
SOME EXERCISES ON QUANTILE REGRESSION

ROGER KOENKER

Introduction

These exercises are intended to provide an introduction to quantile regression computing
and illustrate some econometric applications of quantile regression methods. For purposes
of the course my intention would be to encourage all students to do the first exercise, which
gives an overview of the quantile regression software in R in the context of an elementary
bivariate Engel curve example. The remaining exercises are more open ended. I would like
students to choose one of these exercises according to their own special interests. Given
the brief duration of the course, it is probably unrealistic to expect polished answers to
these questions at the end of the course, but I would be happy to get responses via email
should you choose to continue working on them after the course is finished.

A Word on Software. There is now some quantile regression functionality in most statis-
tical software systems. Not surprisingly, I have a strong preference for the implementation
provide by the quantreg package of R, since I’ve devoted a considerable amount of effort
to writing it. R is a dialect of John Chambers’s S language and provides a very general,
very elegant environment for data analysis and statistical research. It is fair to say that
R is now the vehicle of choice within the statistical computing community. It remains to
be seen whether it can make serious inroads into econometrics, but I firmly believe that
it is a worthwhile investment for the younger cohorts of econometricians. R is public do-
main software and can be freely downloaded from the CRAN website. There is extensive
documentation also available from CRAN under the heading manuals. For unix based
systems it is usual to download R in source form, but it is also available in binary form for
most common operating systems. There are several excellent introductions to R available
in published form, in addition to the Introduction to R available in pdf from the CRAN
website. I would particularly recommend Dalgaard (2002) and Venables and Ripley (2002).
On the CRAN website there are also, under the heading ”contributed”, introductions to R
in Danish, French, German, Spanish Italian, and a variety of other languages all of which
can be freely downloaded in pdf.

For purposes of this course a minimal knowledge of R will suffice. R will be available
on lab machines and should appear as an icon on the desktop of the laboratory machines.
Clicking the icon should produce a window in which R will be running. To quit R, you
may type q(), you will be prompted to answer whether you want to save the objects that

Version: May 6, 2016. Some of these exercises were first developed for a short course given under the
auspices of CEMMAP at UCL, in 2003, and have been expanded somewhat for subsequent short courses
in Aarhus, Les Diablerets, the JSM 2014 in Boston and the University of Copenhagen.
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2 Exercises in Quantile Regression

were created during the session; responding “yes” will save the session objects into a file
called .RData, responding “no” will simply quit without saving. Online help is provided in
two modes: if you know what you are looking for, you can type, for example ?rq and you
will get a description of the rq command, alternatively you can type help.start() and a
browser help window should pop up and you can type more general key words or phrases
to search for functionality.

R is intended to be a convenient interactive language and you can do many things on the
fly by just typing commands into the R console, or even by pointing and clicking at one
of the GUI interfaces, but I find that it is often preferable to save R commands into a file
and execute a group of commands – this encourages a more reproducible style of research –
and can be easily done using the source("commands.R") command. Saving output is a bit
more complicated since there are many forms of output, graphics are usually saved in either
postscript or pdf form, and tables can be saved in latex format for subsequent inclusion
in documents. Together with Achim Zeileis, U. of Innsbruck, I’ve written a paper in J.
of Applied Econometrics on reproducible research strategies that describes some of these
things in more detail. The paper and some other ranting and raving about reproducibility
are also available from my homepage.

Problem 1: A Family of Engel Curves

This is a simple bivariate linear quantile regression exercise designed to explore some
basic features of the quantreg software in R. The data consists of observations on household
food expenditure and household income of 235 working class Belgian familes taken from
the well-known study of Ernst Engel (1857).

1. Read the data. The data can be downloaded from the website specified in class. You
will see that it has a conventional ascii format with a header line indicating the variable
names, and 235 lines of data, one per household. This can be read in R by the command

url <- "http://www.econ.uiuc.edu/~roger/courses/Copenhagen/data/engel.data"

d <- read.table(file = url, header=TRUE) #data is now a matrix "d"

attach(d) # makes the individual variables accessible by name.

2. Plot the data. After the attach command the data is available using the names in the
header, so we can plot the scatter diagram as:

plot(x,y)
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3. Replot with some better axis labels and superimpose some quantile regression lines
on the scatter plot.

require(quantreg)

plot(x,y,cex=.25,type="n",xlab="Household Income", ylab="Food Expenditure")

points(x,y,cex=.5,col="blue")

abline(rq(y~x,tau=.5),col="blue")

abline(lm(y~x),lty=2,col="red") #the dreaded ols line

taus <- c(.05,.1,.25,.75,.90,.95)



4 Exercises in Quantile Regression

f <- rq(y ~ x, tau = taus)

for( i in 1:length(taus)){

abline(coef(f)[,i],col="gray")

}
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Note that you have to load the quantreg package before invoking the rq() command.
Careful inspection of the plot reveals that the ols fit is severely biased at low incomes due
to a few outliers. The plot command has a lot of options to fine tune the plot. There is a
convenient looping structure, but beware that it can be slow in some applications. In rq()

there are also many options: the first argument is a “formula” that specifies the model that
is desired, in this case we want to fit the simple bivariate linear model so it is just y ∼ x

if we had two covariates we could say, e.g. y ∼ x+z.
4. If we wanted to see all the distinct quantile regression solutions for this example we

could specify a tau outside the range [0,1], e.g.

z <- rq(y ~ x,tau=-1)

Now if you look at components of the structure z that are returned by the command,
you can see for example the primal solution in z$sol, and the dual solution in z$dsol.
In interactive mode just typing the name of some R object causes the program to print the
object in some more or less easily intelligible manner. Now, if you want to estimate the
conditional quantile function of y at a specific value of x and plot it you can do something
like this:
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x.poor <- quantile(x,.1) #Poor is defined as the .1 quantile of income

x.rich <- quantile(x,.9) #Rich is defined as the .9 quantile of income

ps <- z$sol[1,]

qsp <- c(c(1,x.poor)%*%z$sol[4:5,])

qsr <- c(c(1,x.rich)%*%z$sol[4:5,])

#now plot the two quantile functions to compare

plot(c(ps,ps),c(qsp,qsr),type="n",xlab=expression(tau),ylab="quantile")

plot(stepfun(ps,c(qsp[1],qsp)),do.points=FALSE,add=TRUE)

plot(stepfun(ps,c(qsp[1],qsr)),do.points=FALSE,add=TRUE)
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A nice feature of R is that documentation of functions usually includes some examples of
their usage. These examples can be “run” by simply typing example(SomeFunctionName),
so for example when you type example(rq) you get a plot somewhat like the one you have
just done “by hand.” In a second plot you get a pair of coefficient plots that depict the
estimate intercept and slope coefficients as a function of τ and provide a confidence band.
More on this later. If you look carefully at the code being executing by in these examples
you will see that you didn’t need to download the data from the url specified, the Engel
data is available directly from the quantreg package using the statement data(engel).
But it is often handy to be able to download data from the web. There are quite a lot of
tools for handling web data sources, but this is another story entirely.

If you look carefully at the plots of the two estimated quantile functions that you made
you will see minor violations of the expected monotonicity of these functions. This may
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or may not be regarded as a mortal sin, depending on your religious convictions. One way
to deal with this, recently suggested by Chernozhukov et al. (2009) is to “rearrange” the
estimated functions. See the the documentation for this function using the usual strategy:
?rearrange. To see an example of how this works try typing: example(rearrange).

5. Now let’s consider some formal testing. For starters suppose we just estimate two
quartile fits and look at the default output:

fit.25 <- rq(y~x,tau=.25)

summary(fit.25)

##

## Call: rq(formula = y ~ x, tau = 0.25)

##

## tau: [1] 0.25

##

## Coefficients:

## coefficients lower bd upper bd

## (Intercept) 95.48 73.79 120.10

## x 0.47 0.42 0.49

fit.75 <- rq(y~x,tau=.75)

summary(fit.75)

##

## Call: rq(formula = y ~ x, tau = 0.75)

##

## tau: [1] 0.75

##

## Coefficients:

## coefficients lower bd upper bd

## (Intercept) 62.40 32.74 107.31

## x 0.64 0.58 0.69

By default the confidence intervals that are produced use the rank inversion method.
This is fine for judging whether covariates are significant at particular quantiles but suppose
that we wanted to test that the slopes were the same at the two quantiles? This is done
with the anova command as follows:

anova(fit.25,fit.75)

## Quantile Regression Analysis of Deviance Table

##

## Model: y ~ x

## Joint Test of Equality of Slopes: tau in { 0.25 0.75 }

##

## Df Resid Df F value Pr(>F)

## 1 1 469 30.9 4.6e-08
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This is an example of a general class of tests proposed in Koenker and Bassett (1982)
It is instructive to look at the code for the command anova.rq to see how this test is
carried out. The Wald approach is used and the asymptotic covariance matrix is estimated
using the approach of Hendricks and Koenker (1991). It also illustrates a general syntax
for testing in R adapted to the QR situation. If you have two models that are nested, with
fits say f0 and f1, then anova(f0,f1) should test whether the restricted model is correct.
One needs to be careful however to check that the hypothesis that is intended, is really the
one that the anova command understands, see ?anova.rq for further details on the QR
version of this. If you have more than two quantiles and want to do a joint test that all the
slope coefficients are the same at all the quantiles you can use anova(ft1,ft2,ft3,ft4).

In very large problems the rank inversion approach to confidence intervals is quite slow,
and it is better to use another method. There are several choices. By default the compu-
tational method employs a variant of the Barrodale and Roberts (simplex-like) algorithm,
for problems with sample size greater than about 5000 it is preferable to use interior point
methods by using the method="fn", flag in the call to rq. When this ”Frisch-Newton” ver-
sion of the algorithm is used, rank test confidence intervals are not provided by summary
instead a form of the Wald test is returned. Various options can be specified to produce
various estimates of the standard errors as described below. These Wald forms of estimat-
ing standard errors are also possible to achieve with the default method="br" setting by
adding for example the flag se=nid. Details of the algorithms are provided in Koenker and
dÓrey (1987), Koenker and d’Orey (1993), for the “BR” method and Portnoy and Koenker
(1997) for the “Frisch-Newton” method.

fit <- rq(y~x,tau=.27,method="fn")

summary(fit)

##

## Call: rq(formula = y ~ x, tau = 0.27, method = "fn")

##

## tau: [1] 0.27

##

## Coefficients:

## coefficients lower bd upper bd

## (Intercept) 94.19 81.53 127.51

## x 0.48 0.43 0.50

Standard inference results are obtained by calling summary, e.g. by default summary
produces estimates of the asymptotic covariance matrix based on the approach described
in Hendricks and Koenker (1991), an alternative approach suggested by Powell (1989)
can be obtained by specifying se="ker". There are further details and options regarding
bandwidth and controlling the nature of what is returned by the summary command, see
?summary.rq for these details.

At this point it would be useful to compare and contrast the various estimation and
inference options that are available. Try estimating the simple model used above with
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both the method = "br") and method = "fn") choices, and then compare some of the se

options in summary.rq.

plot(x,y,log="xy",xlab="Household Income", ylab="Food Expenditure")

taus <- c(.05,.1,.25,.75,.90,.95)

abline(rq(log10(y)~log10(x),tau=.5),col="blue")

for( i in 1:length(taus)){

abline(rq(log10(y)~log10(x),tau=taus[i]),col="gray")

}
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6. The magic of logarithms. Thus far we have considered Engel functions that are linear
in form, and the scatter as well as the QR testing has revealed a strong tendency for the
dispersion of food expenditure to increase with household income. This is a particularly
common form of heteroscedasticity. If one looks more carefully at the fitting, one sees
interesting departures from symmetry that would not be likely to be revealed by the typical
textbook testing for heteroscedasticity, however. One common remedy for symptoms like
this would be to reformulate the model in log linear terms. It is interesting to compare
what happens after the log transformation with what we have already seen. Consider
the following plot: Note that the flag log="xy" produces a plot with log-log axes, and
for convenience of axis labeling these logarithms are base 10, so the subsequent fitting is
also specified as base 10 logs for plotting purposes, even though base 10 logarithms are
unnatural and would never be used in reporting numerical results. This looks much more
like a classical iid error regression model, although again some departure from symmetry
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is visible. An interesting exercise is to conduct some formal testing for departures from
the iid assumption of the type already considered above. This is left as an exercise for the
reader.

Problem 2: Nonparametric Quantile Regression

Nonparametric quantile regression is most easily considered within a locally polynomial
framework. Locally linear fitting can be carried out by the following function, provided in
the quantreg package:

"lprq" <-

function(x, y, h, m=50 , tau=.5)

{

xx <- seq(min(x),max(x),length=m)

fv <- xx

der <- xx

for(i in 1:length(xx)) {

z <- x - xx[i]

wx <- dnorm(z/h)

r <- rq(y~z, weights=wx, tau=tau)

fv[i] <- r$coef[1.]

der[i] <- r$coef[2.]

}

list(xx = xx, fv = fv, der = der)

}

If you read through the function carefully you will see that it is just a matter of computing
a quantile regression fit at each of m equally spaced x-values over the support of the
observed x points. The function value estimates are returned as fv and the first derivative
estimates at the m points are returned as der. As usual you can specify τ , but now you
also need to specify a bandwidth h.

1. Begin by exploring the effect of the h and tau arguments for fitting the motorcycle
data. Note that fitting derivatives requires larger bandwidth and larger sample size to
achieve the same precision obtainable by function fitting. You are encouraged to substitute
a more economic data set for the ubiquitous motorcycle data, its only advantage in the
current context is that you can easily find examples to compare in the nonparametric
regression literature.

2. Adapt lprq so that it does locally quadratic rather than linear fitting and compare
performance.

3. Another general strategy for nonparametric quantile regression that is relatively
simple to adapt to R uses regression splines. The function bs() in the package splines

gives a very flexible way to construct B-spline basis expansions. For example you can fit a
model like this:
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require(splines)

## Loading required package: splines

url <- "http://www.econ.uiuc.edu/~roger/courses/Copenhagen/data/motorcycle.data"

d <- read.table(file = url, header=TRUE)

attach(d)

fit <- rq(accel ~ bs(time,df=5),tau=.33)

This fits a piecewise cubic polynomial with knots (breakpoints in the third derivative)
at quintiles of the x’s. You can also explicitly specify the knot sequence and the order
of the spline. One advantage of this approach is that it is very easy to add a partially
linear model component. So if there is another covariate, say z, we can add a parametric
component like this:

fit <- rq(y~bs(x,df=5)+z,tau=.33)

This avoids complications of backfitting when using kernel methods for partially linear
models. Compare some fitting using the spline approach with that obtained with the local
polynomial kernel approach.

4. Yet another even more appealing approach to univariate nonparametric smoothing
involves penalty methods as described for example in Koenker et al. (1994) In recent work,
Koenker and Mizera (2004), this approach has been extended to bivariate nonparametric
regression, and more recently to a general class of additive models. Again, partially linear
models are easily adapted, and there are easy ways to impose monotonicity and convexity
on the fitted functions. In large problems it is essential to take advantage of the sparsity of
the linear algebra. This is now feasible using special versions of the interior point algorithm
for quantile regression and the SparseM package, Koenker and Ng (2003). The paper
Koenker (2011) describes some recent developments of inference apparatus for these models.
Further development of these methods would be aided by some additional experience with
real data. An important feature of these additive models is that it is possible to impose
monotonocity and/or convexity/concavity on the individual components. There are also
relatively new methods for doing inference and prediction as well as plotting. As usual
you can experiment with these methods by trying the example() function on methods like
summary.rqss, plot.rqss, and predict.rqss. But more interesting would be to try new
examples based on real data.

As a toy example consider the following recent simulation exercise from Polson and Scott
(2015)

dgp <- function(n) {

x <- 0:n/n

y <- rnorm(n+1, 5 * sin(2 * pi * x), 0.5 + exp(1.5 * sin(4 * pi * x)))

data.frame(x = x, y = y)

}

D <- dgp(1000)
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plot(D$x, D$y, cex = .5)

taus <- 1:9/10

for(i in 1:length(taus))

plot(rqss(y ~ qss(x, lambda = 1/10), tau = taus[i], data = D),

rug = FALSE, add = TRUE)

## Warning in rq.fit.sfn(x, y, tau = tau, rhs = rhs, control = control, ...):

tiny diagonals replaced with Inf when calling blkfct
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It is curious that the estimation strategy of Polson and Scott, which is based on a proxi-
mal gradient descent method, produces a smooth solution to this total variation penalized
problem when the form of the solution can be easily shown to be piecewise linear. This
“feature” seems to be entirely due to premature stopping of the iterations of the algorithm.
A pervasive difficulty in such problems involves the choice of the smoothing parameter,
λ. This is exacerbated here since it would appear that different λ’s might be needed for
different τ ’s. Experiment a bit with this choice, and try to suggest a reasonable criterion
for choosing λ.
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Problem 3: Quantile Regression Survival Analysis

Quantile regression as proven to be a particularly attractive approach for univariate
survival analysis (aka duration modeling). The classical accelerated failure time model

log(Ti) = x>i β + ui

with iid errors ui, can be easily extended to consider,

(1) Qlog(Ti)(τ |xi) = x>i β(τ),

yielding a flexible, yet parametrically parsimonious, approach.
In this problem you are asked to explore such models in the context of the Pennsylvania

reemployment bonus experiment conducted in 1988-89. In this period new claimants for
unemployment insurance were randomized into one of several treatment groups or a control
group. Control participants abided by the usual rules of the unemployment insurance
system; treatment participants were offered a cash bonus to be awarded if the claimant
was certifiably reemployed within a specified qualification period. For simplicity we will
focus on only one of the treatment groups, those offered a bonus of 6 times their weekly
benefit provided reemployment was established within 12 weeks. For this group the bonus
averaged about $ 1000 for those collecting it. The data will be available in the form of an
R data set called Penn46.data in the same directory as we have indicated for the prior
datasets. This can be read into R using the same procedure as was used for the Engel
data. For a more detailed analysis incorporating the other treatments, see Koenker and
Bilias (2001). See Koenker and Xiao (2002) for further details on approaches to inference
for these models.

In this application interest naturally focuses on the effect of the binary, randomized
treatment. How does the bonus influence the distribution of the duration of unemployment?
The Lehmann quantile treatment effect (QTE) is a natural object of empirical attention.

1. Explore some specifications of the QR model (1) and compare to fitting the Cox
proportional hazard specification. See require(survival) for functions to estimate the
corresponding Cox models. Note that covariate effects in the Cox models are necessarily
scalar in nature, so for example the treatment effect must either increase, or decrease
unemployment durations over the whole range of the distribution, but it cannot decrease
durations in the lower tail and increase them in the upper tail – unless the model is specified
with distinct baseline hazard functions for the two groups. See Koenker and Geling (2001)
for some further details on the relationship between the QR survival model and the Cox
model.

2. Explore some formal inference options to try to narrow the field of interesting specifi-
cations. See for example the discussion in Koenker and Xiao (2002) on tests based on the
whole QR process.
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Problem 4: Distributional Regression

Direct estimation of conditional distribution functions has been recently proposed as an
alternative to quantile regression for some applications. There are a variety of interpreta-
tions of this approach, but I have begun to explore one such alternative in a very brief note
available from the class webpage as dreg.pdf. It provides an explicit comparison of per-
formance both from an asymptotic viewpoint and some simulations. It is rather difficult,
it seems, to do general asymptotic efficiency comparisons, but the simulations suggest a
modest advantage of QR over DR. I would be very interested in any further work along
these lines that would help to illuminate the advantages and disadvantages of the two
approaches. Of particular interest, given the results so far, would be situations in which
DF performs better than QR. As an aid to getting started with such a question, I’ve also
posted the code for the simulations in the class problems directory. This code follows my
usual simulation protocol: there are two files sim1.R and sim2.R that do the simulations,
and two other files sim1a.R and sim2a.R that produce the two tables that appear in the
paper.

Problem 5: Quantile Autoregression

Consider a simple linear QAR model,

yt = α1(ut)yt−1 + α0(ut) t = 0, 1, ..., T

where ut is iid U [0, 1]. Suppose that α1(u) = 0.85 + 0.25u and α0(u) = Φ−1(u) with Φ
denoting the standard normal distribution function. Simulate a realization of this process
with T = 1000 and estimate and plot the QAR coefficients, comparing them to the usual
OLS estimates.

Verify whether or not the process is stationary. In your realization of the process check
to see whether yt−1 stays in the region for which the conditional quantile function of yt is
monotone. What is the usual OLS estimate of the AR(1) model estimating in this case?
Check the residuals from the OLS fit to see if they exhibit any suspicious features that
would reveal what is unusual here.

Problem 6: Portfolio Choice

This problem deals with the “pessimistic portfolio allocation” proposed in Bassett et al.
(2004). The paper employs a highly artificial example. Your task, should you decide to
accept it, is to produce a more realistic example using real data. Software implementing
the methods of the paper is available in quantreg using the function qrisk. The function
qrisk in this package computes optimal portfolio weights based on a matrix of observed,
or simulated, asset returns using a specified form of pessimistic Choquet preferences.

Problem 7: Inequality Decomposition

The extensive literature on the measurement of inequality has devoted considerable
attention to the question of how to decompose changes in measurements of inequality. If
we observe increases in the Gini coefficient in a particular region over some sample period,
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can we attribute these changes in some way to underlying changes in covariates, or to
changes in the effects of these covariates? QR offers a convenient general approach to this
question. Suppose that we have estimated a garden variety wage equation model in QR
form,

(2) Qlog y(τ |x) = x>β(τ),

and we would like to compute a conditional Gini coefficient.
Recall that the Lorenz function of a univariate distribution with quantile function, Q, is

given by,

λ(t) = µ−1
∫ t

0

Q(s)ds

where µ =
∫ 1

0
Q(s)ds is the mean of the distribution. The Gini coefficient is simply twice

the area between λ(t) and the 45 degree line,

γ = 1− 2

∫ 1

0

λ(t)dt.

1. Given the linear decomposition of the conditional quantile function in (2) and the
fact that the Gini coefficient is a linear functional of the quantile function, formulate a
conditional Gini decomposition for log wages, and interpret it.

2. Over time we may wish to “explain” changes in the Gini coefficient by considering
changes in the wage structure – which we can interpret as β(τ) in (2) – and changes in the
characteristics of the population – which are captured by the evolution of the distribution
of x. This way of thinking enables us to consider thought experiments such as, “How would
Gini have evolved if the wage structure were fixed at some initial condition, but population
characteristics changed according to some specified pattern, historical or otherwise”. Or
alternatively, suppose that we fix population characteristics and consider the evolution of
the the conditional components of Gini as βt(τ) changes over time. Decompositions of
this type have been considered in recent work of Machado and Mata (2005). The Gini
decomposition has also been recently considered by Aaberge et al. (2006) I would love to
see a further applications along these lines.
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