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Abstract. A quantile regression variant of the classical paired comparison model
of mean ratings is proposed. The model is estimated using data for the regular 2004-
05 U.S. college basketball season, and evaluated based on predictive performance for
the 2005 NCAA basketball tournament. Rather than basing predictions entirely on
conditional mean estimates produced by classical least-squares paired comparison
methods, the proposed methods produce predictive densities that can be used to
evaluate point-spread and over/under gambling opportunities. Mildly favorable
betting opportunities are revealed. More generally, the proposed methods offer a
flexible approach to conditional density forecasting for a broad class of applications.

“Though this be madness, yet there is method in ’t.”
Hamlet [II,ii]

1. Introduction

To concentrate the mind imagine yourself on the evening of Selection Sunday with
a decent laptop and a good internet connection struggling with the task of “filling
out the NCAA tournament bracket,” that is picking the winners of the games of the
impending single elimination tournament. Although prior season performance of the
teams is readily available from internet sources, a more challenging task is to find
a plausible model capable of making credible predictions. Ideally, we would like a
model that would predict for any particular pairing of teams the joint density of their
final scores. From such a predictive density one could then design betting strategies
based on point spreads, odds, the over/under, or other gambling opportunities. Con-
ventional paired comparison models deliver, at best, an estimate of a pair of mean
scores, under the maintained hypothesis that there is a homogeneous bivariate normal
density centered at this estimate. Often, however, only the mean of the score differ-
ence is estimated, or even more simply, a predicted probability of a victory based on
binary data on won-lost records.

Adapting quantile regression methods to the paired comparison framework, we
will describe a model that is capable of delivering estimates of this conditional joint
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density. The approach is illustrated by estimating the model for the 2004-5 NCAA
college basketball season. Evaluation of the performance of the methods is based on
out-of-sample predictive performance for the 2005 NCAA Division I tournament.

There is an extensive literature on sports betting, or what is known more eu-
phemistically in economics as wagering markets. For a valuable survey see Sauer
(1998). It is often claimed that such markets reveal something important about how
heterogeneous probabilistic information about athletic contests gets baked into the
Hayek (1945) cakes of efficient odds, point-spreads and yet more esoteric gambles.
A multitude of published studies have documented small discrepancies that seem
to undercut the “market efficiency of sports betting.” But the economist’s normal
skepticism entitles us to ask: couldn’t this just be the flip side of the familiar publi-
cation bias worry? Betting strategies that win, but fail to overcome the vigorish, get
published; strategies that succeed go directly to Vegas.

Our predictions clearly reveal favorable betting opportunities well in excess of the
prevailing vigorish. But instead of rushing off to Las Vegas, we prefer to disseminate
the methods, which have a broad range of potential applications in other statistical
domains where paired comparison data arise. Rarely are the convenient simplifying
assumptions of the classical paired comparison methods easily justified. When they
are violated, there are potential gains from estimating more flexible models like those
proposed below.

Paired comparison data arise not only in sports, but in many other settings. Mul-
tiple treatments are evaluated with paired comparisons in clinical trials, consumer
product testing, evaluation of expert testimony, page ranks for web pages, educa-
tional testing and a variety of other contexts. More generally, the methods suggested
here illustrate a flexible approach to the estimation of conditional densities that has
applications in many other settings beyond the paired comparison model where ef-
fective forecasting requires more than a conditional mean prediction.

After a brief critique of classical paired comparison methods in Section 2, we intro-
duce our model in Section 3, describe estimation methods in Section 4, and evaluate
the performance of the methods in Sections 5 and 6.

2. What We Are Not Proposing To Do

Two hundred years of statistical inertia might suggest that we begin by considering
a paired comparison model for expected scores that looked like this:

(2.1) EYig = αi − δj + γDig

where Yig denotes the score of team i in game g against opponent j. The parameter
αi may be interpreted as an offensive rating of team i, δj is a defensive rating of team
j, and γ will denote a generic home court advantage, if any, so Dig takes the value 1
if game g is played on team i’s home court, and takes the value 0 otherwise. Least
squares estimation of this conditional mean model would presumably use all of the
results prior to the tournament. Each game would contribute two observations, and
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we would estimate a vector of offensive and defensive ratings for each of the m teams
that were potential candidates for the tournament. We will employ a version of this
model as a point of comparison for our forecasting evaluation. See David (1988) for
a definitive treatment of the classical theory of paired comparisons.

Estimation of this model by conventional least squares methods raises several im-
mediate concerns:

(i) The model assumes that offensive and defensive performance of teams differ
only in location while variation around these mean values is symmetric, con-
stant across teams and approximately Gaussian in shape. Thus, team effects
are confined to shifting location of the score densities, but since they have
no effect on scale or shape of these densities the model can not capture the
possibilities that some teams are more consistent than others, or exhibit some
form of asymmetry in their performance.

(ii) Violations of Gaussian assumptions can introduce serious ratings anomalies,
see e.g. Bassett (1997), since a few games with extreme scoring can have
undue influence on estimated parameters.

(iii) Estimation of such a large number of parameters with relatively few obser-
vations is questionable: typically we might expect to have about 200 teams,
thus 400 parameters, and about 3000 observations. Identification requires
that there are not isolated groups of teams that never play common oppo-
nents, but even when this minimal condition is satisfied it may be advanta-
geous to consider regularization schemes that introduce some form of “prior
information.”

(iv) One may wish to question the independence assumption underlying ordinary
least squares estimation of model (2.1). Teams may be thought to have “mo-
mentum” over the course of the season, introducing positive dependence in
their performance. And perhaps even more plausibly, there may be depen-
dence between the pair of scores for each game.

(v) Finally, we may wish to predict outcomes of games to evaluate performance
of the model with respect to potential gambling opportunities, purely as a
matter of academic curiosity, of course, but these opportunities may require
more than mean forecasts.

It may seem to be expecting a lot to resolve all of these issues in one brief paper, but
then expecting isn’t our game.

3. A Quantile Regression Paired Comparison Model

Rather than modeling expected scores according to (2.1), suppose instead that we
model conditional quantiles in an analogous fashion,

(3.1) QYig
(τ) = αi(τ)− δj(τ) + γ(τ)Dig.
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We will maintain the assumption that there is a simple additive effect model in which
now quantiles of team i’s score against team j are determined by the difference in their
offensive and defensive ratings shifted by a home court advantage, γ(τ). But these
ratings may now be τ -dependent. If we fix τ = 1

2
for a moment and compare models

(2.1) and (3.1) we are simply replacing a model for the conditional mean by one for
the conditional median. The latter has a significant advantage, however, since it will
be less sensitive to the tail behavior of the underlying random variables representing
scores, and consequently will be less sensitive to observed outliers in scores when it
comes time to estimate the model. We will maintain throughout the assumption that
games are independent realizations, but will explore the within game dependence of
scores using copula methods.

Like the mean model the median model is a pure location shift model; no provision
is yet made for differences in the variability of teams performance, their consistency,
if you will. One might also imagine other more subtle differences in the shape of
teams’ scoring distributions. The specification of model (3.1) allows both offensive
and defensive performance of teams to vary in dispersion, symmetry or more exotic
shape characteristics. Of course, this increased flexibility comes at a price. We have
replaced an already rather profligate model with several hundred parameters with an
even more profligate one in which each former parameter is now a function mapping
the unit interval into the real line. Before turning to our discussion of estimation of
this model, we will briefly describe how it might be used for prediction.

4. Quantile Regression Bracketology

One may well ask: Given such a complicated model how are we to make predictions
from it? This question has a surprisingly simple answer, if we accept for the moment
the working premise that given the ratings, scores are independent. Consider the
problem of predicting the winner of a game between teams i and j at a neutral site.
The model provides quantile functions for the two scores:

QYig
(τ) = αi(τ)− δj(τ)

and
QYjg

(τ) = αj(τ)− δi(τ).

The score of such a game can thus be represented, under our independence assump-
tion, by the pair of random variables, (QYig

(U), QYjg
(V )) where U and V are inde-

pendent standard uniform random variables. The probability of team i winning by
some fixed margin ∆ at a neutral site is thus

(4.1) πij = P (QYig
(U) > QYjg

(V ) + ∆).

Given explicit forms for the α’s and δ’s this probability is easily approximated by
simulation methods. We will defer the question of possible dependence of U and V
until Section 6, where we will be able to bring some empirical evidence to bear upon
it.



Roger Koenker and Gib Bassett 5

To predict winners we simply set ∆ = 0 as above, and choose team i if πij >
1
2

and choose team j otherwise. Predicting exact scores is an obviously much more
challenging task. But in principle the model, by specifying the joint distribution the
game’s final scores provides everything that is necessary.

5. Estimation

Estimation of the model (3.1) is most straightforward if we begin by considering
unconstrained estimation of the model for a single quantile. For each game g we have
a pair of scores (yig, yjg). Maintaining our working independence assumption we wish
to solve,

min
(α,δ,γ)

∑
g

ρτ (yig − αi + δj − γDig) + ρτ (yjg − αj + δi − γDjg)

where ρτ (u) = u · (τ − I(u < 0)). The resulting estimator θ̂(τ) = (α̂(τ), δ̂(τ), γ̂(τ))
consistently estimates the parameters of the conditional quantile model (3.1) under
the conditions discussed in Koenker (2005). In the present context, these conditions
posit a sequence of estimation problems with a fixed configuration of teams and the
number of games tending to infinity in such a way that the schedule maintains the full
rank condition specified in A2(i), a requirement that necessitates some regular inter-
league play between the teams. Balancing the plausibility of such assumptions over
longer time horizons with stationarity assumptions on model parameters requires
careful consideration. Consistency does not require independence of the responses
(yig, yjg), indeed there is a large literature on estimation of quantile regression models
under dependent conditions, see e.g. Koenker (2005) Section 4.6 and the references
cited there. What is crucial is the validity of the hypothesized model (3.1) which
ensures that the expected value of the objective function is minimized at θ = (α, δ, γ)
and that we have some control over the severity of the dependence. The latter con-
sideration is trivially assured by the m-decomposibility condition of Portnoy (1991)
since the observations are 1-dependent under our assumption that observations are
independent across games.

Suppose we have n games among m teams in the pre-tournament sample. Defining
a n by m matrix H with gth row having ith element one, and remaining elements
zero, and n by m matrix A with gth row having the jth element equal to one, we can
rewrite the problem in matrix notation as

min
θ
‖y −Xθ‖τ ,

where ‖u‖τ ≡
∑
ρτ (ui), y = (yi, yj) denotes a stacked vector of scores, θ = (α, δ, γ)

and

X =

[
H −A Di

A −H Dj

]
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Here the n vectors Di and Dj are indicators for whether the gth game is a home game
for teams i or j respectively. Of course, some games are played at neutral sites early
in the season and for these games the entries in both D vectors will be zero.

The dimensionality of the matrix X is somewhat alarming, but modern develop-
ments in sparse linear algebra make solving problems like the one specified above very
easy. The algorithm used to compute θ̂ is the sparse version of the Frisch-Newton
interior point method described in Portnoy and Koenker (1997) and Koenker and Ng
(2005). The sparsity of the design matrix X is quite extreme for these paired compar-
ison models: there are at most three non-zero elements in any row of the X matrix.
Computer representation of the problem requires only the storage of these non-zero
elements and their indices, and as noted in Koenker and Ng (2005) the computational
effort is roughly proportional to the number of non-zero elements, so estimation even
over a grid of several hundred τ ’s is quite quick, requiring only a few minutes. Esti-
mation of the quantile regression model was carried out with the quantreg package of
Koenker (2006) designed for the R environment. Estimation of the corresponding con-
ditional mean model was done with the SparseM package of Koenker and Ng (2006) for
the same environment. It is worth emphasizing that even the least squares version of
the model would be a very challenging estimation problem in the absence of sparse lin-
ear algebra given that we are estimating 464 parameters. Further details on the com-
putations including data and all software used to produce tables and figures are avail-
able from http://www.econ.uiuc.edu/ roger/research/bracketology/MM.html.

6. Tasting the Pudding: The 2004-05 Season

We have estimated the model (3.1) using data on 2940 games involving 232 Division
I NCAA teams from the 2004-05 basketball season These games all occurred on or
before Selection Sunday, March 13, 2005. Predictions reported below are based on
estimation of the model using games through the tournament round preceding the
prediction. Thus, the final game between UNC and UIUC prediction uses all of the
tournament game data, except, of course, for the final game itself. The model was
estimated on an equally spaced grid of J = 199 quantiles τ ∈ (0, 1). Thus, for each of
the 232 teams we have an estimated offensive and defensive rating function evaluated
at J points. The electronic appendix to the paper provides a graphical representation
of these estimates and some associated one-dimensional rankings. In addition we have
estimated a “home court advantage” which varies from somewhat more than 3 points
per game to somewhat less than 2 points, as τ varies from 0 to 1. This home court
effect is set to zero for our predictive exercises since tournament games are played on
neutral courts, just as for pre-tournament games on neutral courts in the estimation
stage.

Our estimation method treats games as independent realizations, and assumes
moreover that the two realized scores for each game are also independent. The latter
assumption seems particularly implausible. To explore the possible dependence of
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within game scores we rely on a quantile regression specific notion of “residuals.”
Given a realized score yig for team i in game g we can ask: at what estimated quantile
does this score fall? More explicitly, we compute the pairs,

ukg =

∫ 1

0

I(ykg ≤ Q̂kg(τ))dτ, k = i, j.

By construction these two random variables will each be approximately uniformly
distributed. We can regard the pair (uig, ujg) as quantile regression “residuals” for
the game g. See Koenker (2005) Section 3.5.4 for further details and the link to the
regression rank score statistics of Gutenbrunner and Jurečková (1992). The model
(3.1) can be interpreted Koenker (2005) Section 2.6 as a random coefficient model in
which scores are generated by

Yig = αi(U)− δj(U) + γ(U)Dig,

and

Yjg = αj(V )− δi(V ) + γ(V )Djg,

where U and V are uniform random variables on [0, 1]. Under this model, the pair
(uig, ujg) are the natural estimates of the corresponding pair (U, V ).

Recall that for any bivariate distribution function FX,Y (x, y) with marginals FX(x)
and FY (y), we can define the copula function

C(u, v) = FX,Y (F−1
X (u), F−1

Y (v)).

The copula function may be interpreted as the joint distribution function of the
random variables U = FX(X) and V = FY (Y ) with uniform marginals, and concisely
represents the dependence between the original variables X and Y . Thus, potential
dependence between scores within games can be explored by fitting copula models
to the pairs (uig, ujg) Their scatter plot, appearing in Figure 1, for our sample of
2940 games, exhibits some clustering along the diagonal indicating a weak positive
dependence in the two scores; a slowdown of the pace of the game by one team lowers
scores for both teams. Figure 1 superimposes contours of the one-parameter Frank
copula estimated by maximum likelihood. The estimated copula parameter of 2.52,
with a standard error of 0.12, is highly significant, re-enforcing the implausibility of
the independence assumption. The (Kendall) correlation of the pair of scores is 0.27
which is also highly significant and matches closely the value obtained by simulation
from the estimated copula. It may be eventually possible to improve the efficiency
of the estimation of the model by exploiting knowledge of this dependence – in the
spirit of Zellner’s SUR model – but we will not pursue this here. Consistency of the
estimated ranking functions follows, as we have noted above, from existing results,
and this justifies the two-stage approach that we have adopted. This dependence will
be accounted for in our predictions where it plays an important role.

An extreme way to account for dependence in the within game scores would be to
assume that both scores were generated by the same quantile “draw.” Recall that
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Figure 1. Estimated Frank Copula Density Contours for Final Scores

if a random variable X has distribution function F and associated quantile function
Q(u) = F−1(u) then we can simulate realizations from X by generating uniform
random variables, U , and computing X = Q(U). This follows immediately from the
fact that,

P (X ≤ x) = P (Q(U) ≤ x) = P (U ≤ F (x)) = F (x).

Thus, for example, if we consider the final game of the 2005 NCAA tournament
between UNC and UIUC, we could make predictions based on scoring outcomes of
the form,

(ŝi, ŝj) = (Q̂ig(τ), Q̂jg(τ)),

by simply replacing τ in the above expression by a draw from U ∼ U [0, 1]. In the
copula model this would correspond to all the mass of the copula concentrated on the
45 degree line of the unit square. In this case we would also have a linear conditional
qunatile model for score differences. For the classical paired comparison model the
linearity of the conditional mean specification implies a corresponding model for score
differences, but this is generally not the case for the quantile regression specification
(3.1) unless we impose the condition of comonotonicity of the score pairs. We will
briefly consider this special case before turning to more general analysis of weaker
forms of score dependence based on copula models.
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Figure 2. Estimated Marginal Quantile Functions for the Scores of
the 2004-05 NCAA Final Game between UNC vs. UIUC

.

For the UNC-UIUC game this approach yields predictions illustrated in Figure 2.
For each possible U on the horizontal axis we obtain a pair of scores whose vertical
difference represents the margin of victory. For τ < 0.60 UNC looks like it should be
the clear winner, however in the upper tail, that is in high scoring games, UIUC has
a slight advantage. At the median UNC has about a 3 point advantage, while at the
first quartile their advantage is 4, and at the third quartile UIUC has a slight edge.

It is tempting to attach some psychological or physiological interpretation to the
values τ and U , but remembering that each score is the consequence of both an
offensive rating and a defensive rating the model makes no such judgments. In the
conventional paired comparison models based on mean performance there is a built-
in assumption that ability of teams differ by a constant factor and this difference
applies over the whole range of the distribution. However, in the quantile regression
version of the model, it is quite possible that one team can be more variable in their
performance on offense, or on defense, or both, while another more consistent team
can be superior with high probability. This flexibility of the model raises some new
questions for prediction: we don’t want to make a prediction of the winner of the
game based on only what is predicted to happen “at the median.” Nor do we want
to make a prediction about the point spread based on estimates of mean scores. For
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the UNC-UIUC game, there seems to be clear signal to choose UNC if one is asked
to pick a winner, but this may be too easy. What if we are asked to predict whether
UNC will beat the posted Las Vegas point spread of 2 points? This question leads us
toward a more realistic prediction that incorporates the dependence between scores.

We have, so far, considered two extreme models of scoring: one in which the scores
are independent realizations from our marginal quantile functions, the other in which
the two scores are deterministically linked. A more sensible view is the one provided
by the copula model mentioned earlier. Given our estimated copula model, we can
draw a pair of independent standard uniform random variables, Ui, Uj and evaluate,

(ŝi, ŝj) = (Q̂ig(Ui), Q̂jg(Uj)).

These uniforms, since they are generated from the estimated copula model are depen-
dent, and consequently the generated scores are also dependent, but not comonotonic
as in the situation illustrated in Figure 2. Repeated evaluations like this yield a
predictive distribution for the scores of the game, from which we can make various
predictions. For example, the estimated probability of team i beating team j by more
than a specified point spread ∆ is simply the proportion of generated points on the
right side of the line si − sj = ∆.

In Figures 3 to 5 we illustrate the predictions of the model for 48 of the 64 games
of the 2005 NCAA tournament based on estimation of the model using games up to
and including the tournament round prior to the game. Eleven of the tournament
games involved teams for which our season information was insufficient to estimate
ratings; five additional first round games have been dropped to reduce the plotting
region. We follow the procedure described above to simulate G = 10, 000 realizations
of the scores for each game from the estimated model, these scores are then projected
on the (−1, 1) axis to produce winning point margins for the G games and densities
are estimated for each game using the default kernel method of R. This simulation
method of producing predictive densities is closely related to the “rearrangement”
methods for monotonization of conditional quantile estimates introduced recently
by Chernozhukov, Fernández-Val, and Galichon (2006). Vertical grey lines in these
figures depict the zero reference value, black lines indicate the actual score of the
game, and the edge of the shaded region indicates the Las Vegas closing point spread
announced for the game.

The first thing to say about these figures is that there are substantial differences
in the dispersion and shape of the estimated densities as well as their location. Thus,
the usual location shift hypothesis that underlies the conventional paired compar-
ison models seems to require some reassessment. Examination of the position of
the announced point spreads shows that they are usually “toward the mode” of the
estimated densities and away from grey “toss-up” line. Whether this should be inter-
preted as a vindication of our model and estimation method, or as the cleverness of
the Las Vegas gambling establishment, we will leave to the learned reader. The black
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Figure 3. Predictive Densities for point spread of 2005 NCAA Tour-
nament Games
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Figure 4. Predictive Densities for point spread of 2005 NCAA Tour-
nament Games
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Figure 5. Predictive Densities for point spread of 2005 NCAA Tour-
nament Games
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lines designating the actual outcome of the games are considerably more dispersed as
they should be.

6.1. Bracketology and Tournament Survival. Of course predicting outcomes of
the games played in the actual 2005 tournament as it evolved does not provide ade-
quate guidance for filling in the tournament bracket ex ante. For this we would need
predictions for pairings that might have occurred, but did not happen to occur in the
2005 tournament. No problem. Any pair of teams for which we have data can be
pitted against one another, scores generated according the model and probabilities
estimated. To this end, we decided to simulate 1000 realizations of the 2005 tour-
nament starting in every case from the actual seedings as announced on Selection
Sunday. This exercise was slightly complicated by the fact that for some teams we
did not have adequate season data to estimate ratings. However, since these teams
were generally obscure and didn’t fare well in the first round, we assumed that they
would lose and their opponent was given a bye.

Simulating 1000 instances of March Madness 2005 takes about as long as a com-
mercial time-out on a somewhat antiquated Mac G5. Given the outcomes of these
simulated tournaments we can easily compute the number of successful rounds for
each team in each replication and from this survival curves can be estimated for each
team. These survival curves are shown in Figure 6 where they are ordered by mean
survival time. Recall that mean survival time can be expressed as the sum of the
survival probabilities for the six rounds, and therefore the area under the curves in
the figure give a visual indication of the expected round that each team exits from
the tournament. On this criterion UNC again comes first with mean 4.025, while
UIUC is second with mean 3.905, Duke is next with 2.953. These values provide
only one of many possible ways to assess performance in the tournament. Another
is to simply look at the probability that each team has of winning the tournament.
On this criterion we have UNC with probability .318 and UIUC with .233; the next
most likely winner is Duke at .083, and then we have Louisville and MSU both with
probabilities of .057.

7. If You’re so Smart, Why Aren’t You Rich?

We would be remiss were we to fail to address one last question that looms large
over any enterprise such as ours. In this concluding section we will explore several
betting strategies based on the foregoing results and evaluate how they would have
done based on the 2005 tournament. Predictions are based on updated estimates of
the model including games of the previous round. Thus first round game predictions
use only the regular season data, second round games use this data plus the results
of the first round games, and so forth.

7.1. Betting on the Point Spread. We will begin by considering betting on point
spreads. We can – as we have already noted following (4.1) – estimate the probability
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NCAA Tournament Survival Curves
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Figure 6. Survival Functions for the 2005 NCAA Tournament: Ob-
tained by simulation of the quantile regression rating model and using
the Frank copula model to generate random uniforms.
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of beating the announced point spread in any particular game. As long as this πij
is different from 1/2 there is a temptation to put money on the table. Of course we
don’t “know” the relevant p’s for the NCAA games, but we have our estimates and
may hope that strategies based on known p’s might perform decently for estimated
ones. In unfavorable games bold play is optimal, as we know from Dubins and Savage
(1965), and this would dictate placing one very large bet on the game with the largest
divergence between p̂ and 1/2, but strategies for favorable games with uncertain
probabilities are more complex. Breiman (1961) provides an elegant introduction to
this subject.

Before going any further we may want to check whether there is any merit in the
conjecture that betting according to the model on the games of the 2005 NCAA
tournament might have yielded a profit. Returning to Figures 3-5, we can explore
this conjecture game by game: for each game we have indicated the estimated πij for
the closing point spread. This value corresponds to the area shaded in the figure. For
πij < 0.5 we bet on the on the team after the vs. in the panel title, since it indicates
that there is a better than 50-50 chance that this team will beat the point spread.
Thus, if the black vertical line denoting the winning margin of the actual game falls in
the shaded region our bet would be successful, otherwise it would not be successful.

For example, for the game between Wisconsin and UNC in the upper left corner
of Figure 6, the point spread was 11, the model predicted that the probability of
UNC winning by 11 or more was only .490 so we would bet on Wisconsin, and since
UNC only won by 6 points we would collect. With this visual heuristic in place, we
can scan through the panels of Figures 3 to 5. As an aid to this scanning we have
indicated the probabilities appearing in each panel with the successful predictions in
bold black, and the unsuccessful in grey. What we find is mildly encouraging: in 28
out of 48 games we have selected the winning side of the point spread. Early games
have less impressive performance with only 8 of the first 16 games in Figure 3. But
of the final 32 games, we have 20 successful predictions, a finding that may simply
reflect the ancient, and canonical answer to our canonical question: “It is better to
be lucky, than smart.”

In fact, closer examination reveals that there is one game, W. Virginia vs. Louisville,
that the posted point spread predicted precisely. Such “push” games are, by conven-
tion treated as if there was no bet, so money is refunded. Thus, we should properly
consider the model to predict 27 out of 47, giving a frequency of success of 0.574. This
is certainly not significantly different from 0.5 at conventional levels of significance.
The p-value of an exact test is only 0.38, but given that it costs $110 to place a $100
bet, our 0.574 frequency would imply that we would have an expected gain of about
$10.50 on each $100 bet.

We might want to ask whether this observed frequency of success is consistent in
some way with the predicted frequencies of the model. In repeated trials the model
purports to predict that the frequency of success would be π̂ij for the games between
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Figure 7. Estimated Probabilities of Success against the Point Spread

teams i and j, so the mean of the π̂ij’s provides a reference level for our empirical
frequency of success. This mean is 0.603 is not terribly different from the observed
frequency.

A natural question at this point would be: “OK, you seem to be doing somewhat
better than coin flipping, but 48 games is a small sample and you haven’t shown
that you couldn’t do just as well with the classical Gaussian model and least squares
estimation.” The densities that appear in Figures 3 to 4 are all quite unimodal and
roughly symmetric looking, so maybe all this flexibility of the quantile regression
model is just contributing to noisier estimation of the ratings effects. It is easy to
evaluate these claims: we simply estimate a least squares version of the rating model,
along with the covariance matrix for the scoring pairs. This yields a Pearson corre-
lation of 0.44 for the scores and a standard deviation of the score difference of 9.93
points. Given these estimates we can estimate probabilities of the actual score differ-
ence exceeding the closing point spread under Gaussian conditions. These estimated
probabilities are plotting against the corresponding estimates from the quantile re-
gression model in Figure 7. Not surprisingly they agree quite well, but for eight games
appearing in quadrants II and IV in the scatterplot the two models disagree on what
side of the point spread one should bet on. These games split four and four so the
least squares model also has 27 of 47 successes. We should emphasize that despite the
similar overall performance of the two sets of predictions, the underlying models are
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very different and the predictions actually conflict in roughly one out of six games.
The added flexibility of the quantile regression model is likely to incur some cost of
increased variability, and as usual performance is determined by a balance of bias and
variance considerations. As sample size increases, bias inevitably dominates and we
would anticipate that the proposed quantile regression approach would dominate.

The next natural question would be: What accounts for this modest violation of the
Hayek hypothesis? Granted, gamblers may not be completely au fait regarding quan-
tile regression, but surely they are familiar with the fundamentals of least-squares?
Where are they going wrong? One contributing factor has been suggested by Camerer
(1989) who has argued that the market tends to favor teams with strings of wins in
the apparent belief that teams get “hot” – while the evidence suggests, on the con-
trary, that such dependence is illusory. Our modeling, since it assumes independent
realizations may therefore have some advantage by avoiding this momentum misap-
prehension. But there are, no doubt, many other contributing factors.

7.2. Betting on the Over/Under. Aficionados will be aware that one can bet not
only on scores differences, but also on their sum. Like the point spread, a “total” is
posted by bookies and one can bet that the sum of the two scores of a given game
will exceed or fall short of this number. This is the so-called “over/under”. While
betting on point spreads has an inherent element of partisanship, one might imagine
that betting on totals would be an act of pure rationality unsullied by the emotions
of geography, and thus less likely to reveal market inefficiencies.

As an additional test of the merit of the model we have estimated densities for the
“totals” for the 48 games of the NCAA tournament based on the QR model. These
figures have been ommitted due to space constraints but are available in the electronic
appendix to the paper together with some graphical and numerical results on overall
ratings of the 2005 tournament teams. Two games are ambiguous. One is the West
Virginia versus Wake Forest game for which the posted total was 152.5 and which W.
Virginia won 111 to 105; the model predicted correctly. In the MSU-UNC semifinal
game the total was 158 and the final score was 71 to 87; in such “push” cases the
original stake is refunded. Of the 47 remaining games under consideration 27 were
correctly predicted by the model. Curiously the model’s prediction of its success rate
is almost the same with the mean of the max{π̂ij, 1− π̂ij} only 0.574.

Returning to the question of whether least squares estimates can deliver similar
performance, we re-estimated probabilities of success on over/under bets using the
mean model. Figure 8 displays the scatterplot of the predicted probabilities from the
two models, again with solid points indicating successes and open points indicating
failures of the QR model. As with point spreads the two models produce quite similar
estimated probabilities. There is a conflict over what side to bet on in 11 of the 48
games, and of these the outcomes split 4 and 7, so the least squares version of the
model predicts 30 of 47 correctly. This is astonishingly lucky, but probably shouldn’t
be taken as further evidence, as if any were needed, that Gauss was smart.
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Figure 8. Estimated Probabilities of Success on the Over/Under

7.3. Betting on Simple Parlays. Combination bets on both point spreads and
totals are called parlays, and to conclude this section we will evaluate a simple example
of such a betting strategy. Again we employ the model to predict which of the four
possible pairs of outcomes, over/under the point spread, over/under the total, is most
likely to occur. If the point spreads and the totals were fiendishly well set to reflect
the objective probabilities we would expect that each of the four quadrants would be
assigned probability 0.25. But bookies could care less about “objective probabilities”
– as long the money is balanced on their bets – they collect the vigorish, typically
arising from the fact that the bettor puts up $110 to bet $100. In our 48 games of the
NCAA tournament the mean of the maximal quadrant probabilities is 0.364. Betting
on these parlays wins in only 13 out of the 48 games, or in 0.27. percent of the cases,
better than guessing randomly, but just barely.

To evaluate a comparable strategy using the least squares estimates we first eval-
uated the predicted mean spread and total according to the estimated model, then
using the estimated covariance matrix for the scores we computed the orthant prob-
abilities of the posted point spread and total given the bivariate normal model with
this mean and covariance matrix. Again, we choose the largest of these four proba-
bilities and bet on this quadrant. The QR and LS models agree on which quadrant
to bet on in only 10 of the 48 games, but the least squares bets get 17 out 48 games
right, for a rather impressive 0.35 success rate.
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8. Refinements

As we have suggested in the introduction, there are many potential refinements
of the methods we have introduced above. The rather profligate parameterization
of the model would undoubtedly benefit from some judicious form of regularization
– designed to shrink toward common ratings, or toward prior season ratings, for
example. It may also prove useful to reweight the estimation of the rating model to
give more credence to games toward the end of the season. Much more could be said
about gambling strategies in this context. But these topics will be left as grist for
future grinding.

9. Conclusions

A more flexible variant of the classical paired comparison model of mean ratings is
described and evaluated based on NCAA college basketball data. The model permits a
wide variety of heterogeneity in teams’ offensive and defensive “ability,” and provides
a simple mechanism for making predictions about subsequent performance of the
teams. The model was estimated on a sample 2940 regular season games involving
232 teams. Out-of-sample predictive performance of the model was evaluated based on
48 games of the 2005 NCAA Tournament. This evaluation revealed mildly favorable
betting opportunities against posted point spreads and scoring totals for these games.
Predictions based on a comparable mean rating model estimated by least-squares had
somewhat better performance. In defense of the added complexity of the quantile
regression form of the paired comparison model we offer the cri de coeur of every
sports fan: “Wait until next year!”
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