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CHAPTER 1
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L1 penalties have proven to be an attractive regularization device for
nonparametric regression, image reconstruction, and model selection.
For function estimation, L1 penalties, interpreted as roughness of the
candidate function measured by their total variation, are known to be
capable of capturing sharp changes in the target function while still
maintaining a general smoothing objective. We explore the use of penal-
ties based on total variation of the estimated density, its square root,
and its logarithm – and their derivatives – in the context of univariate
and bivariate density estimation, and compare the results to some other
density estimation methods including L2 penalized likelihood methods.
Our objective is to develop a unified approach to total variation penal-
ized density estimation offering methods that are: capable of identifying
qualitative features like sharp peaks, extendible to higher dimensions,
and computationally tractable. Modern interior point methods for solv-
ing convex optimization problems play a critical role in achieving the
final objective, as do piecewise linear finite element methods that facili-
tate the use of sparse linear algebra.

Keywords: Density estimation, penalized likelihood, total variation,
regularization.

1. Introduction

The appeal of pure maximum likelihood methods for nonparametric den-
sity estimation is immediately frustrated by the simple observation that
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maximizing log likelihoods,
n∑

i=1

log f(Xi) = max
f∈F

!

over any moderately rich class of densities, F , yields estimators that collapse
to a sum of point masses. These notorious “Dirac catastrophes” can be
avoided by penalizing the log likelihood

n∑
i=1

log f(Xi)− λJ(f) = max
f∈F

! (1)

by a functional J that imposes a cost on densities that are too rough. The
penalty regularizes the original problem and produces a family of estimators
indexed by the tuning parameter λ.

Penalized maximum likelihood methods for density estimation were in-
troduced by Good (1971), who suggested using Fisher information for the
location parameter of the density as a penalty functional. Good offered a
heuristic rationale of this choice as a measure of the sensitivity of the den-
sity to location shifts. The choice has the added practical advantage that
it permits the optimization to be formulated as a convex problem with the
(squared) L2 penalty,

J(f) =
∫

(
√

f ′)2dx. (2)

In subsequent work Good and Gaskins (1971) found this penalty somewhat
unsatisfactory, producing estimates that sometimes “looked too straight.”
They suggested a modified penalty that incorporated a component penal-
izing the second derivative of

√
f as well as the first. This component has

a more direct interpretation as a measure of curvature and therefore as a
measure of roughness of the fitted density.

Eschewing a “full-dress Bayesian approach,” Good and Gaskins refer to
their methods as a “Bayesian approach in mufti.” Ideally, penalties could be
interpreted as an expression of prior belief about the plausibility of various
elements of F . In practice, the justification of particular penalties inevitably
has a more heuristic, ad-hoc flavor: data-analytic rationality constrained
by computational feasibility. While penalties may be applied to the density
itself rather than to its square root, a possibility briefly mentioned in Sil-
verman (1986), a more promising approach considered by Leonard (1978)
and Silverman (1982) replaces

√
f by log f in the penalty term. When the

second derivative of log f is penalized, this approach privileges exponential
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densities; whereas penalization of the third derivative of log f targets the
normal distributions.

The early proposals of Good and Gaskins have received detailed the-
oretical consideration by Thompson and Tapia (1990) and by Eggermont
and LaRiccia (2001), who establish consistency and rates of convergence. A
heuristic argument of Klonias (1991) involving influence functions suggests
that penalized likelihood estimators perform automatically something sim-
ilar in effect to the “data sharpening” of Hall and Minnotte (2002) – they
take mass from the “valleys” and distribute it to the “peaks.” Silverman
(1984) provides an nice link between penalty estimators based on the rth
derivative of log f and adaptive kernel estimators, and he suggests that the
penalty approach achieves a degree of automatic adaptation of bandwidth
without reliance on a preliminary estimator. Taken together this work con-
stitutes, we believe, a convincing prima facie case for the regularization
approach to density estimation.

From the computational point of view, all these proposals, starting from
those of Good, can be formulated as convex optimization problems and
therefore are in principle efficiently computable. However, the practice has
not been that straightforward, and widely accessible implementations may
still not be always available. In particular, the earlier authors thinking in
terms of techniques for minimization of quadratic functionals might still
view the constraints implied by the fact that the optimization must be
performed over f that are densities as a computational pain. Penalization
of
√

f or log f is often motivated as a practical device circumventing the
nonnegativity constraint on f ; penalizing the logarithm of the density as
noted by Silverman (1982), offers a convenient opportunity to eliminate the
constraint requiring the integral of f to be 1. In contrast to these advan-
tages, penalizing the density f itself requires a somewhat more complicated
strategy to ensure the positivity and integrability of the estimator. In any
case, the form of the likelihood keeps the problem nonlinear; hence iterative
methods are ultimately required. Computation of estimators employing the
L2 penalty on (log f)′′ has been studied by O’Sullivan (1988). An imple-
mentation in R is available from the package gss of Gu (2005). Silverman’s
(1982) proposal to penalize the third derivative of log f , thereby shrink-
ing the estimate toward the Gaussian density, has been implemented by
Ramsay and Silverman (2002).

The development of modern interior-point methods for convex program-
ming not only changes this outlook – convex programming works with con-
straints routinely – but also makes various other penalization proposals vi-
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able. In what follows, we would like to introduce several new nonparametric
density estimation proposals involving penalties formulated in terms of to-
tal variation. Weighted sums of squared L2 norms are replaced by weighted
L1 norms as an alternative regularization device. Squaring penalty contri-
butions inherently exaggerates the contribution to the penalty of jumps
and sharp bends in the density; indeed, density jumps and piecewise linear
bends are impossible in the L2 framework since the penalty evaluates them
as “infinitely rough.” Total variation penalties are happy to tolerate such
jumps and bends, and they are therefore better suited to identifying dis-
crete jumps in densities or in their derivatives. This is precisely the property
that has made them attractive in imaging applications.

From a computational perspective, total-variation based penalties fit
comfortably into modern convex optimization setting. Exploiting the in-
herent sparsity of the linear algebra required yields very efficient interior
point algorithms. We will focus our attention on penalizing derivatives of
log f , but other convex transformations can be easily accommodated. Our
preliminary experimentation with penalization of

√
f and f itself did not

seem to offer tangible benefits.
Total-variation penalties also offer natural multivariate generalizations.

Indeed, we regard univariate density estimation as only a way station on a
road leading to improved multivariate density estimators. To this end, the
fact that penalty methods can easily accommodate qualitative constraints
on estimated functions and their boundary values is an important virtue.
One of our original motivations for investigating total variation penalties
for density estimation was the ease with which qualitative constraints –
monotonicity or log-concavity, for instance – could be imposed. In this
context it is worth mentioning the recent work of Rufibach and Dümbgen
(2004) who show that imposing log-concavity without any penalization is
enough to regularize the univariate maximum likelihood estimator, and
achieve attractive asymptotic behavior.

Total variation penalties for nonparametric regression with scattered
data have been explored by Koenker, Ng and Portnoy (1994), Mammen
and van de Geer (1997), Davies and Kovac (2001, 2004) and Koenker and
Mizera (2002, 2004). Total variation has also played an important role in
image processing since the seminal papers of Mumford and Shah (1989),
and Rudin, Osher, and Fatemi (1992).

We begin by considering the problem of estimating univariate densities,
and then extend the approach to bivariate settings.
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2. Univariate Density Estimation

Given a random sample, X1, . . . , Xn from a density f0, we will consider
estimators that solve,

max
f
{

n∑
i=1

log f(Xi)− λJ(f) |
∫

Ω

f = 1}, (3)

where J denotes a functional intended to penalize for the roughness of can-
didate estimates, F , and λ is a tuning parameter controlling the smoothness
of the estimate. Here the domain Ω may depend on a priori considerations
as well as the observed data.

We propose to consider roughness penalties based on total variation of
the transformed density and its derivatives. Recall that the total variation
of a function f : Ω → R is defined as∨

Ω

(f) = sup
m∑

i=1

|f(ui)− f(ui−1)|,

where the supremum is taken over all partitions, u1 < . . . < um of Ω. When
f is absolutely continuous, we can write, see e.g. Natanson (1974, p.259),∨

Ω

(f) =
∫

Ω

|f ′(x)|dx.

We will focus on penalizing the total variation of the first derivative of
the log density,

J(f) =
∨
Ω

((log f)′) =
∫

Ω

|(log f)′′|,

so letting g = log f we can rewrite (3) as,

max
g
{

n∑
i=1

g(Xi)− λ
∨
Ω

(g′) |
∫

Ω

eg = 1}. (4)

But this is only one of many possibilities: one may consider

J(f) =
∨
Ω

(g(k)),

where g(0) = g, g(1) = g′, etc., and g may be log f , or
√

f , or f itself, or
more generally gκ = f , for κ ∈ [1,∞], with the convention that g∞ ≡ eg.
Even more generally, linear combinations of such penalties with positive
weights may be considered. From this family we adopt κ = ∞ and k = 1;
see Sardy and Tseng (2005) for κ = 1 and k = 0. In multivariate settings
g(k) is replaced by ∇kg, as described in the next section.
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As noted by Gu (2002), even for L2 formulations the presence of the
integrability constraint prevents the usual reproducing kernel strategy from
finding exact solutions; some iterative algorithm is needed. We will adopt
a finite element strategy that enables us to exploit the sparse structure
of the linear algebra used by modern interior point algorithms for convex
programming.

Restricting attention to f ’s for which log(f) is piecewise linear on a
specified partition of Ω, we can write J(f) as an `1 norm of the second
weighted differences of f evaluated at the mesh points of the partition. More
explicitly, let Ω be the closed interval [x0, xm] and consider the partition
x0 < x1 < · · · < xm with spacings hi = xi−xi−1, i = 1, · · ·m. If log(f(x))
is piecewise linear, so that

log(f(x)) = αi + βix x ∈ [xi, xi+1),

then

J(f) =
∨
Ω

((log f)′) =
m∑

i=1

|βi−βi−1| =
m∑

i=1

|(αi+1−αi)/hi+1−(αi−αi−1)/hi|,

where we have imposed continuity of f in the last step. We can thus pa-
rameterize functions f ∈ F by the function values αi = log(f(xi)), and this
enables us to write our problem (3) as a linear program,

max{
n∑

i=1

αi − λ
m∑

j=1

(uj + vj)|Dα− u + v = 0, (α, u, v) ∈ Rn × R2m
+ } (5)

where D denotes a tridiagonal matrix containing the hi factors for the
penalty contribution, and u and v represent the positive and negative parts
of the vector Dα, respectively.

An advantage of parameterization of the problem in terms of log f is
that it obviates any worries about the non-negativity of f̂ . But we have still
neglected one crucial constraint. We need to ensure that our density esti-
mates integrate to one. In the piecewise linear model for log f this involves
a rather awkward nonlinear constraint on the α’s,

m∑
j=1

hi
eαi − eαi−1

αi − αi−1
= 1.

This form of the constraint cannot be incorporated directly in its exact
form into our optimization framework, nevertheless its approximation by a
Riemann sum on a sufficiently fine grid provides a numerically satisfactory
solution.
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2.1. Data Augmentation.

In the usual Bayesian formalism, the contribution of the prior can often
be represented as simple data augmentation. That is, the prior can be
interpreted as what we would believe about the model parameters if we
had observed some “phantom data” whose likelihood we could evaluate.
This viewpoint may strain credulity somewhat, but under it the penalty,
J(f), expresses the belief that we have “seen” m observations on the second
differences of log f evaluated at the xi’s, all zero, and independent with
standard Laplacian density, 1

2e−|x|. The presence of λ introduces a free
scale parameter that represents the strength of this belief. Data dependent
strategies for the choice of λ obviously violate Bayesian orthodoxy, but
maybe condoned by the more pragmatic minded.

Pushing the notion of Bayesian virtual reality somewhat further, we may
imagine observing data at new xi values. Given that our estimated density
is parameterized by its function values at the “observed” xi values, these
new values introduce new parameters to be estimated; these “phantom ob-
servations” contribute nothing to the likelihood, but they do contribute
to the penalty term J(f). But by permitting log f to bend at the new xi

points in regions where there is otherwise no real data, flexibility of the
fitted density is increased. In regions where the function log f is convex, or
concave, one large change in the derivative can thus be broken up into sev-
eral smaller changes, without affecting the total variation of its derivative.
Recall that the total variation of a monotone function on an interval is just
the difference in the values taken at the endpoints of the interval.

Rather than trying to carefully select a few xi values as knots for a
spline representation of the fitted density, as described in Stone, Hansen,
Kooperberg, and Truong (1997), all of the observed xi are retained as knots
and some virtual ones are thrown in as well. Shrinkage, controlled by the
tuning parameter, λ, is then relied upon to achieve the desired degree of
smoothing. The use of virtual observations is particularly advantageous in
the tails of the density, and in other regions where the observed data are
sparse. We will illustrate the use of this technique in both univariate and
bivariate density estimation in the various examples of subsequent sections.

Example 1: Several years ago one of us, as a class exercise, asked students
to estimate the density illustrated in Figure 1(a), based on a random sample
of 200 observations. The density is a mixture of three, three-parameter



May 11, 2006 11:51 WSPC/Trim Size: 9in x 6in for Review Volume koenker-final

8 R. Koenker & I. Mizera

lognormals:

f1(x) =
3∑

i=1

wiφ(log((x− γi − µi)/σi))/(σi(x− γi)), (6)

where φ denotes the standard normal density, µ = (0.5, 1.1, 2.6), γ =
(.0.4, 1.2, .2.4), σ = (0.2, 0.3, .0.2), and w = (0.33, 0.33, 0.33). In the fig-
ure we have superimposed the density on a histogram of the original data
using an intentionally narrow choice of binwidth.

The most striking conclusion of the exercise was how poorly conven-
tional density estimators performed. With one exception, none of the stu-
dent entries in the competition were able to distinguish the two tallest
peaks, and their performance on the lower peak wasn’t much better. All
of the kernel estimates looked very similar to smoother of the two ker-
nel estimates displayed in Figure 1(b). This is a fixed-bandwidth Gaus-
sian kernel estimate with bandwidth chosen by Scott’s (1992) biased cross-
validation criterion as implemented in R and described by Venables and
Ripley (2002). The other kernel estimate employs Scott’s alternative un-
biased cross-validation bandwidth, and clearly performs somewhat better.
Gallant and Nychka’s (1987) Hermite series estimator also oversmooths
when the order of the estimator is chosen with their BIC criterion, but
performs better when AIC order selection is used, as illustrated in Figure
1(c). In Figure 1(d) we illustrate two variants of the most successful of the
student entries based on the logspline method of Kooperberg and Stone
(1991): one constrained to have positive support, the other unconstrained.
Figure 1(e) illustrates two versions of the logspline estimator implemented
by Gu (2002). Finally, Figure 1(f) illustrates two versions of a total variation
penalty estimator; both versions employ a total variation penalty on the
derivative of log f , and use in addition to the 200 sample observations, 300
“virtual observations” equally spaced between 0 and 25. These estimators
were computed with the aid of the MOSEK package of E. D. Andersen, an
implementation for MATLAB of the methods described in Andersen and
Ye (1998). The penalty method estimators all perform well in this exercise,
but the kernel and Hermite series estimators have difficulty coping with the
combination of sharp peaks and smoother foothills.

3. Bivariate Density Estimation

In nonparametric regression piecewise linear fitting is often preferable to
piecewise constant fitting. Thus, penalizing total variation of the gradient,
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Fig. 1. Comparison of Estimates of the 3-Sisters Density.



May 11, 2006 11:51 WSPC/Trim Size: 9in x 6in for Review Volume koenker-final

10 R. Koenker & I. Mizera

∇g, instead of total variation of g itself, is desirable. For smooth functions
we can extend the previous definition by writing,∨

Ω

∇g =
∫

Ω

‖∇2g‖, (7)

where ‖ · ‖ can be taken to be the Hilbert-Schmidt norm, although other
choices are possible as discussed in Koenker and Mizera (2004). This penalty
is closely associated with the thin plate penalty that replaces ‖∇2g‖ with
‖∇2g‖2. The latter penalty has received considerable attention, see e.g.
Wahba (1990) and the references cited therein. We would stress, however,
that as in the univariate setting there are important advantages in taking
the square root.

For scattered data more typical of nonparametric regression applica-
tions, Koenker and Mizera (2004) have proposed an alternative discretiza-
tion of the total variation penalty based on continuous, piecewise-linear
functions defined on triangulations of a convex, polyhedral domain. Fol-
lowing Hansen, Kooperberg, and Sardy (1998), such functions are called
triograms. The penalty (7) can be simplified for triograms by summing the
contributions over the edges of the triangulation,∨

Ω

∇g =
∑

k

‖∇g+
ek
−∇g−ek

‖ ‖ek‖. (8)

Each edge is associated with two adjacent triangles; the contribution of the
edge is simply the product of the Euclidean norm of the difference between
the gradients on the two triangles multiplied by the length of the edge. The
interiors of the triangles, since they are linear, contribute nothing to the
total variation, nor do the vertices of the triangulation. See Koenker and
Mizera (2004) for further details.

Choice of the triangulation is potentially an important issue especially
when the number of vertices is small, but numerical stability favors the clas-
sical Delaunay triangulation in most applications. Hansen and Kooperberg
(2002) consider sequential (greedy) model selection strategies for choosing
a parsimonious triangulations for nonparametric regression without rely-
ing on a penalty term. In contrast, Koenker and Mizera (2004) employ the
total variation penalty (8) to control the roughness of the fit based on a
much more profligate triangulation. As in the univariate setting it is often
advantageous to add virtual vertices that can improve the flexibility of the
fitted function.

Extending the penalized triogram approach to bivariate density estima-
tion requires us, as in the univariate case, to make a decision about what is
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to be penalized? We will focus exclusively on total variation penalization of
the log density with the understanding that similar methods could be used
for the density itself or another (convex) transform.

Given independent observations {xi = (x1i, x2i) : i = 1, · · · , n} from
a bivariate density f(x), let g = log f , and consider the class of penalized
maximum likelihood estimators solving

max
g∈G

n∑
i=1

g(xi)− λJ(g),

where J is the triogram penalty, given by (8). The set A consists of triogram
densities: continuous functions from a polyhedral convex domain Ω to R+,
piecewise linear on a triangulation of Ω and satisfying the condition,∫

Ω

eg = 1.

It follows that log f can be parameterized by its function values at the ver-
tices of the triangulation. As in the univariate case, adding virtual vertices
is advantageous especially so in the region outside the convex hull of the
observed data where they provide a device to cope with tail behavior.

Example 2: To illustrate the performance of our bivariate density estima-
tor, we consider the density

f2(x1, x2) = f(x2|x1)f(x1)

= 2φ(2(x2 −
√

x1)) · f1(x1),

where f1 is the univariate test density given above. Two views of this density
can be seen in the upper panels of Figure 2. There is one very sharp peak
and two narrow “fins”. In the two lower panels we depict views of a fitted
density based on 1000 observations. The tuning parameter λ is taken to
be 2, and the fit employs virtual observations on a integer grid over the
rectangle {[0, 30]× [0, 6]}.

4. Duality and Regularized Maximum Entropy

An important feature of convex optimization problems is that they may
be reformulated as dual problems, thereby often offering a complementary
view of the problem from the other side of the looking glass. In addition
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Fig. 2. Bivariate 3-Sisters Density and an Estimate.

to providing deeper insight into the interpretation of the problem as origi-
nally posed, dual formulations sometimes yield substantial practical bene-
fits in the form of gains in computational efficiency. In our experience, the
dual formulation of our computations exhibits substantially better perfor-
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mance than the original penalized likelihood formulation. Execution times
are about 20 percent faster and convergence is more stable. We will show
in this section that total variation penalized maximum likelihood density
estimation has a dual formulation as regularized form of maximum entropy
estimation.

As we have seen already, piecewise linear log density estimators can be
represented by a finite dimensional vector of function values

αi = g(xi) i = 1, · · · ,m,

evaluated at knot locations, xi ∈ Ω. These points of evaluation can be
sample observations or “virtual” observations, or a mixture of the two.
They may be univariate, bivariate, or in principle, higher dimensional. We
approximate our integral by the Riemann sum,∫

Ω

eg ≈
m∑

i=1

cie
αi ,

a step that can be justified rigorously by introducing points of evaluation
on a sufficiently fine grid, but is also motivated by computational consider-
ations. Provisionally, we will set the tuning parameter λ = 1, so our primal
problem is,

max{δ>α− ‖Dα‖1 |
∑

i

cie
αi = 1}. (P )

In the simplest case the vector δ ∈ R is composed of zeros and ones indicat-
ing which elements of α correspond to sample points and thus contribute
to the likelihood term. In the case that the xi are all virtual, chosen to lie
on a regular grid, for example, we can write, δ = B1n, where B denotes an
m by n matrix representing the n sample observations expressed in terms
of the virtual points, e.g. using barycentric coordinates.

The integrability constraint can be conveniently incorporated into the
objective function using the following discretized version of a result of Sil-
verman (1982).

Lemma 1: α̂ solves problem (P) if and only if α̂ maximizes,

R(α) = δ>α− ‖Dα‖1 − n
∑

i

cie
αi .

Proof: Note that any differential operator, D, annihilates constant func-
tions, or the vector of ones. Thus, evaluating R at α∗ = α− log

∑
cie

αi , so
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∑
cie

α∗i = 1, we have

R(α∗) = R(α) + n
∑

i

cie
αi − n log

∑
i

cie
αi − 1,

but t − log t ≥ 1, for all t > 0 with equality only at t = 1. Thus, R(α∗) ≥
R(α), and it follows that α̂ maximizes R if and only if α̂ maximizes R

subject to
∑

i cie
αi = 1. This constrained problem is equivalent to (P).

Introducing the artificial barrier vector β, the penalty contribution can
be reformulated slightly, and we can write (P) as,

max
α,β

{δ>α− 1>β −
∑

i

cie
αi | Dα ≤ β, −Dα ≤ β}.

We seek to minimize the Lagrangian,

L(α, β, ν1, ν2) = δ>α− 1>β − n
∑

cie
αi + ν>1 (Dα− β) + ν>2 (−Dα− β)

= (δ + D>(ν1 − ν2))>α− (1− ν1 − ν2)1>β − n
∑

cie
αi ,

subject to the feasibility constraints,

γ ≡ δ + D>(ν1 − ν2) ≥ 0, ν1 + ν2 = 1, ν1 ≥ 0, and ν2 ≥ 0.

Now, differentiating the Lagrangian expression with respect to the αi’s
yields

∂L

∂αi
= δi − d>i (ν1 − ν2)− cie

αi = 0, i = 1, · · · ,m.

Convexity assures that these conditions are satisfied at the unique optimum:

fi ≡ (δi − d>i (ν1 − ν2))/ci = eαi i = 1, · · · ,m,

so we can rewrite our Lagrangian problem with C = diag(c) as

min{
∑

cifi log fi | f = C−1(δ + D>y) ≥ 0. ‖y‖∞ ≤ 1}.

Reintroducing the tuning parameter λ we obtain the final form of the dual
problem.

Theorem 1: Problem (P) has equivalent dual formulation

max{−
∑

cifi log fi | f = C−1(δ + D>y) ≥ 0, ‖y‖∞ ≤ λ}. (D)

Remarks:
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(1) We can interpret the dual as a maximum entropy problem regularized
by the `∞ constraint on y with added requirement that an affine trans-
formation of the vector of dual variables, y, lies in the positive orthant.

(2) The `∞ constraint may be viewed as a generalized form of the tube
constraint associated with the taut string methods of Davies and Kovac
(2004). In the simplest setting, when total variation of the log density
itself, rather than its derivative, is employed as a penalty for univariate
density estimation, D is a finite difference operator and the dual vector,
y, can be interpreted as a shifted estimate of the distribution function
constrained to lie in a band around the empirical distribution function.
In more general settings the geometric interpretation of the constraints
on the dual vector, y, in terms of the sample data is somewhat less
clear.

(3) The weights ci appearing in the objective function indicate that the
sum may be interpreted as a Riemann approximation to the entropy
integral. Expressing the problem equivalently as the maximization of∑

i

cifi log
ci

cifi
+ log n

we arrive at an interpretation in terms of the Kullback-Leibler diver-
gence, K(φ, ν), of the probability distribution φ = (cifi), corresponding
to the estimated density f , from the probability distribution ν = n(ci),
corresponding to the density uniform over Ω. Thus, our proposal can
be interpreted in terms of regularized minimum distance estimation,

min{K(φ, ν)|φ = (δ + DT y) ≥ 0, ‖y‖∞ < λ},

a formulation not entirely surprising in the light of our knowledge about
maximum likelihood estimation. The choice of the uniform “carrier”
density could be modified to obtain exponentially tilted families as
described in Efron and Tibshirani (1996).

(4) Density estimation methods based on maximum entropy go back at
least to Jaynes (1957). However, this literature has generally empha-
sized imposing exact moment conditions, or to use the machine learning
terminology, “features,” on the estimated density. In contrast, our dual
problem may be viewed as a regularized maximum entropy approach
that specifies “soft” feature constraints imposed as inequalities. Dud́ık,
Phillips, and Schapire (2004) consider a related maximum entropy den-
sity estimation problem with soft feature constraints. Donoho, John-
stone, Hoch, and Stern (1992) consider related penalty methods based
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on entropy for a class of regression type imaging and spectroscopy prob-
lems, and show that they have superior performance to linear methods
based on Gaussian likelihoods and priors.

5. Monte-Carlo

In this section we report the results of a small Monte-Carlo experiment
designed to compare the performance of the TV penalized estimator with
three leading competitors:

TS The taut string estimator of Davies and Kovac (2005) using the default
tuning parameters embedded in the function pmden of their R package
ftnonpar.

Kucv The fixed bandwidth kernel density estimator implemented by the
function density in the R stats package, employing Scott’s (1992)
“unbiased cross validation” bandwidth selection.

Kbcv The fixed bandwidth density estimator as above, but using Scott’s
biased cross-validation bandwidth.

For purposes of the Monte-Carlo, automatic selection of λ for the TV
estimator was made according to the following recipe. Estimates were com-
puted at the fixed λ’s, {.1, .2, . . . , .9, 1.0}, using virtual observations on a
grid, G, of 400 points equally spaced on [−4, 4]. For each of these estimates
the Kolmogorov distance between the empirical distribution function of the
sample, F̂n, and the smoothed empirical, F̃n,λ, corresponding to the density
estimate

κ(λ) ≡ K(F̂n, F̃n,λ) = max
xi∈G

|F̂n(xi)− F̃n,λ(xi)|

was computed. Based on preliminary investigation, log κ(λ) was found to be
approximately linear in log λ, so we interpolated this log-linear relationship
to find the λ that made κ(λ) approximately equal to the cutoff cκ = .3/

√
n.

The value .3 was chosen utterly without any redeeming theoretical justifi-
cation. In rare cases for which this interpolation fails, i.e., λ̂ 6∈ [.1, 1], we
use λ̂ = max{min{λ̂, 1}, .1}.

As candidate densities, we use the familiar Marron and Wand (1992)
normal mixtures illustrated in Figure 1. Random samples from these den-
sities were generated in with the aid of the R nor1mix package of Mächler
(2005). All computations for the taut string and kernel estimators are con-
ducted in R; computations for the TV estimator are made in matlab with
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Fig. 3. The Marron and Wand candidate densities.

the aid of the PDCO function of Saunders (2004) as described above using
the sample data generated from R.

Three measures of performance are considered for each of the 16 test
densities. Table 1.1 reports the proportion replications for which each
method obtained the correct identification of the number of modes of the
true density. Table 1.2 reports median MIAE (mean integrated absolute er-
ror), and Table 1.3 reports median MISE (mean integrated squared error).

Clearly, the taut-string estimator performs very well in identifying uni-
modal and well separated bimodal densities, but it has more difficulties
with the multimodal cases. Unbiased cross-validation is generally inferior
to biased cross-validation from a mode identification viewpoint, producing
too rough an estimate and therefore too many modes.
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Table 1. The proportion of correct estimates of the
number of modes for the Marron-Wand densities:

Sample size, n = 500 and replications R = 1000.

Distribution TV TS K-ucv K-bcv

MW 1 0.303 1.000 0.690 0.863
MW 2 0.304 1.000 0.354 0.456

MW 3 0.169 1.000 0.000 0.059
MW 4 0.152 1.000 0.000 0.176
MW 5 0.345 1.000 0.000 0.000
MW 6 0.634 0.329 0.718 0.937
MW 7 0.716 1.000 0.678 0.880

MW 8 0.522 0.067 0.279 0.592
MW 9 0.472 0.013 0.434 0.292
MW 10 0.680 0.528 0.000 0.001

MW 11 0.000 0.000 0.006 0.000
MW 12 0.010 0.014 0.017 0.000
MW 13 0.172 0.001 0.003 0.000

MW 14 0.122 0.021 0.000 0.014
MW 15 0.101 0.078 0.000 0.038
MW 16 0.772 1.000 0.000 1.000

Table 2. Median Integrated Absolute Error: Sam-
ple size, n = 500 and number of replications

R = 1000

Distribution TV TS K-ucv K-bcv

MW 1 0.109 0.166 0.089 0.082
MW 2 0.109 0.173 0.099 0.092
MW 3 0.130 0.218 0.191 0.200

MW 4 0.143 0.212 0.199 0.202
MW 5 0.120 0.177 0.150 0.140
MW 6 0.110 0.187 0.105 0.104

MW 7 0.127 0.204 0.120 0.116

MW 8 0.113 0.187 0.116 0.124
MW 9 0.120 0.204 0.118 0.132

MW 10 0.190 0.289 0.190 0.348
MW 11 0.144 0.193 0.118 0.117

MW 12 0.149 0.262 0.182 0.274

MW 13 0.186 0.214 0.146 0.143
MW 14 0.208 0.295 0.222 0.279

MW 15 0.173 0.311 0.224 0.248

MW 16 0.148 0.201 0.140 1.279

Unbiased CV has quite good MIAE performance. Not surprisingly, it
does best at the normal model, but it is somewhat worse than our TV
estimator for distributions 3, 4, 5, 14, and 15. In the other cases the perfor-
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mance is quite comparable. The biased CV kernel estimator is consistently
inferior in MIAE except at the normal model. It fails spectacularly for the
sharply bimodel density number 16. The TV estimator is not too bad from
the MIAE perspective, consistently outperforming the taut-string estimator
by a substantial margin, and very competitive with the kernel estimators
except in the strictly Gaussian setting. Results for MISE are generally sim-
ilar to those for MIAE.

Table 3. Median Integrated Squared Error: Sample

size, n = 500 and number of replications R = 1000.

Distribution TV TS K-ucv K-bcv

MW 1 0.0039 0.0074 0.0021 0.0018

MW 2 0.0042 0.0088 0.0028 0.0024
MW 3 0.0096 0.0468 0.0162 0.0280
MW 4 0.0117 0.0293 0.0163 0.0202
MW 5 0.0241 0.0577 0.0220 0.0183

MW 6 0.0037 0.0090 0.0029 0.0027
MW 7 0.0052 0.0121 0.0041 0.0037
MW 8 0.0042 0.0095 0.0041 0.0050

MW 9 0.0042 0.0104 0.0037 0.0043
MW 10 0.0163 0.0393 0.0137 0.0468
MW 11 0.0056 0.0101 0.0045 0.0043
MW 12 0.0066 0.0225 0.0115 0.0223

MW 13 0.0194 0.0136 0.0073 0.0071
MW 14 0.0238 0.0310 0.0174 0.0276
MW 15 0.0481 0.0334 0.0168 0.0231
MW 16 0.0054 0.0349 0.0145 0.5596

6. Prospects and Conclusions

Total variation penalty methods appear to have some distinct advantages
when estimating densities with sharply defined features. They also have at-
tractive computational features arising from the convexity of the penalized
likelihood formulation.

There are many enticing avenues for future research. There is consid-
erable scope for extending the investigation of dual formulations to other
penalty functions and other fitting criteria. It would also be valuable to
explore a functional formulation of the duality relationship. The extensive
literature on covering numbers and entropy for functions of bounded vari-
ation can be deployed to study consistency and rates of convergence. And
inevitably there will be questions about automatic λ selection. We hope to
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be able to address some of these issues in subsequent work.
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