaussian shape
of Napoleon’s hat naturally springs to mind. Suppose, instead of restricting the θi’s
to take only the values ±1, we assume instead that they are Gaussian with mean,
zero, and variance, σ2

0, i.e. θi ∼ N (0, σ2
0), and retain the assumption that they are

embedded in standard Gaussian noise. It follows that the marginal distribution of
the Yi’s is Gaussian with mean, zero, and variance, 1 + σ2

0. Under quadratic loss,
L(δ(y), θ) = (δ(y)− θ)2, the posterior mean,

δ(y) = E(θ|Y = y) =

(
1− 1

1 + σ2
0

)
y,

is the optimal Bayes rule, provided that σ2
0 is known. If not, we can rely instead on an

estimate based on S ≡
∑n

i=1 Y
2
i ∼ (1 + σ2

0)χ
2
n. Recalling that an inverse χ2

n random
variable has expectation, (n − 2)−1, we obtain the method of moments, empirical
Bayes estimator,

δ̂(y) =

(
1− n− 2

S

)
y.

This is the classical James-Stein estimator, James and Stein (1961). It has strictly
smaller compound risk than the inadmissible maximum likelihood estimator, δ̄(y) = y
when n ≥ 3 for any sequence of θi’s. Linear shrinkage of each coordinate toward zero
may not result in a more accurate estimate for any one coordinate, but the compound
risk of the entire vector is reduced. See the Appendix for a formal exposition.

There are many variations on the basic James-Stein rule: if we allow the Gaussian
prior to have (unknown) mean, θ0, estimable by the sample mean, Ȳn = n−1

∑n
i=1 Yi,

we obtain the Efron-Morris rule,

δ̃(y) = Ȳn +

(
1− n− 3

S̃

)
(y − Ȳn),

with S̃ ≡
∑n

i=1(Yi − Ȳn)
2, so shrinkage occurs toward the sample mean rather than

zero. It can happen that S̃ < n − 3 in which case the shrinkage factor would flip
the signs of the coordinate effects. This motivates consideration of “positive part”
variants of the foregoing rules that restrict shrinkage to be non-negative.

Stein’s revelation that the maximum likelihood estimator for the mean of a multi-
variate Gaussian random vector was inadmissible under quadratic loss in dimensions
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Figure 1. Stigler’s Galtonian perspective on Stein shrinkage views it
as an attempt to mimic the regression of the (latent) θi’s on the observed
yi’s, noting that the coefficients of this regression can be estimated
without full knowledge of the θi’s using only moment informations from
the yi’s. In the figure, the solid line represents an oracle version of the
Stein rule, while the dashed line is an estimate thereof; both shrink
observed yi’s toward their collective sample mean in an effort to replace
the naive maximum likelihood estimates, δ(yi) = yi (on the 45 degree
line) with a more precise estimate of δ(y) = E(θ|Y = y).

greater than two came as a surprise to many practicing statisticians and is still per-
haps not fully appreciated in the econometrics literature.

Stigler’s “Galtonian perspective on shrinkage estimators,” Stigler (1990), offers a
novel interpretation of Stein shrinkage that may aid intuition. Imagine a thought
experiment in which we observe not only the Yi’s, but also their associated θi’s, which
we can then plot as the points appearing in Figure 1. We are interested in the
conditional expectation, E(θ|Y = y), which is nothing but the regression line in this
figure. Of course we don’t have access to the actual θi’s, so this might seem a bit
fanciful, but the coefficients of the regression line require only the mean of the θi’s
and the Cov(Y, θ), which can be consistently estimated by Ȳn and S̃/(n − 2) − 1,
respectively. In the Figure the population regression line is depicted as the dashed
red line, while the sample regression is dotted and blue. The grey 45 degree line
contrasts the unshrunken, δ(y) = y estimator with the two variants of the Stein rule.



Koenker and Gu 7

Relaxing the assumption of a homoscedastic prior we may incorporate heterogeneity
in the precision of the observed Yi’s. Consider the model,

yij ∼ N (µi, σ
2
i ), i = 1, . . . , n, j = 1, . . . , J.

The investigator observes pairs, (µ̂i, σ̂
2
i ) with µ̂i = J−1

∑
j yij and σ̂2

i = (J−1)−1
∑

j(yij−
µ̂i)

2; the objective is often to test the hypotheses: H0 : µi = 0, or to select a subset
that violate these hypotheses. In genomics this is often accomplished with a para-
metric empirical Bayes procedure implemented in the R package limma. Rather
than positing a prior on the full parameter space, limma assumes that the σ2

i are
independent of the µi and are drawn iidly from the inverse chi-squared distribution,

σ−2
i ∼ (v0s

2
0)

−1χ2
v0

i = 1, . . . , n.

The hyperparameters, v0 and s0 can be estimated by maximum likelihood. The null
hypotheses H0 : µi = 0 have p-values,

pi = 2(1− Ft,v0+v(|t̃i|)),

where t̃i = µ̂i/s̃i, s̃
2
i = (v0s

2
0 + vσ̂2

i )/(v0 + v), v = J − 1 and Ft,v is the distribution
function of a Student t random variable with v degrees of freedom. The parametric
prior for the σ2

i shrinks the σ̂2
i toward a common value and is intended to improve

precision. The imposition of prior information on nuisance parameters while leaving
the parameters of primary interest, in this case the µi, alone is referred to as “partially
Bayes” by Cox (1975). See Ignatiadis and Sen (2023). More flexible nonparametric
procedures will be considered in the next section.

Lindley and Smith (1972), appealing to results of de Finetti (1964) greatly elabo-
rated the paradigm of Gaussian linear models with parametric Gaussian priors, and
thus initiated the modern development of hierarchical models. They start from the
compound decision premise that observations arise in an exchangeable fashion, so the
Yi’s come from a mixture density. When both the conditional density, φ(y | θ), and
the mixing distribution, G, are Gaussian, this leads to some elegant linear algebra.

Proposition 1 (Lindley and Smith). Suppose, for θ1 ∈ Rp1, our observed response
y ∈ Rn is multivariate Gaussian with mean vector A1θ1 and covariance matrix C1,
i.e. y ∼ N (A1θ1, C1). Then, if θ1 is also Gaussian, θ1 ∼ N (A2θ2, C2), the marginal
distribution of y is N (A1A2θ2, C1 + A1C2A

⊤
1 ) and θ1|Y ∼ N (Bb,B) where B−1 =

A⊤
1 C

−1
1 A1 + C−1

2 , and b = A⊤
1 C

−1
1 y + C−1

2 A2θ2.

The linear model structure makes these shrinkage formulae more complicated, but it
is still possible to recognize that the posterior mean of θ1 is a matrix weighted average
of the response vector, y, and the prior mean A2θ2. The closely related papers of
Chamberlain and Leamer (1976); Leamer and Chamberlain (1976) offer further insight
into this phenomenon. Estimation of such hierarchical models generally requires
some form of MCMC procedure, although when the covariance matrices C1 and C2

are spherical the formulae reduce to classical variance component analysis that goes
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back to work by Balestra and Nerlove (1966) on the demand for natural gas in the
econometrics literature.

Parametric non-Gaussian priors for linear regression models have emerged as a
familiar device in modern high dimensional statistical modeling. When we consider
penalized regression estimators that optimize,

min
n∑

i=1

(yi − xiβ)
2 + λP (β),

we have available a large menu of choices for the penalty function P . The lasso
penalty, P (β) = ∥β∥1, employing the ℓ1-norm, is most familiar once we depart from
the Gaussian “ridge” penalty, P (β) = ∥β∥22. It corresponds to imposing independent
Laplace priors on β. Choice of the tuning parameter, λ controls how strongly we
believe in the prior. As soon as we choose λ by cross-validation or some other form
of sorcery we have ventured into the realm of empirical Bayes.

Another prominent option for the penalty, P , is treat the coordinates of β as if
they were drawn iidly from a distribution with Cauchy tail behavior, as considered
by Johnstone and Silverman (2004) and Castillo and van der Vaart (2012). Although
such priors are generally structured to shrink coefficients toward zero, this is typically
rationalized by some form of prior standardization of the design matrix. The empirical
aspect of these procedures is generally restricted to choice of the tuning parameter λ
representing the scale of the prior density. However, more flexibility can be achieved
by permitting larger parametric families, for example Azevedo et al (2020) a class of
Student priors for large-scale A/B testing settings with location, scale and degrees of
freedom of the prior estimated by maximum likelihood.

Returning to the simple Gaussian sequence model with scalar parameters θi, in
Figure 2 we contrast several forms of shrinkage: linear shrinkage with the classical
Stein rule, the Laplace (lasso) procedure that shrinks a fixed amount in the tails
but only moderately when y is near zero, and the Cauchy penalty that shrinks very
aggressively near zero while large departures from zero are shrunken very little. It
should be stressed that tuning the location and scale of these penalties offers some
flexibility, but the selection of a functional form for such parametric priors involves a
leap of Bayesian faith that may trouble some researchers.

Thus far we have focused entirely on settings in which our base model, φ(y|θ) is
Gaussian. Parametric mixture priors play an important role in many other corners
of statistics. Poisson models are often paired with gamma mixing, and the modern
literature on survival analysis, is permeated by parametric models of “frailty.” As an-
ticipated by the pioneering critique of Heckman and Singer (1984), choosing a specific
parametric model for frailty can be difficult so it is natural to turn to nonparametric
methods for guidance.
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Figure 2. Comparison of several parametric shrinkage methods.

4. Nonparametric Prior Estimation

Parametric models for the prior, G, can be difficult to choose, so it is natural to
ask whether some nonparametric procedure can be used to estimate G. An affirma-
tive answer to this question can be traced back to an abstract of Robbins (1950),
much more fully elaborated in Kiefer and Wolfowitz (1956). Some further develop-
ment of the idea of nonparametric maximum likelihood estimation of mixture models
was made by Pfanzagl (1988), but practical implementation of these methods was
delayed until Laird (1978) showed how the nascent EM algorithm, Dempster et al
(1977), could be used to compute it. Heckman and Singer (1984) pioneered the EM
approach to explore the sensitivity to various parametric frailty models of duration
models in econometrics. Lindsay (1981, 1995) further clarified many aspects of the
NPMLE, but computation remained a bottleneck due to slow convergence of the EM
algorithm. Fortunately, modern developments in convex optimization have substan-
tially improved computational prospects for the NPMLE.

It is easy to see that the NPMLE problem for mixtures is convex. We have a strictly
convex objective subject to linear constraints over the convex set, G, of distribution
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functions:

min
G∈G

{
−

n∑
i=1

log f(yi) | f(yi) =
∫

φ(yi|θ)dG(θ), i = 1, · · · , n

}
The problem is infinite dimensional, but it can be solved to desirable precision by
restricting the support of solutions to a finite dimensional grid (t1 < t2 < · · · < tm)
contained in an interval between the minimum and maximum of the observations.
Finite dimensional formulations can be expressed given this restriction. In primal
form with A denoting an n by m matrix with typical element φ(yi|tj), and g ∈ Sm

denoting the masses associated with each of the grid points and Sm them-dimensional
unit simplex, a primal formulation is given by:

(P) min
g∈Sm

{
−

n∑
i=1

log fi | f = Ag,

}
and in dual form as:

(D) max
ν∈Rn

{
n∑

i=1

log νi | A⊤ν ≤ n1m

}
.

The dual form is usually somewhat more convenient for computation, and the
primal solution can be easily recovered from the dual solution by solving for the
coordinates of g from the linear system,∑

j

φ(yi|tj)gj =
1

ν̂i
,

restricted to the set {i : ν̂i > 0}, that is to those observations whose dual constraint
is active at the dual solution. The number of these active constraints, m∗, is typically
far fewer than its obvious upper bound of n, indeed it has been recently shown by
Polyanskiy and Wu (2020) that as n → ∞, m∗ = O(log n) when G has sub-Gaussian
tails. This self-regularizing feature of the NPMLE may come as a surprise since
many infinite dimensional inverse problems are ill-posed and do require some form of
regularization, and consequent tuning parameter selection. In contrast, the NPMLE
determines of the number, location, and mass of the atoms of the Ĝ solution from
the data without any interference by the analyst.

Identifiability of G in mixture models is thoroughly treated by Teicher (1961, 1967)
for a scalar mixing parameter.

Definition 1. Let Φ(y|θ) be a distribution function defined for all θ ∈ Θ ⊂ R and G
be a distribution function defined on Θ, the mixture,

F (y) =

∫
Θ

Φ(y|θ)dG(θ)

is identifiable if and only if there is a unique G yielding F .
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For location, Φ(y− θ), and scale, Φ(yθ), mixtures this follows from the uniqueness
of the characteristic function provided that the Fourier transforms of Φ(y) and Φ(ey)
respectively are not identically zero on some non-degenerate real interval, a condition
that is trivially satisfied in most of the conventional empirical Bayes settings in which
φ(y|θ) is a continuous (Lebesgue) density. In multivariate settings and many discrete
data settings identification conditions are more delicate and partial identification is
not uncommon. See Koenker and Gu (2024) for further details and references.

Given an estimate, Ĝ, what should we do with it? Minimizing posterior compound
loss is simplest with quadratic loss since it requires only computing posterior means.
This is particularly convenient when the base distribution is of the exponential family
form.

Proposition 2. (Tweedie) For φ of the (natural) exponential family form,

φ(y|η) = m(y)eyηh(η),

the posterior mean is,

δ(y) ≡ E(η|Y = y) =
d

dy
log(fG(y)/m(y)),

where fG(y) =
∫
φ(y|η)dG(η), is the marginal distribution of Y . And δ(y) is non-

decreasing in y.

See Appendix A for a proof and some further details. When φ is standard Gaussian,
so m(y) = e−y2/2, the posterior mean becomes,

δ(y) ≡ E(η|Y = y) = y + f ′
G(y)/fG(y).

In this Gaussian case, f ′
G(y)/fG(y) can be interpreted as a shrinkage term that pulls

the naive estimator, η̂ = y to its posterior mean.
It is tempting to interpret the Tweedie formula as an invitation to estimate the

marginal density fG and construct estimates of the posterior mean accordingly. In
the terminology of Efron (2014), this would be f -modeling in contrast to g-modeling
which relies on a preliminary estimator of G. Although estimation of fG by con-
ventional kernel methods is easy, estimation of its log derivative is more challenging.
More seriously, when φ is of the exponential family form Proposition 2 asserts that
the posterior mean function is monotone in y, a condition that is awkward to impose
for standard density estimators. See Koenker and Mizera (2014) for a proposal for a
shape constrained nonparametric maximum likelihood estimator of fG that imposes
such a monotonicity constraint.
Example. To illustrate the NPMLE in a simple Gaussian location mixture setting,
suppose that we observe a random sample of size n = 1000, with Yi ∼ N (θi, 1)
and (θi − 3) distributed as standard lognormal. The left panel of Figure 3 shows
a histogram of the observed, Yi’s, and superimposed in red are the mass points of
the estimated, Ĝ. Of 1000 potential grid point locations for the illustrated NPMLE
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Figure 3. Left panel: Histogram of n = 1000 observations from a
standard Gaussian location mixture with 3-parameter lognormal mix-
ing distribution. An NPMLE estimate of the mixing distribution is
superimposed on the histogram as the red mass points. Right panel:
Three estimates of the posterior mean of θ.

solution only 13 have associated mass in excess of 0.001. The general shape of the
discrete mass points does mimic the shape of the lognormal density that was used
to generate the sample yi’s. Viewed as a density estimate this Ĝ is quite terrible, as
an estimate of a lognormal distribution function it is somewhat better. But from a
practical decision making perspective, Ĝ is useful primarily as a device for evaluation
of smooth linear functionals like conditional means, and for this it is quite excellent
as noted in the Appendix.

The right panel of Figure 3 plots posterior mean functions for three choices of Ĝ.
The red line represents the Stein rule. The blue curve depicts the oracle rule based on
full knowledge of the lognormal form of G. And the black curve shows the estimated
posterior mean corresponding to the NPMLE of G depicted in the left panel of the
figure. The linear Stein rule clearly shrinks too much in both tails. The NPMLE
estimate sticks quite closely to the oracle estimate except in the far right tail where
data is sparse as indicated by the “rug plot” along the horizontal axis, and its discrete
form inevitably produces some oscillation around the oracle estimate.

Although the posterior mean function of the preceding example is necessarily
smoothed by the convolution producing fG, and thus its log derivative, there are
good reasons to consider smoother estimates of G itself. This is especially apparent
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once we begin to consider inference for empirical Bayes point estimates or the ranking
and selection problems considered in Gu and Koenker (2023). A smoother alternative
to the Kiefer-Wolfowitz NPMLE of G, proposed by Efron (2016), expresses the log
density of G in the exponential family form,

log g(θ|α) =
p∑

k=1

zk(θ)αk − γ(α)

where zk(θ) ∈ R, k = 1, · · · , p are elements of a natural spline basis expansion, and γ
is the usual constant of integration for the one-parameter exponential family density.
The penalized Efron log likelihood is then,

ℓ(α) =
n∑

i=1

log fα(yi) + c0∥α∥,

where the n vector fα = (fα(y1), · · · , fα(yn)) can be written as, fα = AZα with Z
an m by p matrix with typical element Zjk = zk(tj), for a grid of values, t1, · · · , tm.
Choice of the basis Z, its dimension p, and the penalty parameter c0 all call for
some degree of expert judgement that could be guided by the relatively automatic
NPMLE. The penalty term is not strictly necessary, but it allows one to specify a
somewhat larger spline dimension p. Letting p → ∞ and c0 → 0 recovers in the limit
the NPMLE, although algorithms that fail to exploit convexity may struggle with
the optimization. An alternative way to achieve smoothness of an estimator of G is
simply to convolve the NPMLE Ĝ with some smooth density. This obviously would
involve choosing a kernel and bandwidth, choices that might be usefully informed by
a careful examination of the discrete form of the NPMLE.

When the latent parameter θ is of dimension two interior point methods for com-
puting the NPMLE are still feasible using gridding as illustrated in Gu and Koenker
(2017a,b). However, beyond dimension two such methods become unwieldy and al-
ternative first-order methods are probably required. Recent progress in this direction
can be found in Soloff et al (2021), Zhang et al (2022).

5. Empirical Bayes Methods for Discrete Data

The range of empirical Bayes methods extends far beyond the Gaussian mixture
settings that we have emphasized thus far. Parametric Poisson mixture models have
a long history in actuarial risk analysis and ecology. See, for example Bühlmann and
Gisler (2005) and Fisher et al (1943), respectively. Given observations y1, · · · , yn with
marginal density,

fG(y) =

∫
φ(y|θ)dG(θ),
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where P(Yi = y|θi) = φ(y|θi) = e−θiθyi /y!, Robbins (1956) proposed a nonparametric
estimator of the posterior mean E[θ|Yi = y],

δ(y) =

∫
θφ(y|θ)dG(θ)∫
φ(y|θ)dG(θ)

=
(y + 1)fG(y + 1)

fG(y)
.

Since the quantities fG(y) can be easily estimated by the observed frequencies this is
an extremely convenient f -modeling strategy. However, like other f -modeling meth-
ods it has the disadvantage that it may fail to respect the monotonicity of the Bayes
rule as proscribed by Proposition 2. This is particularly problematic when G is heavy
tailed since the tail frequencies of the mixture can be highly variable. A preferable G-
modeling strategy is to employ the NPMLE, Ĝ, for G in the Tweedie formula for the
posterior mean. Although Polyanskiy and Wu (2021) have recently shown that the
original Robbins estimator achieves a sharp asymptotic regret bound, the NPMLE
G-modeling approach exhibits significantly improved performance in simulations re-
ported in Koenker and Gu (2024).

Binary response data give rise to a wide variety of mixture models that can be
analysed with empirical Bayes methods. In the simplest case, suppose that we have
a sample y1, · · · , yn of outcomes from binomial experiments B(m, pi) as in the tack-
flipping experiment of Beckett and Diaconis (1994), who describe the protocol of the
experiment as follows.

The example involves repeated rolls of a common thumbtack. A one
was recorded if the tack landed point up and a zero was recorded if
the tack landed point down. All tacks started point down. Each tack
was flicked or hit with the fingers from where it last rested. A fixed
tack was flicked 9 times. The data are recorded in Table 1. There
are 320 9-tuples. These arose from 16 different tacks, 2 “flickers,” and
10 surfaces. The tacks vary considerably in shape and in proportion
of ones. The surfaces varied from rugs through tablecloths through
bathroom floors.

Unconditionally on the type of tack and surface the experimental outcomes have
marginal mixture density.

fG(y) = P(Y = y) =

∫ (
m

y

)
py(1− p)m−ydG(p).

Again, the mixing distribution G can be estimated by maximum likelihood. This
yields a 3-point mixture for Ĝ that can be reproduced by running demo(Bmix1) in
R from the package REBayes. This solution is essentially identical to that reported
by Liu (1996) using the EM algorithm although interior point convex optimization
methods are considerably quicker.

The binomial mixture model is easily adapted to situations with varying numbers
of trials m, but a cautionary note is required regarding identification in such models.
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Onlym+1 distinct frequencies can be observed for B(m, p) binomials and this implies
that only m moments of G are identifiable. The consequences of partial identification
in discrete response models is discussed in more detail in Koenker and Gu (2024) in
the context of the Kline and Walters (2021) model of employment discrimination.

In binomial mixture models with a large number of trials it is often convenient
to transform to the Gaussian model as for example in the extensive literature on
baseball batting averages, see e.g. Gu and Koenker (2017a), or large correspondence
experiments as in Kline et al (2024). In other settings it is more convenient to consider
logistic models as for the Rasch model commonly used in educational testing or the
Bradley-Terry model for rating participants in pairwise competition. See Gu and
Koenker (2022).

6. Empirical Bayes Methods for Panel Data

Longitudinal data poses many new challenges and opportunities for empirical Bayes
methods. In this section we will reprise some prior work in Gu and Koenker (2017b)
on models of income dynamics and describe some extensions that broaden appli-
cability of such models. The vast econometric literature on panel data methods has
gradually embraced a wider variety of latent variable formulations designed to accom-
modate more general forms of heterogeneity. The quantile autoregression framework
of Arellano et al (2017) is notable in this regard. Empirical Bayes methods have a
complementary role to play in this literature and also provide a flexible approach to
modeling heterogeneity in panel data.

We will begin by considering a simple Gaussian location-scale model,

yit = αi +
√

θiuit, t = 1, · · · ,mi, i = 1, · · · , n
with uit ∼ N (0, 1). We need not interpret the t subscript temporally, but it is
frequently natural to do so. We will provisionally assume that αi ∼ Gα and θi ∼ Gθ

are independent. We then have sufficient statistics:

ȳi|αi, θi ∼ N (αi, θi/mi)

and
Si|ri, θi ∼ γ(s|ri, θi/ri),

where ri = (mi − 1)/2, Si = (mi − 1)−1
∑mi

t=1(yit − ȳi)
2, and γ(s|a, b) is the density of

the gamma distribution with parameters, (a, b). The log likelihood becomes,

ℓ(Gα, Gθ|y) = K(y)

+
n∑

i=1

log

∫ ∫
γ(Si|ri, θ/ri)

√
miϕ(

√
mi(ȳi − αi)/

√
θ)/

√
θdGα(α)dGθ(θ).

Since the gamma component of the log likelihood is additively separable from the
location component, we can solve for Ĝθ in a preliminary step, and then solve for the
Ĝα distribution. In fact, under the independent prior assumption, we can re-express
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the Gaussian component of the likelihood as Student-t and thereby eliminate the
dependence on θ in the NPMLE problem for estimating Gα. As noted by an astute
referee, this conditioning is analogous to that described in Reid (1995, equation(3.6))
in a parametric setting and may entail a loss of information. An implementation
of this estimation strategy is available with the function WTLVmix in the R package
REBayes.

It is also possible to relax the independence assumption on the location and scale
effects completely. In Gu and Koenker (2017b) we use longitudinal data individuals
from the Panel Study on Income Dynamics (PSID) to explore models of income
dynamics with an arbitrary joint distribution of location and scale heterogeneity. We
follow the sample selection of Meghir and Pistaferri (2004) to focus on male head
of households aged 25 - 55 with at least 9 years of consecutive earnings data. Like
much of the prior literature including Meghir and Pistaferri (2004) the effects of
various individual specific covariates are removed in a preliminary projection step.
We further restrict our attention to those whose earning starts from age 25 onwards.
This leaves us with 938 individuals for whom we observe at least the early portion
of their life cycle earnings. Among the 938 individuals, 50% of those we observe
have reported earnings of 15 years starting from age 25, The longest span of recorded
earnings in the sample is 26 years.

The implementation employs the function WGLVmix from the REBayes package. In
the income dynamics application we find an apparent negative dependence between
the α (location) and θ scale effects indicating that low “ability” individuals also tend
to have higher income risk. In our prior work temporal dependence in the income
process was specified as a simple AR(1) process whose coefficient, ρ was estimated
by profile likelihood.

To make the AR(1) specification more explicit consider the model,

yit = αi + βixit + vit
vit = ρvit−1 +

√
θiϵit, ϵit ∼ N (0, 1)

Assuming that initial conditions, yi0, are drawn from the stationary distribution
N (αi, θi/(1 − ρ2)) is a convenient option and yields an efficient estimator for ρ pro-
vided that the assumption holds. One could also consider less restrictive specifications
for yi0 at the cost of introducing additional parameters as in Arellano (2003). How-
ever it seems simpler to consider Chamberlainian dependence of the latent effects on
covariates, while trying to maintain a nonparametric perspective, a topic we defer to
future research. As we will see, more complex short run dynamics can be introduced
via state space representations and Kalman filtering formulations of the likelihood.

Fixing ρ, and setting ỹit = yit − ρyit−1, our model can be expressed as,

ỹit = (1− ρ)αi +
√

θiϵit.
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And for Gaussian ϵit, sufficient statistics for αi and θi are respectively the sample
mean and sample variance:

ȳi = 1
mi

∑mi

t=1 ỹit
Si = 1

mi−1

∑mi

t=1(ỹit − ȳi)
2.

Furthermore, we have, ȳi | αi, θi ∼ N ((1−ρ)αi, θi/mi) and (mi−1)Si/θi | θi ∼ χ2
mi−1.

Assuming the pairs (αi, θi) are iid with joint distribution function H, we can discretize
H on a two dimensional grid and write the likelihood of observing the sample paths
(ỹi1, . . . , ỹi,mi

), i = 1, · · · , n as a function of H, ρ, and compute the NPMLE for the
distribution H. Profile likelihood can then be employed to estimate the parameter ρ.

We have the following NPMLE problem:

Ĥρ := argmax
H∈H

n∏
i=1

∫ ∫
f(ȳi | α, θ)g(Si | θ)dH(α, θ)

where H is the space of all bivariate distribution functions on the domain of R ×
R+. Here, f is the conditional normal density of ȳi and g is the conditional gamma
density for Si. The NPMLE for H is indexed by ρ because both ȳi and Si involve
ρ, a dependence that we have suppressed in the notation, but can be estimated by
maximizing the profile log likelihood,

ℓ(ρ) =
n∑

i=1

[
K(ȳi, Si) + log

∫ ∫
f(ȳi | α, θ)g(Si | θ)dĤρ(α, θ)

]
.

Allowing heterogeneous individual variances in earnings innovations is not new.
Geweke and Keane (2000) contend that variance heterogeneity is crucial to account
for non-Gaussian features of the innovation distribution. They use a parametric three-
component mixture formulation. Hirano (2002) adopts a more flexible Dirichlet prior
specification for similar reasons. Browning et al (2010) also find significant evidence
that the variance of innovations varies across individuals. Their model posits eight la-
tent factors all of which are constrained to obey parametric marginals. They comment
“Nowhere in the literature is there any indication of how to specify a general joint
distribution for these parameters, nor is there any hope of identifying the joint distri-
bution non-parametrically.” In contrast, our approach allows only two latent factors
corresponding to location and scale of the income process, but has the advantage that
it does permit non-parametric estimation of their joint distribution.

The left panel of Figure 4 plots the NPMLE profile likelihood for ρ, which peaks at
0.48. The shaded region indicates a 0.95 confidence interval for ρ as determined by the
classical Wilks inversion procedure, see e.g. Murphy and van der Vaart (2000), Fan
et al (2001), and Chen and Liao (2014). Our estimate of ρ is close to the estimate of
Hospido (2012) who also allows an individual specific variance component in a ARCH
effect variance. She adopts a fixed effect specification for (αi, θi) and uses a bias
corrected estimator for ρ to account for the asymptotic bias introduced by estimating
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Figure 4. Profile Likelihood for the ρ Parameter and Heterogeneity Distribution
H(α, θ): In the left panel we plot the Kiefer-Wolfowitz profile likelihood as a function
of ρ. The shaded region represents a 0.95 confidence interval for ρ based on a
NPMLE version of the classical Wilks inversion procedure. In the right panel we plot
the estimated joint heterogeneity distribution, evaluated at the optimal ρ̂, Ĥρ̂(α, θ).
Darker hexagons indicate greater mass, lighter ones less mass and white regions
contain no mass.

all the incidental parameters (αi, θi), i = 1, · · · , n. A plausible explanation for why
estimates of ρ tend to be close to one in models without heterogeneity in variances is
that individual specific variability is mistaken for AR persistence in innovations.

The right panel of Figure 4 plots the non-parametric estimate of the joint distri-
bution of Ĥρ̂(α, θ) on a 60 × 60 grid. Mass points of the estimated distribution are
indicated by shaded hexagons with darker shading indicating more mass. The support
of Ĥ is determined by the support of the observed (ȳi, Si). The mixing distribution
shows some negative dependence between α and θ, especially for α < 0. So low draws
for α are more likely to be accompanied by a more risky (higher) θ. Most of the mass

of Ĥ is concentrated at very low levels of θ.

6.1. Prediction of Income Trajectories. We would like to adapt the univariate
empirical Bayes rules for prediction described earlier to compound decision problems
for longitudinal data models. This objective is closely aligned with the objectives of
Chamberlain and Hirano (1999), although our computational methods may appear
quite different. Given an initial trajectory for an individual’s earnings we would like
to predict the remainder of the trajectory based not only on the prior history for
the given individual, but also on the observed experience of a large sample of similar
individuals. Chamberlain and Hirano motivate this prediction exercise as one facing
a typical financial advisor. Similar problems present themselves in many biomedical
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settings where diagnosis is based on reference growth charts or some other measures
of the progression of disease.

Given a trajectory Y0 = {yt : t = 1, · · · , T0} for a hypothetical individual we
can easily determine a posterior, p(α, θ|Y0), based on our estimated mixture model.
These NPMLE posteriors are necessarily discrete, but we are entitled to sample from
them for simulation purposes. The following simulation strategy can be employed to
construct an ensemble of completed trajectories:

(1) Draw (α, θ) from p(α, θ|Y0),

(2) Simulate Y1 = {yt : t = T0 + 1, · · · , T} as, yT0+s = α + ρ̂yT0+s−1 +
√
θus, for

s = 1, · · · , T − T0, and us ∼ N (0, 1), to obtain m paths, Y1, then
(3) Repeat steps 1 and 2, M times.

This procedure yields mM trajectories from which it is easy to construct pointwise
and/or uniform prediction bands.

From a formal Bayesian perspective the foregoing procedure may seem rather
heretical. We began with a perfectly legitimate likelihood formulation: data was
assumed to be generated from a very conventional Gaussian model, except that in-
dividuals had idiosyncratic (α, θ) parameters whose joint distribution, H, could be
viewed as a prior. If this H were delivered on a silver platter by some local oracle we
would be justified in proceeding just as we have described. Bayes rule would allow
us to update H in the light of the observed initial trajectory, Y0 for each individual,
and we would use these updated, individual specific, H̃i’s to construct an ensemble of
forecast paths. Various functionals of these forecast paths could then be presented.
However, lacking a local oracle, we have relied instead on the NPMLE and our sam-
ple from PSID data to produce an Ĥ. Not only H, but also ρ and potentially other
model parameters are estimated by maximum likelihood. Remarkably, no further
regularization is required, and profile likelihood delivers an asymptotically efficient
estimator of these structural, i.e. “homogeneous” parameters. Admittedly, we have
“sinned” – we’ve peeked at the data when we shouldn’t have peeked, but our peeking
has revealed a much more plausible H than we might have otherwise been expected
to produce by pure introspection. This is the charm of the empirical Bayes approach.

Our prediction exercise takes T0 = 9 so the first nine years of observed earnings have
been used as Y0 to construct individual specific H̃i that are then used to construct
pointwise confidence bands for earnings in subsequent years. We have selected two
pairs of individuals to illustrate the variety of earnings predictions generated by our
model. In Figure 5 we contrast predictions for an individual with relatively large
mean, i.e. high α, and large variance, high θ, with an individual with large variance,
but lower mean. The “fan plot” depicts pointwise quantile prediction bands from 0.05
to 0.95 based on the simulated trajectories described above. Realized trajectories are
depicted by the solid black lines. For the high mean individual in the left panel
of Figure 5, the bands are relatively narrow reflecting the fact that his “posterior”
assigns little mass to high θ’s. In contrast, for the lower mean individual in the right
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Figure 5. Fan Plot of Earnings Forecasts for Two Individuals: Based on the
initial 9 years earnings, pointwise prediction bands are shown with graduated shad-
ing indicating bands from the 0.05 to 0.95 quantiles with the actual realizations
superimposed as the black lines.

panel the bands are much wider, indeed the upper portion of the band overlaps with
the lower portion of the band for the higher α individual. Nevertheless, we see that
the lower 0.05 quantile of the prediction band is exceeded. Our 90% uniform band
(not shown) for this individual just barely covers this excursion.

In Figure 6 we contrast high mean, low variance individual with low mean, high
variance one. The prediction band is very narrow for the former individual in the
left panel, and much wider for the latter in the right panel. Other features are also
apparent from these figures: individuals who begin the forecast period below their pre-
forecast mean, like PSID 59, are predicted to come back toward their mean, and some
asymmetry is visible, for example in PSID 44, whose lower tail is somewhat wider
than the upper one. Note that asymmetry requires some asymmetry in the location
component of the mixture distribution Ĥ, since pure scale mixtures of Gaussians are
necessarily symmetric.

6.2. Inequality and the Distribution of Annual Income Increments. Inequal-
ity of incomes, wealth and other indicators of social welfare have taken on an increas-
ing salience as documented in the ongoing Deaton Review, Deaton (2018–). Using a
10% sample of U.S. Social Security records Guvenen et al (2022) have shown that the
distribution of annual increments in log earnings has Pareto tail behavior. The left
panel of Figure 7 reproduces a log-density plot appearing as their Figure 6 showing
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Figure 6. Fan Plot of Earnings Forecasts for Two Individuals: Based on the ini-
tial 9 years earnings, pointwise prediction bands are shown with graduated shading
indicating bands from the 0.05 to 0.95 quantiles.
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Figure 7. Guvenen et al plots of annual increments of log earnings: The left
panel shows the log density plot reproduced from Figure 6 of Guvenen et al (2022),

the right panel plots −1/
√
f(x) yielding a much nicer concave shape.
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Figure 8. Marginal density of annual increments of log earnings based on sim-
ulated data from the estimated mixture model and PSID data. Ths simulation is
based on 2500 sample paths for each of the 938 PSID sampled. As in the previ-
ous figure, the left panel is the log transformed density and the right panel is the
−1/

√
f(x) transformed density.

characteristic linear (Pareto) tail behavior with a tail exponent of about 0.40 in the
left tail and 1.18 in the right tail. Although such densities fall outside the familiar
class of log-concaves, they are nicely accommodated by the larger class of s-concave
densities described in Koenker and Mizera (2018). The right panel of Figure 7 de-

picts the same density, now plotted not as as log f(x) but as −1/
√
f(x) revealing

a nice concave shape. Such densities can be easily estimated by shape constrained
non-parametric methods as described in Koenker and Mizera (2010, 2018) and Han
and Wellner (2016) and are implemented in the function medde in the R package
REBayes.

Given our estimates of the bivariate mixture model, it is of interest to see whether
the estimated model can generate a similar marginal density for annual increments
in log earnings. To investigate this we generate 2500, m = 50, M = 50, sample paths
for each of the 938 PSID sampled individuals using their individual specific posterior
distributions Ĥi, and the profile likelihood point estimate of ρ. These sample paths
in log levels are then transformed to annual increments and a marginal density for
these increments is then estimated. The resulting log and Hellinger transformed
densities are shown in Figure 8. Not only are the shapes of the transformed densities
remarkably similar to those in the Guvenen figure, the support of the estimated
density is also remarkably consistent. It may seem surprising that our relatively small
sample of 938 individuals from the PSID can create enough dispersion to generate
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this extreme tail behavior, however further reflection suggests that the estimated scale
heterogeneity of the model is capable of generating some rather wild trajectories.

6.3. Heterogeneous ARMA Income Dynamics. The simple AR(1) dynamics of
the preceding models is especially convenient since partial differencing yields sufficient
statistics that make the likelihood easily computed. However, there is a long tradition
going back to Friedman (1957) of considering more complex dynamics that decompose
the income process into transitory and permanent components. To illustrate how such
models can be accommodated within the empirical Bayes framework, we will consider
the simple ARMA(1,1) specification adopted by Blundell (2014):

yit = µi + uit + vit

uit = ρui,t−1 + σννit

vit = σηηit + σηθηi,t−1.

As before, yit denotes the residual log income process after removing covariates effects.
For simplicity, we provisionally assume homogeneous scale parameters, σν and ση

for the AR and MA components, respectively. The innovations, νit ∼ N(0, 1) and
ηit ∼ N(0, 1) are taken as iid and independent of one another. Substituting, we have
the model,

(1) yit = ρyi,t−1 + (1− ρ)µi + σννit + σηηit + (θ − ρ)σηηi,t−1 − ρθσηηi,t−2

In state-space form the model can be expressed, following Harvey (1990) as,

yit = ci + Zαit +Gξit

αit = di + Tαi,t−1 +Hϵit

where αit ∈ Rm, T ∈ Rm×m, ξit ∈ R, ϵit ∈ Rm, G ∈ R and Z ∈ Rm, H ∈ Rm×m. The
dimension of αit is 3 in our case, di = G = 0, ci = µi, Z = (1, 0, 0) andα1it

α2it

α3it

 =

ρ 1 0
0 0 1
0 0 0

α1i,t−1

α2i,t−1

α3i,t−1

+

 1 1 0
θ − ρ 0 0
−θρ 0 0

ση 0 0
0 σν 0
0 0 0

ηit
νit
ϵ3it

 .

More explicitly, we have,

α1it = ρα1i,t−1 + α2i,t−1 + σηηit + σννit

α2it = α3i,t−1 + ση(θ − ρ)ηit

α3it = −θρσηηit,

and substituting the last two lines into the first and bring back to the first equation
on yit, we have,

yit = (1− ρ)µi + ρyi,t−1 − θρσηηi,t−2 + ση(θ − ρ)ηi,t−1 + σηηit + σννit

which is identical to (1).
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Figure 9. The estimated distribution of the individual fixed effect
with the heterogeneous ARMA(1,1) model.

Our objective is now to estimate the latent distribution of the µi along with the
structural parameters (ρ, θ, σν , ση). For a time series model like (1), the mixture like-
lihood of this model might appear intractable. However, given our Gaussian assump-
tions on the innovations, the likelihood – conditional on the structural parameters
– for each trajectory yi1, · · · yimi

can be computed with the aid of the Kalman fil-
ter. Thus, with only µi (location) heterogeneity in the mixture model it is relatively
straightforward to formulate the profile likelihood problem for the structural param-
eters; each entry in the NPMLE constraint matrix A is supplied by the Kalman
filter, which recursively builds the likelihood evaluation for each parameter setting
(see Harvey (1990) Section 3.4). It should perhaps be stressed that estimation of the
mixing distribution for the µi, given the structural parameters is a convex optimiza-
tion problem with a unique, quite parsimonious discrete solution. Profile likelihood
for the remaining structural parameters is also straightforward once likelihood eval-
uations for the mixture problem are in place. In principle, there is no obstruction to
reinstating scale heterogeneity into the model, however it seemed prudent to initially
consider only location heterogeneity.
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Preliminary estimation of this model employing a relatively coarse grid for profil-
ing the structural parameters yields, (ρ̂, θ̂, σ̂ν , σ̂η) = (0.49, 0.15, 0.17, 0.5). The cor-
responding estimated mixing distribution for the location parameters, µi is shown
in Figure 9. It was surprising to us that the persistence of the income process in
this version of the model was so weak. In Gu and Koenker (2017b) we asserted that
the weak, ρ = 0.48, AR(1) persistence could be attributed to the inclusion of het-
erogeneous scale in the model. However, even with fixed scale, we find similar weak
persistence in the ARMA(1,1) specification implying that the reliance on unit-root
specifications of income processes may be questionable.

We should stress, however, that we still find the heterogeneous scale specification
attractive because it enables one to make more reliable assessments of confidence
bands for posterior mean predictions. In Appendix B we compare predictive fanplots
for several representative individuals in our PSID sample. In the panels on the left side
we have the predictions from the ARMA(1,1) model without any scale heterogeneity
while in the right panels we have the predictions from the AR(1) model with both
location and scale heterogeneity. Not unexpectedly, the ARMA(1,1) model prediction
bands have the same width for all subjects, thereby over-covering for individuals
with low variability in the initial period, and under-covering for those with high
variability in the initial period. A secondary consequence of the scale homogeneity of
the ARMA(1,1) model is that it fails to capture the extreme tail behavior illustrated
in Figure 8 for the AR(1) model.

7. Conclusion

A survey of some recent developments in empirical Bayes methods focusing on
nonparametric maximum likelihood estimation of mixture models for latent variables
has been presented. A more extensive development will eventually be available in
Koenker and Gu (2024). We believe that these methods offer valuable new tools for
studying heterogeneity in its manifold forms in economics and we look forward to
future developments.
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Appendix A. Tweedie’s Formula

Robbins (1956) attributes Proposition 2 to Tweedie (1947). It follows by straight-
forward exponential family computations, as in van Houwelingen and Stijnen (1983),

δ(y) = E[η|Y = y]

=

∫
ηφ(y|η)dG/

∫
φ(y|η)dG

=

∫
ηeyηh(η)dG/

∫
eyηh(η)dG

=
d

dy
log(

∫
eyηh(η)dG)

=
d

dy
log(fG(y)/m(y)).

Differentiating again,

δ′(y) =
d

dy

[∫
ηφdG∫
φdG

]
=

∫
η2φdG∫
φdG

−
(∫

ηφdG∫
φdG

)2

= E[η2|Y = y]− (E[η|Y = y])2

= V[η|Y = y] ≥ 0,

implies that δ must be monotone.
Stein in his discussion of Efron and Morris (1973) observed that in the standard

Gaussian case, Y ∼ N (θ, In) the oracle decision rule, δ(Y ) = Y +∇ log f(Y ), under
quadratic loss has compound risk,

E∥Y +∇ log f(Y )− θ∥2 = E∥Y − θ∥2 + E∥∇ log f(Y )∥2 + 2E(Y − θ)⊤∇ log f(Y )

= n+ E∥∇ log f(Y )∥2 + 2E
{

1

f(Y )
∇2f(Y )− ∥∇ log f(Y )∥2

}
= n− E

{
∥∇ log f(Y )∥2 − 2

f(Y )
∇2f(Y )

}
= n+ 4E

{
∇2

√
f(Y )√

f(Y )

}
where ∇ is the vector of first partial derivatives, and ∇2 is the Laplacian,

∑
∂2/∂y2i .

The second equality follows from Stein’s lemma, and the fourth from the identity,

∇2
√

f = ∇ · ∇
√

f = ∇ · ∇f

2
√
f
=

1

2
√
f
∇2f − 1

4f 3/2
∥∇f∥2.
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Note that the expression in the displayed equation provides an unbiased estimate of
compound risk. Stein concludes that if

√
f is superharmonic, that is, ∇2

√
f ≤ 0,

then the Tweedie oracle estimator, δ(Y ) = Y +∇ log f(Y ), is minimax.
Of course, practical implementation of such decision rules requires an estimator for

fG. To evaluate the cost of using an estimated decision rule, δ, instead of the Tweedie
oracle rule, δ∗G, we define regret as the difference in their risks,

Rn(δ,G) = sup
G∈G

{Rn(δ,G)−Rn(δ
∗
G, G)} .

Regret depends upon the class, G, of possible mixing distributions. Light tailed
G, that is those with bounded support or sub-Gaussian tails, denoted G∞, make it
relatively easy to estimate the marginal density. Heavier tailed G, satisfying the
moment condition, Gp = {G :

∫
|u|pdGn(u) = O(1)}, make it more difficult. For

estimators based on the NPMLE, fĜ, in the Gaussian mixture setting, Jiang and
Zhang (2009) have shown that,

Rn(δĜn
,G) ≲

{
n−1(log n)5 if G = G∞.

n−p/(1+p)(log n)
8+9p
2+2p if G = Gp for some fixed p,

where an ≲ bn denotes an = O(bn). Theorem 1 of Polyanskiy and Wu (2021) estab-
lishes that these regret bounds are minimax rate optimal up to logarithmic factors.
Thus, as long as G is light tailed, posterior mean rules based on the NPMLE and
Tweedie’s formula achieve essentially a parametric rate of convergence up to the log
factor.

Appendix B. Predictive Distribution Comparison

In Figures 10 and 11 we compare predictive distributions for the scale homogeneous
ARMA(1,1) model and the scale heterogeneous AR(1) model. It can be noted that
the width of the ARMA(1,1) prediction bands are the same for both highly variable
and very stable individuals in the pre-forecast period, while the AR(1) model that
incorporates individual specific scale effects adapts to this difference.
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Figure 10. Left panels depict predictive bands for the ARMA(1,1)
model, while right panels depict bands for the AR(1) heterogeneous
scale model.
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