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An Empirical Bayes Homework Problem
Suppose you observe a sample {Y1, ...,Yn} and Yi ∼ N(µi, 1) for
i = 1, ...,n, and would like to estimate all of the µi’s under squared error
loss. We might call this “incidental parameters with a vengence.”

Not knowing any better, we assume that the µi are drawn iid-ly from a
distribution F so the Yi have density,

g(y) =

∫
φ(y− µ)dF(µ),

the Bayes rule is then given by Tweedie’s formula:

δ(y) = y+
g′(y)

g(y)

When F is unknown, one can try to estimate g and plug it into the
Bayes rule.
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Stein Rules I

Suppose that the µi’s were iid N(0,σ20), so the Yi’s are iid N(0, 1 + σ20),
the Bayes rule would be,

δ(y) =

(
1 −

1

1 + σ20

)
y.

When σ20 is unknown, S =
∑
Y2i ∼ (1 + σ20)χ

2
n, and recalling that an

inverse χ2n random variable has expectation, (n− 2)−1, we obtain the
Stein rule in its original form:

δ̂(y) =

(
1 −

n− 2

S

)
y.
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Stein Rules II

More generally, if µi ∼ N(µ0,σ20) we shrink instead toward the prior mean,

δ(y) = µ0 +

(
1 −

1

1 + σ20

)
(y− µ0),

estimating the prior mean parameter costs us one more degree of
freedom, and we obtain the celebrated James-Stein (1960) estimator,

δ̂(y) = Ȳn +

(
1 −

n− 3

S

)
(y− Ȳn),

with Ȳn = n−1
∑
Yi and S =

∑
(Yi − Ȳn)

2.
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Nonparametric Empirical Bayes Rules

Brown and Greenshtein (Annals, 2009) propose estimating g by standard
fixed bandwidth kernel methods and they compare performance of their
estimated Bayes rule with various other methods including the various
parametric empirical Bayes methods investigated by Johnstone and
Silverman in their Needles and Haystacks paper.

A drawback of the kernel approach is that it fails to impose a monotonicity
constraint that should hold for the Gaussian problem, or indeed for any
similar problem in which we have iid observations from a mixture density,

g(y) =

∫
ϕ(y, θ)dF(θ)

and ϕ is an exponential family density with natural parameter θ ∈ |R.
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Back to the Homework

When ϕ is an exponential family density we may write,

ϕ(y, θ) = m(y)eyθh(θ)

Quadratic loss implies that the Bayes rule is a conditional mean:

δG(y) = E[Θ|Y = y]

=

∫
θϕ(y, θ)dF/

∫
ϕ(y, θ)dF

=

∫
θeyθh(θ)dF/

∫
eyθh(θ)dF

=
d

dy
log(

∫
eyθh(θ)dF

=
d

dy
log(g(y)/m(y))
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Monotonicity of the Bayes Rule

When ϕ is of the exponential family form,

δ′G(y) =
d

dy

[∫
θϕdF∫
ϕdF

]
=

∫
θ2ϕdF∫
ϕdF

−

(∫
θϕdF∫
ϕdF

)2

= E[Θ2|Y = y] − (E[Θ|Y = y])2

= V[Θ|Y = y] > 0,

implying that δG must be monotone, or equivalently that,

K(y) = log ĝ(y) − logm(y)

is convex. Such problems are closely related to recent work on estimating
log-concave densities, e.g. Cule, Samworth and Stewart (JRSSB, 2010),
Koenker and Mizera (Annals, 2010), Seregin and Wellner (Annals, 2010).
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Standard Gaussian Case

In our homework problem,

ϕ(y, θ) = φ(y− θ) = K exp{−(y− θ)2/2} = Ke−y
2/2 · eyθ · e−θ2/2

So m(y) = e−y
2/2 and the logarithmic derivative yields our Bayes rule:

δG(y) =
d

dy

[
1

2
y2 + log g(y)

]
= y+

g′(y)

g(y)
.

Estimating g by maximum likelihood subject to the constraint that

K(y) =
1

2
y2 + log ĝ(y)

is convex is discussed in Koenker and Mizera (2013).
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Nonparametric MLE
Kiefer and Wolfowitz (1956) reconsidering the Neyman and Scott (1948)
problem showed that non-parametric maximum likelihood could be used to
establish consistent estimators even when the number of incidental
parameters tended to infinity. Laird (1978) and Heckman and Singer
(1984) suggested that the EM algorithm could be used to compute the
MLE in such cases.

Jiang and Zhang (Annals, 2009) adapt this approach for the empirical
Bayes problem: Let ui : i = 1, ...,m denote a grid on the support of the
sample Yi’s, then the prior (mixing) density f is estimated by the EM fixed
point iteration:

f̂
(k+1)
j = n−1

n∑
i=1

f̂
(k)
j φ(Yi − uj)∑m

`=1 f̂
(k)
` φ(Yi − u`)

,

and the implied Bayes rule becomes at convergence:

δ̂(Yi) =

∑m
j=1 ujφ(Yi − uj)f̂j∑m
j=1φ(Yi − uj)f̂j

.
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The Incredible Lethargy of EM-ing
Unfortunately, EM fixed point iterations are notoriously slow and this is
especially apparent in the Kiefer and Wolfowitz setting. Solutions
approximate discrete (point mass) distributions, but EM goes ever so
slowly. (Approximation is controlled by the grid spacing of the ui’s.)

−2 0 2 4

0
2

4
6

8

x

f(
x)

GMLEBEM: m=102

GMLEBEM: m=104

GMLEBEM: m=105

Roger Koenker (UIUC) Empirical Bayes Tokyo: 25.11.2013 10 / 36



Accelerating EM

There is a large literature on accelerating EM iterations, but none of the
recent developments seem to help very much. However, the
Kiefer-Wolfowitz problem can be reformulated as a convex maximum
likelihood problem and solved by standard interior point methods:

max
f∈F

n∑
i=1

log(
m∑
j=1

φ(yi − uj)fj),

can be rewritten as,

min{−
n∑
i=1

log(gi) | Af = g, f ∈ S},

where A = (φ(yi − uj)) and S = {s ∈ |Rm|1>s = 1, s > 0}. So fj
denotes the estimated mixing density estimate f̂ at the grid point uj, and
gi denotes the estimated mixture density estimate, ĝ, at Yi.
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Interior Point vs. EM
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Interior Point vs. EM

In the foregoing test problem we have n = 200 observations and m = 300
grid points. Timing and accuracy is summarized in this table.

Estimator EM1 EM2 EM3 IP
Iterations 100 10, 000 100, 000 15
Time 1 37 559 1
L(g) - 422 0.9332 1.1120 1.1204 1.1213

Comparison of EM and Interior Point Solutions: Iteration counts, log likelihoods
and CPU times (in seconds) for three EM variants and the interior point solver.

Scaling problem sizes up, the deficiency of the EM approach is even more
serious.
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Johnstone and Silverman Simulation Design

Data is generated from 12 distinct models, all of the form:

Yi = µi + ui, ui ∼ N(0, 1), i = 1, ..., 1000.

Of the n = 1000 observations n− k of the µi = 0, and the remaining k
take one of the four values {3, 4, 5, 7}. There are three choices of k:
{5, 50, 500}. There are 50 replications for each of the 12 experimental
settings and 18 different competing estimators.

Performance is measured by the mean (over replications) of the sum (over
the n = 1000 observations) of squared errors, so a score of 500 means
that the mean squared prediction error is 0.5, or half of what the naı̈ve
prediction µ̂i = Yi would yield if the µi were all zero.
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Johnstone and Silverman Simulation Results
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Performance of the NP-MLE Bayes Rule

In the (now familiar) Johnstone and Silverman sweepstakes we have the
following comparison of performance.

Estimator k = 5 k = 50 k = 500
3 4 5 7 3 4 5 7 3 4 5 7

δ̂MLE−IP 33 30 16 8 153 107 51 11 454 276 127 18

δ̂MLE−EM 37 33 21 11 162 111 56 14 458 285 130 18

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Here MLE-EM is Jaing and Zhang’s (2009) Bayes rule with their suggested
100 EM iterations. It does somewhat better than the shape constrained
estimator, but the interior point version MLE-IP does even better.
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The Castillo and van der Vaart Experiment
The setup is quite similar to the first earlier ones,

Yi = θi + ui, i = 1, · · ·n

the θi are most zero, but s of them take one of the values from the set
{1, 2, · · · , 5}. The sample size is n = 500, and s ∈ {25, 50, 100} and θa
takes five possible values: The first 8 rows of the Table are taken directly
from Table 1 of Castillo and van der Vaart (2012).

s = 25 s = 50 s = 100
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
EBMR 30 77 89 65 35 50 123 136 92 48 79 185 193 127 62
EBKM 27 71 80 57 30 46 113 122 81 40 74 171 174 112 53

MSE based on 1000 replications
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But How Does It Work in Theory?

For the Gaussian location mixture problem empirical Bayes rules based on
the Kiefer-Wolfowitz estimator are adaptively minimax.

Theorem: Jiang and Zhang For the normal location mixture problem,
with a (complicated) weak pth moment restriction on Θ, the approximate
non-parametric MLE, θ̂ = δ̂F̂n(Y) is adaptively minimax, i.e.

supθ En,θLn(θ̂, θ)

infθ̃ supθ∈Θ En,θLn(θ̃, θ)
→ 1.

The weak pth moment condition encompasses a much broader class of
both deterministic and stochastic classes Θ.
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Gaussian Mixtures with Longitudinal Data
Model:

yit = µi +
√
θiuit, t = 1, · · · ,mi, 1, · · · ,n, uit ∼ N(0, 1)

Sufficient Statistics:

µ̂i = m
−1
i

mi∑
t=1

yit ∼ N(µi, θi/mi)

θ̂i = (mi − 1)−1
mi∑
t=1

(yit − µ̂i)
2 ∼ Γ(ri, θi/ri), ri = (mi − 1)/2

Likelihood

L(F|y) =

n∏
i=1

∫ ∫
φ((µ̂i−µi)/

√
θmi)/

√
θimiγ(θ̂i|ri, θi/ri)dFµ(µ)dFθ(θ)

Roger Koenker (UIUC) Empirical Bayes Tokyo: 25.11.2013 19 / 36



Gaussian Mixtures with Longitudinal Data
Model:

yit = µi +
√
θiuit, t = 1, · · · ,mi, 1, · · · ,n, uit ∼ N(0, 1)

Sufficient Statistics:

µ̂i = m
−1
i

mi∑
t=1

yit ∼ N(µi, θi/mi)

θ̂i = (mi − 1)−1
mi∑
t=1

(yit − µ̂i)
2 ∼ Γ(ri, θi/ri), ri = (mi − 1)/2

Likelihood

L(F|y) =

n∏
i=1

∫ ∫
φ((µ̂i−µi)/

√
θmi)/

√
θimiγ(θ̂i|ri, θi/ri)dFµ(µ)dFθ(θ)

Roger Koenker (UIUC) Empirical Bayes Tokyo: 25.11.2013 19 / 36



Gaussian Mixtures with Longitudinal Data
Model:

yit = µi +
√
θiuit, t = 1, · · · ,mi, 1, · · · ,n, uit ∼ N(0, 1)

Sufficient Statistics:

µ̂i = m
−1
i

mi∑
t=1

yit ∼ N(µi, θi/mi)

θ̂i = (mi − 1)−1
mi∑
t=1

(yit − µ̂i)
2 ∼ Γ(ri, θi/ri), ri = (mi − 1)/2

Likelihood

L(F|y) =

n∏
i=1

∫ ∫
φ((µ̂i−µi)/

√
θmi)/

√
θimiγ(θ̂i|ri, θi/ri)dFµ(µ)dFθ(θ)
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A Toy Example
Model

yit = µi +
√
θiuit, t = 1, · · · ,mi, 1, · · · ,n, uit ∼ N(0, 1)

µi ∼
1
3(δ−0.5 + δ1 + δ3) ⊥⊥ θi ∼ 1
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Contour Plot for Joint Bayes Rule: δ(µ̂, θ̂) = E(µ | µ̂, θ̂)
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Empirical Bayesball

Using (ESPN) data we have constructed an unbalanced panel, 10,575
observations, on 1072 players from 2002-2011. Following standard
practice, Brown (2009, AoAS) and Jiang and Zhang (2010, Brown
Festschrift) we transform batting averages to (approximate) normality:

Ŷi = asin

(√
Hi1 + 1/4

Ni1 + 1/2

)
∼ N(asin(

√
ρ), 1/(4Ni1))

Treating these observations as approximately Gaussian, we compute
sample means and variances for each player through 2011, and estimate
our independent prior model.
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Prior Estimates on the Gaussian Scale
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Prior Estimates on the Batting Average Scale
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Dirichlet Prior Estimates on the Batting Average Scale
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Bayes Rule Predictions
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Covariate Effects

The location-scale mixture model is really just a starting point for more
general panel data models with covariate effects and unobserved
heterogeneity estimable by profile likelihood. Given the model,

yit = xitβ+ αi + σiuit,

and a fixed β ∈ |Rp, we have sufficient statistics ȳi − x̄iβ, for αi and

Si =
1

mi − 1

mi∑
t=1

(yit − xitβ− (ȳi − x̄iβ))
2

for σ2i . Clearly, ȳi|αi,β,σ2i ∼ N(αi + x̄iβ,σ2i) and Si|β,σ2i ∼ Γ(ri,σ
2
i/ri),

where, ri = (mi − 1)/2.
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Profile Likelihood for Covariate Effects

Reducing the likelihood to sufficient statistics we have (almost) a
decomposition in terms of “within” and “between” information:

L(α,β,σ) =
n∏
i=1

g((α,β,σ)|yi1, . . . ,yimi
)

=

n∏
i=1

∫ ∫ mi∏
t=1

σ−1
i φ((yit − xitβ− αi)/σi)h(αi,σi)dαidσi

= K

n∏
i=1

S1−rii

∫ ∫
σ−1
i φ((ȳi − x̄iβ− αi)/σi)

e−RiRrii
SiΓ(ri)

h(αi,σi)dαidσi

where Ri = riSi/σ2i , ri = (mi − 1)/2, and K =
∏n
i=1

(
Γ(ri)

r
ri
i

(1/
√

2π)mi−1)
)

.

But note that the likelihood doesn’t factor so the between and within
information isn’t independent.
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Age and Batting Ability
There is considerable controversy about the relationship between player’s
age and their batting ability. To explore this we collected (reported) birth
years for each of the players and reestimated the model including both
linear and quadratic age effects using the profile likelihood method.
We evaluate the profile likelihood on a grid of parameter values, but as you
will see the likelihood is quite smooth and well behaved so higher
dimensional problems could be done with standard optimization software.
Evaluations of the profile likelihood are quick, a few seconds for our
application, with grids of a few hundred points for the mixing distributions.
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Profile Likelihood for the Linear Age Effect
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Contour Plot of the Quadratic Age Effect
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The Mixing Densities at the Profile MLE
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The Estimated Quadratic Age Effect
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Predictive Performance
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Predictive Performance

Root Mean Squared Prediction Error

Gaussian Gaussian Binomial Dirichlet Dirichlet naive
Age Effects (α = 1) (α = 0.01)

0.0378 0.0393 0.0395 0.0395 0.0395 0.0394

Dismal performance due to multimodality of the estimated mixing
distribution not much shrinkage compared to naive estimator.

Prior performance is not very useful for predicting future performance

Model with age covariates performs slightly better.
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Conclusions and Extrapolations

Empirical Bayes methods, employing maximum likelihood, offer some
advantages over other thresholding and kernel methods,

Kernel based empirical Bayes rules can be improved with shape
constrained MLEs and are computationally very efficient, but

Kiefer-Wolfowitz type non-parametric MLEs perform even better.

There are many opportunities for linking such methods to various
semi-parametric estimation problems a la Heckman and Singer
(1983) and van der Vaart (1996) as for the baseball problem,

It is all downhill after 27 in mathematics and baseball,

Be cautious about predicting baseball batting averages, or anything
else about baseball.
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