
EMPIRICAL BAYESBALL REMIXED:

EMPIRICAL BAYES METHODS FOR LONGITUDINAL DATA

JIAYING GU AND ROGER KOENKER

Abstract. Empirical Bayes methods for Gaussian and binomial compound decision problems

involving longitudinal data are considered. A recent convex optimization reformulation of the
nonparametric maximum likelihood estimator of Kiefer and Wolfowitz (1956) is employed to con-

struct nonparametric Bayes rules for compound decisions. The methods are illustrated with an

application to predicting baseball batting averages, and the age profile of batting performance. An
important aspect of the empirical application is the general bivariate specification of the distribu-

tion of heterogeneous location and scale effects for players that exhibits a weak positive association

between location and scale attributes. Prediction of players’ batting averages for 2012 based on
performance in the prior decade using the proposed methods shows substantially improved per-

formance over more naive methods with more restrictive treatment of unobserved heterogeneity.

Comparisons are also made with nonparametric Bayesian methods based on Dirichlet process pri-
ors, which can be viewed as a regularized, or smoothed, version of the Kiefer-Wolfowitz method.

1. Introduction

Unobserved heterogeneity has become a pervasive concern throughout applied econometrics, and
there has been a resurgence of interest in empirical Bayes methods for estimating hierarchical models
with random parameters. Much of this literature has focused on the parametric Gaussian random
effects model developed by Lindley and Smith (1972). One prominent source of such applications is
the literature on teacher evaluation. Guarino, Maxfield, Reckase, Thompson, and Wooldridge (2015)
have recently argued that empirical Bayes methods may be misguided when teacher assignment is
closely tied to student performance, but as expected they show that these methods perform well
under random assignment. Prediction of insurance liability claims also relies heavily on the linear
shrinkage rules arising from the Gaussian random effects paradigm as demonstrated in Bühlmann
and Gisler (2005) and the extensive related literature in actuarial science. Less attention has been
paid to nonparametric mixture models in econometric applications with the notable exception of
the seminal paper of Heckman and Singer (1984), who advocated use of the Kiefer and Wolfowitz
(1956) nonparametric maximum likelihood estimator in a Weibull mixture model of unemployment
durations. In this paper we will describe some new, Kiefer-Wolfowitz based, nonparametric em-
pirical Bayes methods for estimation and prediction in longitudinal data models with unobserved
heterogeneity, and compare and contrast them with some existing nonparametric Bayesian proposals.

As stressed in recent work of Efron (2010, 2011), empirical Bayes methods pioneered by Rob-
bins (1951, 1956) provide a statistical framework for many contemporary “big data” applications.
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Although they predate the development of hierarchical Bayes methods exemplified in the work of
Lindley and Smith (1972), they share many common features. The transition from parametric to
nonparametric empirical Bayes methods brings exciting new opportunities that greatly expand the
flexibility of existing approaches to longitudinal data modeling and its treatment of unobserved
heterogeneity.

We will begin with a brief review of some developments in empirical Bayes methods beginning with
Robbins (1951), touching on the connections to Stein rule methods and finally evolving into modern
nonparametric mixture variants. In Section 3 we extend the predominant Gaussian location mixture
framework to accommodate nonparametric location and scale mixtures in the classical Gaussian
longitudinal data setting. Section 4 describes an extended application on baseball batting averages
that illustrates both estimation and prediction aspects of the new methods including, notably, the
introduction of covariate effects via profile likelihood methods. This paper complements parallel work
on related methods for models of income dynamics Gu and Koenker (2015), expanding it to models
for discrete (binomial) data and providing an explicit comparison with more formal nonparametric
Bayesian methods based on Dirichlet process priors.

In sharp contrast to the classical Gaussian hierarchical Bayes framework for longitudinal data
with parametric mixing distributions, or its frequentist counterparts, the nonparametric mixture
formulation of our proposed methods offers a more flexible view of unobserved heterogeneity while
preserving most of the virtues of the Bayesian formalism. In particular, more flexible nonparametric
modeling of unobserved heterogeneity leads to improved predictive performance.

2. Empirical Bayes: A Brief Review

Given a simple parametric statistical model, there is a natural Bayesian temptation to complicate
it by building a hierarchical structure on top of it. As surveyed by Good (1979) one of the earliest ex-
amples of this type was the (classified) work of Turing in 1941, elaborated in Good (1953). Another
prominent strand of this literature was the Gaussian random effects compound decision problem
introduced by Robbins (1951). In Robbins’s setting we observe independent Y1, · · · , Yn each Gauss-
ian with common variance, σ2 but individual specific means, Yi ∼ N(µi,σ

2). Our objective is to
estimate all the µi’s subject to squared error loss,

L2(µ̂,µ) = ‖µ̂− µ‖22 =

n∑
i=1

(µ̂i − µi)
2.

The naive (unbiased) solution would simply set µ̂i = Yi, but a natural presumption in such circum-
stances would be that the observations have some common genesis, and consequently that we may
be able to “borrow strength” from the full sample to improve upon these myopic predictions based
on a single observation.

Suppose we believed that the µi were drawn iid-ly from the distribution, F, so the Yi’s would
have convolution density g(y) =

∫
φ((y− µ)/σ)/σdF(µ). Then the Bayes rule would take the form

(1) δ(y) = y+ σ2g′(y)/g(y)

Efron (2011) refers to (1) as Tweedie’s formula citing Robbins’s (1956) attribution of it to M.C.K.
Tweedie. Of course one might well ask: Where did this F come from? And this question leads us
inevitably toward estimation of the density, g, and hence to the empirical Bayes paradigm. When F
comes from a finite dimensional parametric family there are several familiar special cases.

2.1. Some Parametric Examples.
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(1) Suppose σ2 = 1 and we believed that the µi’s were iid N(0,σ20), so the Yi’s are iid N(0, 1+σ20),
the Bayes rule would be,

δ(y) =

(
1 −

1

1 + σ20

)
y.

Thus, we shrink our naive estimates all toward zero. When σ20 is unknown, S =
∑
Y2i ∼

(1+σ20)χ
2
n, and recalling that an inverse χ2n random variable has expectation, (n− 2)−1, we

obtain the Stein rule in its simplest form:

δ̂(y) =

(
1 −

n− 2

S

)
y.

(2) When, slightly more generally, µi ∼ N(µ0,σ20) we shrink instead toward the prior mean,

δ(y) = µ0 +

(
1 −

1

1 + σ20

)
(y− µ0),

and estimating the prior parameters costs us one degree of freedom, so we obtain the cele-
brated James-Stein estimator,

δ̂(y) = Ȳn +

(
1 −

n− 3

S

)
(y− Ȳn),

for Ȳn = n−1
∑
Yi and S =

∑
(Yi − Ȳn)

2.
(3) If each observation has its own known variance: Yi ∼ N(µi,σ

2
i ) and µi ∼ N(µ0,σ20), as might

be plausible in the case that each Yi is from a different measuring device each with known
precision, or as in the ubiquitous baseball batting average examples, as in Brown (2008) and
Jiang and Zhang (2010), in which binomial variances depend upon a known number of “at
bats” in the initial period. In such cases we have the Bayes rule,

δ(yi) = µ0 +

(
1 −

σ2i
σ20 + σ

2
i

)
(yi − µ0)

(4) Further generalizing, we may wish to replace µ0 by a function of observable covariates, say
z>i β0. Then, as in Jiang and Zhang (2010), we obtain a positive-part James-Stein estimator,

δ̂(yi) =

(
1 −

p− 2∑
(z>i β̂/σi)

2

)
+

z>i β̂+

(
1 −

n− p− 2∑
(yi − z>i β̂)

2/σ2i

)
+

(yi − z
>
i β̂)

where p denotes the dimension of β and (u)+ = uI(u > 0).
(5) Another important class of examples arises from the assumption of sparsity, that is, an

assertion that most of the µi are probably zero. Johnstone and Silverman (2004) consider a
model in which,

dF(µ) = (1 −w)δ0(µ) +wϕν(µ)

where with probability (1−w), µ = 0, while with probability w it is drawn from a density, ϕ,
with scale parameter, ν. They compare performance of several hard and soft threshholding
rules in addition to empirical Bayes procedures that estimate the parameters w and ν. This
is closely related to an extensive recent literature on more formal Bayesian methods for the
Gaussian sequence model, e.g. Castillo and van der Vaart (2012).

The simulation designs of Johnstone and Silverman (2004) have served as a benchmark for several
more recent studies of empirical Bayes methods including Brown and Greenshtein (2009), Jiang and
Zhang (2009), and Koenker and Mizera (2014), all of which explore non-parametric estimation of
the Gaussian location mixture model.
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2.2. Non-parametric Estimation of the Gaussian Mixture Model. Lacking confidence in
any particular parametric specification that would allow us to estimate g parametrically, we are
apparently led into the quagmire of Gaussian deconvolution. Before mobilizing any heavy empiri-
cal characteristic function artillery it is worth considering what might be accomplished with more
conventional statistical machinery. Noting that Tweedie’s formula requires only knowledge of the
marginal density, g, of the observed Yi’s, Brown and Greenshtein (2009) propose simply estimating
g by conventional kernel methods, thereby circumventing entirely the problem of estimating the
mixing distribution, F. As they point out, however, a potential drawback of the kernel approach
is that it fails to impose the constraint, implied by the Gaussian noise assumption, that the Bayes
rule, δ(y), is monotone in y. Koenker and Mizera (2014) describe a maximum likelihood method
of estimating g subject to this monotonicity constraint, or equivalently a convexity constraint on
K(y) = 1

2y
2 + log g(y). This approach improves predictive performance somewhat relative to the

unconstrained kernel estimator, but it still fails to fully exploit the structures of the Gaussian com-
pound decision model.

Jiang and Zhang (2009) propose a more direct attack on the Gaussian compound decision prob-
lem. Reviving the proposal of Kiefer and Wolfowitz (1956) for nonparametric maximum likelihood
estimation of the general mixture model, they show that a fixed point variant of the EM algorithm
suggested by Laird (1978) has excellent predictive performance. The only downside of their approach
is that EM can be computationally extremely burdensome. Recently, Koenker and Mizera (2014)
have suggested replacing the EM fixed point iteration,

f̂
(k+1)
j = n−1

n∑
i=1

f̂
(k)
j φ(yi − uj)∑m

`=1 f̂
(k)
` φ(yi − u`)

,

defined on a grid {u1,u2, · · · ,um}, by an interior point solution of the convex program:

min{−

n∑
i=1

log(gi) | Af = g, f ∈ S},

where A = (φ(yi − uj)) and S = {s ∈ Rm|1>s = 1, s > 0}. So fj denotes the estimated mixing

density estimate f̂ at the grid point uj, and gi denotes the estimated mixture density estimate, ĝ,
at Yi. It is well-known from Laird (1978) and Lindsay (1995) that the Kiefer-Wolfowitz estimator

produces a discrete F̂, typically with only a few mass points. The fineness of the grid values controls
the accuracy of the location of these mass points.

We have generally found a few hundred equally spaced grid points adequate, but further accuracy
is always available by refinement of the grid. On relatively small test problems with sample size
n = 200 and m = 300 equally spaced grid points, interior point methods achieve considerably more
accurate solutions than EM, and require less than one second while EM requires 10 minutes. Our
implementation of interior point methods is based on the Mosek implementation of Andersen (2010)
as linked to R language R Core Team (2014) via the packages RMosek Friberg (2012) and REBayes
Koenker and Gu (2015). Further details on the capabilities of the REBayes computing environment
for empirical Bayes methods is provided in Koenker and Gu (2016), including models for survival
and count data as well as those discussed here.

In the next section we will describe how these methods can be extended to longitudinal data,
first for location and scale mixtures separately, then for location-scale mixtures and finally for
location scale mixtures with covariate effects. In contrast to compound decision problems with cross
sectional data, richer longitudinal data offers new opportunities permitting more complex structure
of unobserved heterogeneity.
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3. Estimating Gaussian Mixtures with Longitudinal Data

Extending the Gaussian compound decision problem with one location parameter per observation
to unbalanced longitudinal observations in which we have mi observations on each individual is
straightforward. Assuming for convenience that we have unit variance for the noise so uit ∼ N(0, 1),
we have,

yit = µi + uit, t = 1, · · · ,mi, i = 1, · · · ,n,

but sufficiency reduces the problem to our third example with µ̂i = m−1
i

∑mi

i=1 yit ∼ N(µi,m
−1
i ).

When the µi’s are iid from F, we can write the log likelihood of the observed yit’s as,

`(F|y) =

n∑
i=1

log(
√
mi

∫
φ(
√
mi(µ̂i − µ))dF(µ))

Optimizing over the infinite dimensional F necessitates some form of discrete approximation. As in
earlier EM implementations, such as that of Jiang and Zhang (2009), we take F to have a discrete
measure on a relatively fine grid containing the empirical support of the observed µ̂i’s. With a
few hundred grid intervals we can obtain a quite accurate estimate. Further refinement is always
possible as discussed in Koenker and Mizera (2014), but already with a uniform grid with 300 points
we have very precise positioning of the mass points of the mixing distribution, more precise than the
statistical accuracy of the mass locations would really justify. Letting fj : j = 1, · · · ,p denote the
function values of dF on this grid, we can express the constrained maximum likelihood problem as,

(2) max
f

{

n∑
i=1

log(gi) | g = Af,

p∑
j=1

fj∆j = 1, f > 0},

where A = (Aij = (
√
miφ(

√
mi(µ̂i − µ))) and ∆j is the jth grid spacing. As posed, the problem is

evidently convex, having a strictly convex objective function subject to linear equality and inequality
constraints, and therefore has a unique solution. It is well-known, going back to Kiefer and Wolfowitz
(1956) and Laird (1978), that variational solutions to the original problem are discrete with fewer
than n atoms. It is somewhat difficult to appreciate this result by viewing EM solutions, since the
number of EM iterations required to obtain an accurate solution would test the patience of the most
diligent researchers. But interior point methods make this discreteness easily apparent. Since the
number of non-negligible f̂i > 0 obtained is typically much smaller than n, often only a handful of
points, even in large samples, this also guides our judgement regarding the adequacy of the original
grid. Again, larger n might justify a refinement of the grid at very modest increase in computational
effort.

The dual formulation of primal problem (2) has proven to be somewhat more efficient from a
computational viewpoint. The dual can be expressed as

(3) max
ν

{

n∑
i=1

log(νi)|A
>ν 6 n1p,ν > 0},

see Koenker and Mizera (2014) for further details.

3.1. Estimating Gaussian Scale Mixtures. Gaussian scale mixtures can be estimated in much
the same way that we have described for location mixtures. Suppose we now observe,

yit =
√
θiuit, t = 1, · · · ,mi, i = 1, · · · ,n

with uit ∼ N(0, 1). Sufficiency again reduces the sample to n observations on si = m−1
i

∑mi

t=1 y
2
it,

and thus 2risi/θi with ri = mi/2 has the gamma distribution with shape parameter, ri and scale
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parameter θi/ri, i.e.

γ(si|ri, θi) =
1

Γ(ri)(θi/ri)ri
sri−1
i exp{−siri/θi},

and the marginal density of si when the θi are iid from F is

g(si) =

∫
γ(si|ri, θ)dF(θ).

To estimate F we can proceed exactly as before except that now the matrix A has typical element
γ(si|θj) for θj on a fine grid covering the support of the sample si’s.

3.2. Estimating Gaussian Location-Scale Mixtures. When both location and scale are het-
erogeneous we must combine the strategies already described. We should emphasize here that the
scope for modeling heterogeneity for the scale parameter would not be possible with cross sectional
data since individuals are then only measured once. The model is now,

yit = µi +
√
θiuit, t = 1, · · · ,mi, i = 1, · · · ,n

with uit ∼ N(0, 1). If we provisionally assume that µi ∼ Fµ and θi ∼ Fθ are independent. Again, we
have sufficient statistics:

µ̂i|(µi, θi) ∼ N(µi, θi/mi)

and

si|(ri, θi) ∼ γ(si|ri, θi/ri),

where ri = (mi − 1)/2, and the log likelihood becomes,

`(Fµ, Fθ|y) =

n∑
i=1

log

∫ ∫
γ(si|ri, θ/ri)

√
miφ(

√
mi(µ̂i − µ)/

√
θ)/
√
θdFµ(µ)dFθ(θ)

Since the scale component of the log likelihood is additively separable from the location component,
we can solve for F̂θ in a preliminary step, as in the previous subsection, and then solve for the
F̂µ distribution. In fact, under the independent prior assumption, we can re-express the Gaussian
component of the likelihood as Student-t and thereby eliminate the dependence on θ in the Kiefer-
Wolfowitz problem for estimating Fµ. This is highly convenient for estimation purposes, however
it should be stressed that prediction restores the interdependence on both Fµ and Fθ. In this
independent prior setting we can also iterate back and forth between the gamma component of the
mixture likelihood, and the Gaussian component likelihood, we explore both of these computational
methods in the application section below.

When the independence assumption is implausible, and this may be typical of many applications
where there is some aspect of the problem that suggests that µi’s and θi’s are positively (or neg-
atively) correlated, we can construct two dimensional grids. This makes the constraint matrix, A,
somewhat larger, but raises no new issues in principle. We discuss this briefly in the next subsection
which also describes how covariate effects can be introduced.

3.3. Covariate Effects. Having seen how to estimate the independent Gaussian location-scale
mixture model we will now briefly describe how to introduce covariate effects into the model, which
now takes the form,

yit = xitβ+ µi +
√
θiuit.

Given a β it is easy to see that,

ȳi|µi,β, θi ∼ N(µi + x̄iβ, θi)



Gu and Koenker 7

so the sufficient statistic for µi is ȳi− x̄iβ. Similarly, the sufficient statistic for θi can be defined as,

Si =
1

mi − 1

mi∑
t=1

(yit − xitβ− (ȳi − x̄iβ))
2

and Si|β, θi ∼ γ(ri, θi/ri), where as before, ri = (mi − 1)/2. Apparently, using the familiar longi-
tudinal data terminology, the sufficient statistic for µi contains the between information, while the
within information, deviations from the individual means, is contained in the Si. A note of caution
should be added however since the orthogonality of the within and between information enjoyed by
the classical Gaussian panel data model no longer holds in this general mixture setting. This can
be seen more clearly by examining the likelihood function,

L(β,h) =

n∏
i=1

g((µ,β, θ)|yi1, . . . ,yimi
)

=

n∏
i=1

∫ ∫ mi∏
t=1

θ−1/2φ((yit − xitβ− µ)/
√
θ)h(µ, θ)dµdθ

= K

n∏
i=1

S1−rii

∫ ∫
θ−1/2φ((ȳi − x̄iβ− µ)/

√
θ)
e−RiRrii
SiΓ(ri)

h(µ, θ)dµdθ

where Ri = riSi/θi and K =
∏n
i=1

(
Γ(ri)

r
ri
i

(1/
√

2π)mi−1)
)

.

Even with the independent prior assumption, h(µ, θ) = hµ(µ)hθ(θ), the likelihood does not
factor because the Gaussian piece depends on both µi and θi. However, the fact that Si, hence the
Gamma piece of the likelihood, does not depend on µi provides a convenient estimation strategy
by using the Gamma mixture to estimate hθ, and a Studentized version of the Gaussian mixture,
(ȳi− x̄iβ−µi)/

√
Si/mi ∼ tmi−1, for estimating hµ. We will compare this estimation strategy with

an iterative method that employs a Gaussian mixture form of the likelihood to obtain F̂µ.

Given our initial solution F̂
(0)
θ based only Si, we can maximize the log likelihood,

n∑
i=1

log

{∫ ∫
γ(si | ri, θ/ri)

1√
θ/mi

φ(
µ̂i − µ√
θ/mi

)dF̂
(0)
θ (θ)dFµ(µ)

}

to obtain F̂
(0)
µ . Continuing the iteration by maximizing the log-likelihood

n∑
i=1

log

{∫ ∫
γ(si | ri, θ/ri)

1√
θ/mi

φ(
µ̂i − µ√
θ/mi

)dF̂(0)µ (µ)dFθ(θ)

}

we obtain F̂
(1)
θ and then solve for F̂

(1)
µ by maximizing the log-likelihood

n∑
i=1

log

{∫ ∫
γ(si | ri, θ/ri)

1√
θ/mi

φ(
µ̂i − µ√
θ/mi

)dFµ(µ)dF̂
(1)
θ (θ)

}
.

Iteration continues until the likelihood fails to improve by more than a specified tolerance. Note
that once we integrate out the hatted distribution in each of the two likelihood expressions we
have our standard convex Kiefer-Wolfowitz problem with a strictly convex objective subject to
linear constraints. The likelihood at each step is increasing, so convergence to a local maximum is

guaranteed. To see this consider the first step: given the initial F̂
(0)
θ , and a fixed grid for µ, F̂

(0)
µ is
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the unique maximizer, so we have,

n∑
i=1

log

{∫ ∫
γ(si | ri, θ/ri)

1√
θ/mi

φ(
µ̂i − µ√
θ/mi

)dF̂
(0)
θ (θ)dFµ(µ)

}

6
n∑
i=1

log

{∫ ∫
γ(si | ri, θ/ri)

1√
θ/mi

φ(
µ̂i − µ√
θ/mi

)dF̂
(0)
θ (θ)dF̂(0)µ (µ)

}
.

In the next step solving for F̂
(1)
θ , using the same grid for θ as was used to solve for F̂

(0)
θ , we have for

all Fθ on this specified grid,

n∑
i=1

log

{∫ ∫
γ(si | ri, θ/ri)

1√
θ/mi

φ(
µ̂i − µ√
θ/mi

)dF̂(0)µ (µ)dFθ(θ)

}

6
n∑
i=1

log

{∫ ∫
γ(si | ri, θ/ri)

1√
θ/mi

φ(
µ̂i − µ√
θ/mi

)dF̂(0)µ (µ)dF̂
(1)
θ (θ)

}
,

so, in particular, this holds for Fθ = F̂
(0)
θ , and the same holds for F̂

(k)
µ and F̂

(k)
θ for k = 1, 2, · · · , as

we continue the iteration. Despite the convenient bi-convexity of the problem, there is no guarantee
that we obtain joint optimality from this iteration scheme. Ironically, if we relax the independence
condition on the “prior” mixing distribution and estimate the general bivariate mixing distribution
all these caveats vanish and we have an unambiguous convex optimization problem, albeit with a
somewhat more elaborate gridding strategy.

Including covariates adapts these estimation strategies: Given a β we estimate the mixing distri-
bution and then evaluate the full profile likelihood. We will illustrate this approach for the general
bivariate heterogeneity distribution in the next section. Our approach is related to recent work
by Weinstein, Ma, Brown, and Zhang (2015) on grouped patterns of heterogeneity in the normal
mean model, although the longitudinal data structure here permits estimation methods that are
considerably more general.

4. Empirical Bayesball

Following a long tradition in the empirical Bayes literature, we now describe our experience with
the methods described above deployed to predict U.S. Major League baseball batting averages.

4.1. The Data. From ESPN (2012) we have collected monthly data on the number of at bats and
hits for all U.S Major League baseball players from the regular seasons of 2002-2011, as well as an
indicator of whether the player is a pitcher. These ten prior seasons are employed to fit our mixture
model and then used to predict performance of players in the 2012 season. We have aggregated
this annual data into half seasons to produce an unbalanced panel, with observations on players
with more than 10 at bats in any half season, and players with no less than 3 half-seasons, leaving
1072 players and a total of 10,570 observations. Since it is reasonable to assume that the batting
performance for pitchers and non-pitchers are sufficiently different, we only focus on non-pitchers
in our data analysis. Using the same selection criteria, this leaves us with 898 players and a total
of 9,199 observations. For the final subsection on age effects we have also collected information on
birth year of each player from the ESPN website.

4.2. The Model. Following Brown (2008), we consider transformed batting averages

yit = arcsin

(√
Hit + 0.25

Nit + 0.5

)
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where Hit denotes the number of “hits” of player i in period t and Nit denotes his number of “at
bats” in this period. We will assume, that the yit’s are Gaussian with means, µi = arcsin(

√
pi),

where pi is the individual specific batting success probability and variances, θiν
2
it = θi/(4Nit). The

additional individual specific scale parameter θi allows us to consider deviations from the variance
dictated by the binomial-Gaussian transformation. Given an unbalanced panel with t = 1, · · · ,mi
for n players, we can define the sufficient statistics:

µ̂i = (

mi∑
t=1

ν−2
it )

−1
mi∑
t=1

yit/ν
2
it

and

Si =
1

mi − 1

mi∑
t=1

(yit − µ̂i)
2/ν2it.

with Gaussian and Gamma distributions, respectively: µ̂i|µi, θi ∼ N(µi, θiv
2
i ) and Si|θi ∼ γ(ri, θi/ri),

where we set v2i = (4
∑mi

t=1Nit)
−1 and ri = (mi − 1)/2.

For the sake of clarity, we defer introducing covariates until the final subsection. In effect we as-
sume that players draw a µi and a θi at random from a distribution with density h(µ, θ). Sufficiency
then implies that we can write the likelihood of the sample, as a function of (µ, θ) ∈ Rn × Rn+,

L(h) =

n∏
i=1

g((µ, θ) | yi1, · · · ,yimi
)

=

n∏
i=1

∫ ∫ mi∏
t=1

φ((yit − µ)/
√
θνit)/(

√
θνit)h(µ, θ)dµdθ

= K

n∏
i=1

∫ ∫
φ((µ̂i − µ)/

√
θvi)/(

√
θvi)

e−RiRrii
SiΓ(ri)

h(µ, θ)dµdθ

where Ri = riSi/θi.
As we have already noted, it is convenient at this point to make the further assumption that the

mixing density h factors into h = hµhθ. In this case, since the likelihood contribution of the Si is
independent of the µi’s, we can solve the resulting (Kiefer-Wolfowitz) maximum likelihood problem
by first estimating the mixing density, hθ and then estimating hµ. For the independent prior case this
is especially convenient since the likelihood can be decomposed into gamma and Student components,
or somewhat more generally into gamma and Gaussian components, as described above. For the
more general dependent prior case, we no longer have the Gamma separability, but this imposes
no inherent technical difficulty except that it involves two dimensional gridding. The possibility of
nonparametrically estimating the joint prior allows arbitrary dependence between the (µ, θ) that
provides an interesting interaction between hitting ability (measured by µ) and hitting consistency
(measured by θ) and leads to a more sophisticated Bayes rule for both µ and θ.

4.3. Estimation Results

4.3.1. Independent Prior. In Figure 1 we depict the estimated mixing densities for the means and
variances, assuming independence between µ’s and θ’s, for the model described in the previous
subsection. In the transformed scale of the µ’s we see one large peak, and several smaller ones, with
slight upper and lower “foothills.” For the variance parameter θ we see only one very pronounced
peak slightly above one, and one smaller peak below one. Recall that the variance scale is relative to
the binomial model, which implies that variance vit is completely determined by the observed data on
the number of at bats for each player (recall v2it = 1/4Nit). Thus, a single peak at exactly one would
imply exact adherence to the binomial model. Instead, we see a modest over-dispersion effect from
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the large peak, and a much smaller peak corresponding to players exhibiting under-dispersion. For
the latter, more consistent, players prediction of future performance would presumably be slightly
easier.
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Figure 1. Estimated Mixing Distributions for µ and θ based on 2002-11 longitudinal
data for non-pitchers. Note that these distributions corresponds to the transformed, ap-
proximately Gaussian, observations. See Figure 2 for the untransformed estimated batting
average distribution implied by this hµ(µ) distribution. The hθ(θ) distribution depicted in
the right panel can be interpreted as an estimate of a mixture of under and over dispersion
components of the observed variances; the (larger) mass point with θ > 1 shows that most
players exhibit overdispersion relative to the binomial model, while the (smaller) mass
point with θ < 1 corresponds to a group of players that are less variable more consistent
than predicted by the binomial model.

Transforming the estimated mixing density, or prior, for the µ’s back to the natural scale of
batting averages yields the distribution shown in left panel of Figure 2. Again, we see a similar
configuration of peaks, but now located at more familiar places on the [0, 1] interval – at least from
baseball perspective. In the right panel of Figure 2 we illustrate the estimated mixing density from
the Kiefer-Wolfowitz MLE of a binomial model based on the aggregated baseball data over the
period 2002-11. This estimate has the advantage of simplicity, but it neglects the potential for over
or under dispersion of the data.

4.3.2. Joint Prior. More generally as discussed earlier, we can relax the independence assumption
and estimate the joint prior distribution of h(µ, θ). These estimation results are presented in Fig-
ure 3, which shows both the two dimensional and three dimensional plot of the Kiefer-Wolfowitz
estimates of the joint distribution ĥ(µ, θ) on a 100 by 100 grid. The joint distribution shows some
positive dependence between the mean and the variance with a Spearman’s rho measure of rank
correlation of 0.4 based on a 1000 simulated samples from ĥ(µ, θ) with standard error 0.004. The
positive dependence suggests that players with a better batting ability also tend to have more vari-
ability in their hitting performance (after accounting for the differences in the number of at bats).
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Figure 2. Estimated Mixing Distributions for Batting Averages for non-pitchers: In the
left panel we present the transformed density based on the Gaussian model described
above. And in the right panel we show the estimated mixing distribution for the MLE of
the binomial model based on the aggregated performance of the players from 2002-11.

If we adopt the managerial perspective of players as assets, this resembles the familiar phenomenon
that high return is associated with higher risk.

The estimated joint prior distribution ĥ(µ, θ) presents us a special opportunity to identify players
that stand out as having large estimates for µ but small estimates for θ. For each data point (µ̂i,Si),
Bayes theorem leads to a player specific posterior distribution h(µ, θ | µ̂i,Si). Under the squared
error loss, the optimal estimator for µ that minimizes E(δµ − µ)2 then leads to the Bayes rule
δµ = E(µ|µ̂,S). Similarly, the Bayes rule for estimating θ under squared error loss is δθ = E(θ|µ̂,S).
Figure 4 presents the scatter plot of (δµ, δθ) for all the players given their batting history over
2002 - 2011. Table 1 lists players that have the largest δµ (right panel) and the smallest δθ (left
panel) estimates based on these point estimates. Most of the top hitters (right panel players) have
relatively large posterior expectation of θ except for Albert Pujols who has the highest estimated
µ (converting back to the probability scale, Pujols’s predicted batting average is 0.322) but also
the lowest θ among the top 10 players. All players in the left panel have under-dispersion relative
to the binomial model. We may highlight a few players: Cuddyer, Nady, Blake and Hernandez,
who have relatively high estimates for their batting abilities among those players with significant
underdispersion. Among these, Michael Cuddyer has the highest estimates for δµ, and also exhibits
the lowest variability, δθ by a substantial margin among all 898 players.

4.4. Out-of-Sample Model Checking. Before proceeding to the more conventional baseball pre-
diction exercise, we first conduct some out-of-sample model checks. Out of the 898 non-pitchers,
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Name µ̂ S δµ δθ
Michael Cuddyer 0.549 0.215 0.549 0.294
Paul Bako 0.489 0.434 0.499 0.686
Xavier Nady 0.551 0.324 0.547 0.756
Jeff Mathis 0.453 0.688 0.458 0.847
Kevin Cash 0.444 0.661 0.461 0.855
Koyie Hill 0.477 0.607 0.497 0.867
Casey Blake 0.540 0.462 0.542 0.879
Dewayne Wise 0.490 0.515 0.510 0.884
Ramon Hernandez 0.545 0.466 0.545 0.889
Yorvit Torrealba 0.537 0.444 0.537 0.906

Name µ̂ S δµ δθ
Albert Pujols 0.611 0.904 0.604 1.090
Ichiro Suzuki 0.604 2.316 0.597 1.633
Joe Mauer 0.605 1.398 0.593 1.391
Barry Bonds 0.607 2.307 0.593 1.454
Miguel Cabrera 0.599 0.926 0.592 1.333
Todd Helton 0.598 1.604 0.592 1.406
Vladimir Guerrero 0.598 1.031 0.591 1.349
Matt Holliday 0.596 0.810 0.591 1.336
Magglio Ordonez 0.592 1.794 0.591 1.380
Manny Ramirez 0.593 1.451 0.590 1.363

Table 1. The left panel consists of players with the lowest posterior expectation of θ and
the right panel consists players with the highest posterior expectation of µ.
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Figure 3. Estimated Joint Mixing Distributions for for Non-pitchers: In the left panel
we present the two dimensional plots allowing a clear visualization of the location of
the support points for (µ, θ). Darker color represents the support points having higher
probability mass. In the right panel we show the three dimensional plot which gives a better
visualization of the magnitude of the probability weights and illustrate the discreteness
feature of the estimated joint distribution.

there remains 344 players with more than 40 at bats in 2012 and had 3 or more half seasons prior
to 2012 and were therefore qualified subjects for our out-of-sample model evaluation.

We conduct the following posterior predictive checks based on the estimated models introduced
above, and also compare their performance with more formal nonparametric Bayesian methods based
on Dirichlet process priors. First, we evaluate the likelihood of observing the 2012 batting outcome
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Figure 4. Bayes rule of (µ, θ) for all non-pitchers based on the Kiefer-Wolfowitz non-
parametric estimates of the joint prior distribution h(µ, θ) and their 2002-2011 batting
history.

based on the posterior predictive distribution. Given the Gaussian location-scale mixture model,
the posterior predictive density for the 2012 batting average for individual i who has Ni at bats can
be found as

(4) f̂i(y|µ̂i,Si,Ni) =

∫ ∫
φ((y− µ)/

√
θ/4Ni)/

√
θ/4NidĤi(µ, θ|µ̂i,Si)

where Ĥi is the individual specific posterior distribution of (µ, θ) updated based on his own 2002-2011
history. The posterior predictive density can be used to assess model fit. We look at both the log
likelihood value and the tail probability evaluated at the 2012 batting outcomes. The log likelihoods
are based on a particular model assumption (e.g. different assumptions on the distribution of (µ, θ)),

indexed by m, is computed as `m ≡
∑344
i=1 log f̂i(yi|µ̂i,Si,Ni), which can be interpreted as the log

likelihood of observing the new data using the predictive model. Counting the number of predictive
tail events provides another measure for evaluating model adequacy, we compute

Tff = ]{i | Yi > Q̂i(1 − τ), or Yi 6 Q̂i(τ)},

where Q̂i(·) is the empirical quantile function of the posterior predictive distribution for the ith
player and Yi is his realized 2012 (transformed) batting average. We simply count the number of
players whose 2012 realizations occur below the τ or above the 1 − τ tail of the posterior predictive
distribution based on the various methods. These values, with τ = 0.025, are reported along with
in-sample log likelihoods for three Gaussian models in Table 2.
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LV-Dep LV-ISG LV-ING G-L
Tail Index 25 28 27 35
Log-Likelihood 605.7 607.1 605.2 595.7

Table 2. Posterior log likelihood and Tff performance for various Gaussian transforma-
tion models: LV-Dep refers to the location-scale Gaussian mixture model with the joint
nonparametric prior, LV-ISG is the location-scale mixture model with independent prior
on (µ, θ) estimated by the Student/Gamma procedure, and LV-ING is the independent
prior model estimated with the iterative Normal/Gamma method. G-L is location Gauss-
ian mixture model that ignores over/under dispersion, but accounts for the differences in
number of at bats in each period.

All the above posterior predictive checks can also be conducted for the binomial model discussed
earlier in Section 4.3.1 with the posterior predictive distribution becoming,

f̂i(h|Ĥi, N̂i,Ni) =

∫ (
Ni

h

)
ph(1 − p)Ni−hdF̂i(p|Ĥi, N̂i),

and the tail index defined in the same way. Given the binomial model, the predictive distribution is
the posterior distribution of the number of hits in 2012 for player i given his number of at bats Ni
and his previous batting performance.

In Table 3 we present for several binomial models the forecast tail index for extreme events, Tff

with τ = 0.025. The smaller this number, the more confidence we have in the respective forecasting
model. To compare the performance of the foregoing predictions with more classical Bayesian
methods we have also considered an alternative nonparametric formulation of the binomial model
employing a Dirichlet process prior as introduced by Ferguson (1973), Antoniak (1974) and Ferguson
(1983). Deferring a discussion of the details to Appendix B, we consider two versions of the Dirichlet
model both with Dirichlet prior D(αG0) and base distribution G0 taken as Beta(1, 1), i.e. uniform
on [0, 1]. The scaling parameter, α is either 0.01 or 10, both reflecting relative ignorance about
the prior. Markov chain Monte-Carlo methods produce a posterior of the predictive density for the
mixing distribution corresponding to the point estimate produced by the Kiefer-Wolfowitz estimator.
The mean of this posterior, as plotted in Figure 5 serves as a predictive density for the mixing
distribution of the binomial parameter can thus be used to produce a predictive distribution on
hits for our out-of-sample 2012 players as for the binomial model described above. The prediction
performance of the binomial mixture model using the Kiefer-Wolfowitz MLE or the nonparametric
Bayesian method with Dirichlet process prior leads to very similar results. Table 2 also suggests
that under the Gaussian model, allowing over or under dispersion of the data is an important
consideration. The likelihood is smaller for the Gaussian location mixture model that forces θi = 1
(Model G-L in Table 2) and it has considerably more tail events than the two other models that
allow for variance heterogeneity.

4.5. Age and the Skill of Batting. Finally, to illustrate the role that covariates can play in the
empirical Bayes approach we have developed, we consider a model in which a player’s age influences
his batting average. Following the approach outlined in the previous section we compute the profile
likelihood on a grid of β parameters. The only required modification is the reweighting by the vit’s.
Given the conventional wisdom that the batting performance has a hump shaped age profile, we
consider a simple quadratic age effect. A contour plot of the profile likelihood is shown as Figure 6
and we find, after unrescaling, that the age effect appears as shown in Figure 7. The peak occurs
at 27 years, by age 39 performance has declined by about 0.02 units in the transformed batting
average, which corresponds to a decline of a typical batting average of 0.320 at the peak to 0.302.
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Figure 5. Dirichlet Estimates of the Mixing Distribution: In the left panel we plot the
estimated mixing distribution based on the Dirichlet prior with precision parameter α = 10.
In the right panel prior precision has been reduced to α = 0.01. These estimates may
be interpreted as regularized versions of those produced by the Kiefer-Wolfowitz MLE
appearing in Figure 2.

B-KW DP-0.01 DP-10
Tail Index 30 30 31
Log-Likelihood −1286.5 −1288.6 −1286.9

Table 3. Posterior log likelihood and Tff performance for various binomial mixture mod-
els: B-KW is the Binomial mixture model with aggregated data based on the Kiefer-
Wolfowitz estimator for the mixing distribution. DP-0.01 is the binomial model with a
Dirichlet Process prior and prior precision parameter α = 0.01. DP-10 is the same Dirichlet
model with α = 10.

The well-known baseball guru Bill James is on record as asserting that batting ability peaks at age
27, so our estimates are at least consistent with his not-so-casual empiricism. Our estimated age
profile also bears an uncanny resemblance to the age profile of Ty Cobb over the period 1905 to
1928 analyzed in Morris (1983). Incorporating the quadratic age effects improves the predictive
performance slightly, so that the likelihood is increased to 620.4 while the number of tail events is
reduced to 26 of the 344 players predicted.

4.6. Prediction. An inherent difficulty for prediction with baseball data is that the number of at
bats for the 344 out-of sample players in 2012 varies from 41 to 670. Since the number of at bats Nit
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Figure 6. Contours of Profile Likelihood for a Quadratic Age Effect on Batting Average:
The Wilks confidence region for the age effect parameters is represented by the shaded
region using 90% critical values from the χ22 distribution.

affects the variability of the transformed batting averages, yit ∼ N(µi, θi/4Nit), even if we were to
get perfect estimates for each (µi, θi), players with larger Nit are subject to less variability for yit,
making them (presumably) easier to predict. To unify the comparison, we adopted the following
measure proposed in Brown (2008)

TSE =
∑
i

(
(Yi,2012 − δµ,i)

2 −
1

4Ni,2012

)
where Yi,2012 is the transformed hitting averages in 2012 for all qualified out-of-sample players and
δµ,i is a prediction from various models. Without the 1/4Ni,2012 term, this is the usual sum of
squared error, and the additional term accounts for the variance effect due to different number
of at bats in 2012. An alternative, more straight-forward measure that we will also report is the
normalized sum of squared error,

NSE =
∑
i

(
4Ni,2012(Yi,2012 − δµ,i)

2
)

.

This measure weights players who have more at bats more heavily.
Earlier literature has illustrated that empirical Bayes methods can improve predictive performance

substantially over conventional linear regression models. Most this work employs a single cross
section. For example, both Brown (2008) and Jiang and Zhang (2010) predict batting averages for
the second half season of 2005 using data from the first half. Jiang and Zhang (2010) concludes
that a linear model with the number of at bats, an indicator of whether the player was a pitcher
and their interaction, together with an individual specific latent location shift effect yielded the best
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Figure 7. The Estimated Quadratic Age Effect: The vertical axis is in units of the
transformed batting average.

predictive performance. More explicitly their model takes the form,

yi = Xiβ+ µi + σiεi

with εi ∼ N(0, 1) and σ2i = 1/4Ni is assumed to be a known quantity. Pitchers bat less frequently
and are generally weaker hitters than other players, so it might be preferable to treat them as a
separate sub-population. One might also argue that conditioning on the number of player at bats
violates the causal perspective of the predictive model: baseball managers decide how many at bats
players have based on their prior performance. For these reasons we restrict attention to non-pitchers
in our prediction exercise, and condition only on players’ age.

Conditional on a β̂, Jiang and Zhang (2010) proposed estimation of G by the nonparametric
maximum likelihood method of Kiefer and Wolfowitz by via the EM algorithm. Estimation of β
can then be carried out by profile likelihood. Prediction for each individual player under L2 loss
becomes,

δµ,i = xiβ̂+

∫
µϕ(yi − xiβ̂− µ)/σi)/σidĜ(µ)∫
ϕ(yi − xiβ̂− µ)/σi)/σidĜ(µ)

Rather than conditioning on only the most recent half-season performance, one might want to
consider longitudinal models that utilize a full record of past performance. Lai, Su, and Sun (2014)
have recently considered a parametric empirical Bayes model of the general form,

yit =

p∑
j=1

ρjȳt−j + xitβ+ µi + εit.
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Batting averages in the second half of the 2010 season are predicted using training data from
the prior half seasons starting in 2006. BIC model selection simplifies their predictive model by
setting β = 0 and p = 1. Here ȳt−j is defined as

∑
i∈St−j

yi,t−j/#|St−j|, the average of the

transformed batting average among the set of players St−j that play in half-season t− j, so dynamics
are restricted to an average half-season effect. In contrast to the nonparametric approach of Jiang
and Zhang (2010), Lai, Su, and Sun (2014) adopt a parametric formulation of the latent ability
effect, assuming µi ∼ N(0, τ2). This assumption has the advantage that it leads to linear shrinkage
rules, but otherwise seems hard to justify.

The nonparametric empirical Bayes methods we have described in earlier sections encompass
both the dynamic longitudinal features of the Lai, Su, and Sun (2014) approach as well as an
expanded version of the nonparametric heterogeneity of the Jiang and Zhang (2010) models with
both location and scale heterogeneity. Crucially, interior point methods make the computation of
the Kiefer Wolfowitz estimator much more efficient and therefore greatly facilitates the requisite
profile likelihood optimization.

In Table 4 we compare the predictive performance of several variants of these models; batting
averages for the 2012 season are predicted based on data for the 2002-11 seasons. When location-
scale model is used which accounts for possible additional unobserved heterogeneous θ, the prediction
for each individual player, with past history summarized by the pair (µ̂i(xi, β̂),Si(xi, β̂)) defined in
Section 4.2 is given by

δµ,i = xiβ̂+

∫ ∫
µϕ((µ̂i − xiβ̂− µ)/

√
θνi)/(

√
θνi)γ(Si|ri, θ)dĤ(µ, θ)∫ ∫

ϕ((µ̂i − xiβ̂− µ)/
√
θνi)/(

√
θνi)γ(Si|ri, θ)dĤ(µ, θ)

where the covariate vector xi consists a quadratic in player age, and ȳ2011, mean batting average
for 2011. Rows labeled “LV” in the table refer to these models with both location and scale hetero-
geneity. Imposing independence of the location and scale effects in these models actually improves
predictive performance without covariates, so we have focused primarily on the models that impose
independence on H(µ, θ). In the income dynamics application of Gu and Koenker (2015) depen-
dence in the estimated mixture distribution plays an important role. To illustrate the potential
importance of accounting for the additional over/under dispersion in θ, we also consider a location
mixture model which only admits the heterogeneous µi for individual players (for example, force

θi = 1 for all i). The prediction, with past history summarized by µ̂i(xi, β̂) defined in Section 4.2
is then

δµ,i = xiβ̂+

∫ ∫
µϕ((µ̂i − xiβ̂− µ)/νi)/νidĤ(µ)∫ ∫
ϕ((µ̂i − xiβ̂− µ)/νi)/νidĤ(µ)

Row labeled “L” in the table refer to predictions based on these models. The column labeled as
RTSE and RNSE in Table 4 presents the relative performance of all models relative to the “Naive”
prediction that uses Yi,2011 as a prediction for yi,2012 based on TSE or NSE measure respectively.
All of the empirical Bayes procedures improve substantially on this naive forecast. The simple “Lag”
model that uses only Ȳ2011 as a linear predictor for Yi,2012 and allows no heterogeneity suggests that
the past year average batting performance is a useful predictor for the linear part of the model.
Adding covariates effects to the LV models substantially improves predictions. When we restrict to
only location heterogeneity predictions, the model without covariates remain quite good, but those
with covariates not as strong as their corresponding more flexible location-scale models.

We also compare the prediction in terms of the probability scale as in Muralidharan (2010). In
this setting, we can also consider models based on binomial model assumptions. Following Jiang
and Zhang (2010), we convert the prediction back to probability scale via p̂i = sin2(δµ,i) and the
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Models TSE RTSE NSE RNSE TSEp RTSEp
LV-ISG 0.323 0.499 594.418 0.596 0.241 0.622
LV-ING 0.331 0.512 598.742 0.600 0.247 0.635
LV-Dep 0.328 0.507 598.059 0.599 0.245 0.631
LV-ISG-Age 0.276 0.427 563.406 0.565 0.206 0.530
LV-ING-Age 0.284 0.439 568.327 0.570 0.211 0.544
LV-ISG-Age-Lag 0.218 0.337 540.281 0.542 0.163 0.421
LV-ING-Age-Lag 0.225 0.348 544.004 0.545 0.168 0.432
Naive 0.647 1.000 997.683 1.000 0.388 1.000
Lag 0.382 0.590 913.163 0.915 0.312 0.803
L 0.328 0.507 597.626 0.599 0.245 0.631
L-AGE 0.361 0.558 624.307 0.626 0.271 0.697
L-AGE-Lag 0.511 0.790 753.566 0.755 0.386 0.993
Bmix 0.246 0.633
DP-10 0.246 0.632
DP-0.01 0.248 0.638

Table 4. Predictive performance for various models. Predictions based on models with
heterogeneity in both location and scale are identified by the row label LV. Three variants
of the LV models are compared: LV-Dep refers to the unrestricted joint distribution model,
LV-ISG refers to the independent prior model estimated with the Student/Gamma pro-
cedure, and LV-ING to the independent prior model estimated with the Normal/Gamma
iterative procedure. Models with only location heterogeneity have prefix L. Naive predic-
tion refers to using only Yi,2011 as a prediction for Yi,2012, Lag prediction refers to using
only Ȳ2011 as a linear predictor for Yi,2012. Models with additional covariate effects are
identified by appended Age and/or Lag suffixes Binomial mixture models are labeled Bmix
for predictions based on the NPMLE, and DP−α for predictions based on a binomial mix-
ture model with Dirichlet process prior and precision parameter α. The TSE, NSE and
TSEp columns evaluate predictive performance on the transformed and probability scales,
respectively. RTSE, RNSE and RTSEp evaluate performance relative to the Naive model.

total sum of square on the probability scale is defined as

TSEp =
∑
i

(
(pi,2012 − p̂i)

2 − pi,2012(1 − pi,2012)/Ni,2012
)

where pi,2012 is the ratio of number of hits to the number of at bats for qualified out-of-sample player
i in 2012 and p̂i is the prediction for the success probability based on various models. The last three
rows In Table 4 correspond to a Binomial mixture model and two Dirichlet Process prior models
with different precision parameters α (DP-10 for α = 10 and DP-0.01 for α = 0.01). The probability
scale prediction from the transformed data with location or location-scale mixture model dominates
those using the Binomial model. The column labeled as RTSEp is again the relative performance
of all models relative to the “Naive” prediction that uses Hi,2011/Ni,2011 as a prediction for pi,2012
based on TSEp.

5. Conclusion

Models of unobserved heterogeneity for longitudinal data are common in applied statistics. We
have argued that empirical Bayes methods based on nonparametric maximum likelihood estimation
of mixture models offer a natural formulation of these models. Recent developments in convex
optimization greatly facilitate their estimation. Semiparametric versions of these models including
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covariate effects are shown to be effectively analyzed with profile likelihood. A potential criticism of
the foregoing approach is that it requires us to assume a parametric form for the base distribution,
in our setting the Gaussian. Of course, location-scale mixtures of Gaussians is quite a general class,
so from a prediction perspective the normality assumption is not especially onerous. Moreover, in
our baseball application normality is easily justified since the transformed batting averages have a
strong claim to approximate normality. In some special cases it may be possible to estimate the base
distribution nonparametrically from extraneous sample information. Recent work of Bonhomme
and Sauder (2011) illustrates an educational treatment effect application of this type for which a
deconvolution strategy based on empirical characteristic functions is employed. We hope to explore
the extension of Kiefer-Wolfowitz mixture methods to such settings in future work.
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Appendix A. Dirichlet Process Methods for Compound Decisions

Ferguson (1973) first proposed using the Dirichlet process as a prior distribution for estimating an unknown

probability measure P. Antoniak (1974) and Ferguson (1983) extend the Dirichlet process to a mixture of Dirichlet
processes, suited to compound decision problems like the binomial mixture model we have considered above. We do

not observe samples on µ1, . . . ,µn directly, instead we would like to find the posterior distribution of µ conditional

on observing y1, . . . ,yn. Antoniak (1974) shows that if µ1, . . . ,µn are drawn from a distribution F, with Dirichlet
process prior D(αG0), and if Y1, . . . ,Yn are i.i.d. random variable with density g(y) =

∫
f(y|µ)dF(µ), then the

posterior distribution of F given y1, . . . ,yn is a mixture of Dirichlet processes:

F | y1, . . . ,yn ∼

∫
. . .

∫
D(αG0 +

n∑
i=1

δµi
)dH(µ1, . . . ,µn|y1, . . . ,yn)
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The above posterior seems rather intractible, however with the help of the Pólya urn representation of the Dirichlet

process by Blackwell and MacQueen (1973), one obtains a simplified form of the posterior distribution, (see, for

example, Lo (1984)). We will see that this representation opens the way for MCMC sampling from the posterior
distribution.

The Pólya urn representation provides the following conditional distribution,

(5) µi|µ1, . . . ,µi−1 ∼
α

α+ i− 1
G0(µi) +

1

α+ i− 1

i−1∑
j=1

δµj
(µi)

where δµj
denotes the (Dirac) distribution with mass one at point µj. In the Pólya urn scheme each new draw µi is

a random draw from the base distribution G0 with probability α
α+i−1 and otherwise take the value of the previous

i− 1 µ’s, each with probability 1/(α+ i− 1). The joint distribution is therefore,

p(µ1, . . . ,µn) =

n∏
i=1

αG0(µi) +
∑i−1
j=1 δµj

(µi)

α+ i− 1
,

and the posterior distribution of (µ1, . . . ,µn|y) can thus be written as,

(6) p(µ1, . . . ,µn|y) ∝
n∏
i=1

f(yi|µi)
αG0(µi) +

∑i−1
j=1 δµj

(µi)

α+ i− 1
.

Note that we have integrated out the infinite dimensional object F, the distribution for µ,

A.1. Gibbs Sampling I. Our aim is to sample from the above posterior distribution. This can be accomplished

by simulating a Markov chain that has the posterior as its stationary equilibrium distribution. The Gibbs sampling
algorithm in Escobar and West (1994) provides a simple way to do this. It relies on the simple form of the posterior

distribution of µi conditional on the remaining parameters µ(−i) = (µ1, . . . ,µi−1,µi+1, . . . ,µn) and data y such

that we only need to track one variable at each step instead of all n of them. The easiest implementation chooses
G0 as the conjugate prior. For the binomial setting, this leads us to choose G0 as a beta distribution with density

B(a,b).

We can write the posterior distribution as,

p(µi|µ(−i), y) =
f(yi|µ1, . . . ,µn) · p(µi|µ(−i))∫
f(yi|µ1, . . . ,µn) · p(µi|µ(−i))dµi

∝ α

α+n− 1
B(a,b)f(yi|µi) +

1

α+n− 1

∑
j6=i
f(yi|µj)δµj

∝ α

α+n− 1

B(yi +a, li − yi + b)

B(a,b)
B(yi +a, li − yi + b)

+
1

α+n− 1

∑
j6=i
µ
yi
j (1 −µj)

li−yiδµj
(7)

where B(·, ·) denotes the Beta function, B(·, ·) denotes the beta density and f(yi|µi) is the binomial density. Note
that the posterior distribution only depends on yi because for j 6= i, yj is conditionally independent of µi given µj’s.

Gibbs sampling initiates the Markov chain by sampling (µ
(0)
1 , . . . ,µ

(0)
n ) from B(yi+a, li−yi+b) (the posterior

obtained by updating the prior G0 via the likelihood f(yi|µi) up to a normalization constant). The first step of the

Markov Chain is defined as:
Sample µ

(1)
1 from p(µ1|µ

(0)
2 , . . . ,µ

(0)
n , y).

Sample µ
(1)
2 from p(µ2|µ

(1)
1 ,µ

(0)
3 , . . . ,µ

(0)
n , y).

. . .

Sample µ
(1)
n from p(µn|µ

(1)
1 , . . . ,µ

(1)
n−1, y).

Continuing the iteration, the chain stabilizes at its equilibrium distribution and the resulting sample constitute
draws from the distribution with density function p(µ1, . . . ,µn|y) as in (6).

A.2. Gibbs Sampling II. Gibbs sampling as above may have rather slow convergence because of the clustering
behavior of the µi’s (as already noted by Antoniak (1974)). As discussed in Neal (2000), since the Gibbs sampling
algorithm implemented above can not change µ for more than one observation at a time, changes of µ values for
observations in the same cluster occur rather rarely, leading to rigidity in the chain and hence slow convergence.

This can be avoided by introducing a latent class variable as implemented in Bush and MacEachern (1996) and

West, Müller, and Escobar (1994). It is also the approach adopted by the DPbetabinom function in the R package
DPpackage that we employ.
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The latent class model is equivalent to the model introduced above, except that we specify a configuration variable

S = (S1, . . . ,Sn) that classifies the µi’s into k distinct clusters. Denoting nj = #{Si = j} for j = 1, . . . ,k, the

distinct values of µ form the set {θ1, . . . ,θk} and we set Ij = {i : Si = j, i = 1, . . . ,n}. As discussed in Antoniak
(1974) and West (1990), the θi are random samples from G0 and k is related to the sample size n and the precision

parameter α. Given k, the µi’s are selected from the set of θ according to a multinomial distribution. With the

above described structure, we have the distribution for µi conditional on µ(−i) as,

p(µi | µ(−i),S(−i),k(−i)) ∼
α

α+n− 1
G0 +

1

α+n− 1

k(−i)∑
j=1

n
(−i)
j δ

θ
(−i)
j

where S(−i) is the configuration corresponding to all entries in µ(−i) and k(−i) is the number of distinctive values of

µ(−i), contained in the set θ(−i) and n
(−i)
j = #{S(−i) = j} for j = 1, . . . ,k(−i). We still have a Pólya urn scheme:

with probability α/(α+n− 1), µi is a random draw from G0, and otherwise takes a value from the set θ(−i) with

probability proportional to the multinomial counts n
(−i)
j .

Choosing G0 to be the conjugate prior B(a,b), the posterior distribution of µi conditional on data y and µ(−i)

is thus,

p(µi | µ(−i),S(−i),k(−i),y) ∝ α
α+n−1f(yi|µi)B(a,b) + 1

α+n−1

∑k(−i)

j=1 n
(−i)
j f(yi|θ

(−i)
j )δ

θ
(−i)
j

= qi,0B(yi +a, li − yi + b) +
∑k(−i)

j=1 qi,jδ
θ
(−i)
j

with

qi,j =

c
α

α+n−1
B(yi+a,li−yi+b)

B(a,b) if j = 0

c
n
(−i)
j

α+n−1 (θ
(−i)
j )yi(1 − θ

(−i)
j )li−yi if j > 0

and normalizating constant,

c−1 =
α

α+n− 1

B(yi +a, li − yi + b)

B(a,b)
+

1

α+n− 1

k(−i)∑
j=1

n
(−i)
i (θ

(−i)
j )yi(1 − θ

(−i)
j )li−yi .

This second Gibbs sampling algorithm differs from the previous one in that instead of iteratively updating µi’s,

we update the configuration variable S according to its posterior distribution, that is,

P(Si = j | y,µ(−i),S(−i),k(−i)) = qi,j.

We initiate the chain by choosing S
(0)
i = i (i.e., each observation forms its own cluster) and θ(0)’s can be drawn from

B(yi +a, li − yi + b). The Markov chain is simulated as,

(1) Given values for θ(0) and S(0), generate a new S(1) according to posterior distribution specified above

successively. For any index i that has S
(1)
i = 0, draw a new µi from B(yi + a, li − yi + b). Count the

number of clusters k(1).

(2) Given k(1) and S(1), generate a new set of θ(1) by sampling from

p(θj|y,S(1),k(1)) ∝
∏
r∈I(1)j

f(yr|θj)dG0(θj)

(3) Continue iterating . . .

After discarding the first few steps of the Markov chain (burn-in), we can use the simulated sample for the following
posterior analysis.

A.3. Posterior Analysis. Given the posterior distribution (7), the posterior mean for µi from the mth step of the
MCMC scan is

E
(m)
i = E(µ(m)

i |y,µ
(m)
(−i)

) =

∫
µip(µi|µ(−i),y)dµi

=
α
B(yi+a+1,li−yi+b)

B(a,b) +
∑
j6=i(µ

(m)
j )yi+1(1 −µ

(m)
j )li−yi

α
B(yi+a,li−yi+b)

B(a,b) +
∑
j6=i(µ

(m)
j )yi(1 −µ

(m)
j )li−yi

(8)

The posterior mean of µi given data using the entire chain is thus estimated by,

1

M

M∑
m=1

E
(m)
i ,
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where M is the total number of MCMC scans after initial burn-in. As noted by (Gelfand and Smith 1990) this is

essentially Rao-Blackwellization. The posterior variance can be found accordingly as,

V(µi|y) = E(V(µi|µ(−i),y)) + V(E(µi|µ(−i),y)).

A.4. Predictive distribution. Nonparametric Bayesian analysis often focuses on the predictive distribution of µn+1

or yn+1 for a future experiment. It is also something routinely reported by software packages. As noted by Liu (1996),

since F is an infinite-dimensional object, there is no easy way of exploring its full posterior distribution. However,
we can look at its posterior mean, E(F|y), which also turns out to be the predictive distribution of a future µn+1.

In particular, given the latent class model , the predictive density for a future µ in the mth round of Markov Chain
simulation, evaluated at grid points on the domain of (0, 1), is,

p(µ
(m)
n+1 | y,S(m),k(m)) = E(F | y1, . . . ,yn)

= α
α+nG0(·) + 1

α+n

∑k(m)

j=1 n
(m)
j B(·;Z(m)

j +a,L
(m)
j −Z

(m)
j + b)

with Z
(m)
j =

∑
r∈I(m)

j

yr and L
(m)
j =

∑
r∈I(m)

j

lr. The predictive distribution is then obtained as,

1

M

M∑
m=1

p(µ
(m)
n+1 | y,S(m),k(m)).

Given this predictive density we can compute the Bayes rule for predicting µ given an observed y as in the binomial

Kiefer Wolfowitz setting,

E(µ | y) =

∫
µf(y | µ)f̂(µ)dµ∫
f(y | µ)f̂(µ)dµ

The predictive density depends on the Dirichlet prior D(αG0). In the application, we take the distribution G0 to

be B(1, 1), i.e., the uniform distribution on the interval [0, 1]. The precision parameter α takes values 10 and 0.01.

The bigger α is, the more confidence we have in G0 The closer α is to zero, for a given n, the closer the predictive

distribution of µ is to the mixing distribution estimated by the Kiefer-Wolfowitz MLE.


