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Abstract. A brief introduction to information bounds for semiparametric models.

1. Introduction

Semiparametric models require some elaboration of the conventional machinery for eval-
uation of the efficiency of statistical procedures. These notes, which follow Van der Vaart
(2000) closely, are intended to provide a quick and dirty introduction the some of the basic
ideas. For further details readers may consult Van der Vaart (2000) or Bickel et al. (1998).

As usual we will assume that we have at hand a random sample, X1, . . . , Xn from a
distribution P belonging to P , a set of probability measures on a sample space (X ,A). We
are interested in estimating a scalar parameter ψ : P 7→ R. How well can we expect to be
able to do this? Is there an expanded notion of Fisher information and the Cràmer-Rao
inequality applicable to such semiparametric settings? The obvious strategy for attacking
these questions is to try to reduce the problem back to its parametric formulation, where
we know how to proceed.

Estimating ψ(P ) in model P is certainly going to be more difficult than doing so in any
restricted submodel P0 ⊂ P . For any (smooth) parametric submodel, say Pt = {Pt : t ∈
T ⊂ R} ⊂ P we can compute Fisher information as usual. So our task would be (simply!)
to find the least favorable parametric submodel of this form. This is reminiscent of the
Huber least favorable location model problem.

For convenience we will consider only one dimensional families of submodels and assume
that our parametric families t 7→ Pt have densities pt with respect to some dominating
measure µ. Further, we will require that there are measureable functions g : X 7→ R, such
that,
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dµ→ 0.

We say that the family Pt is differentiable in quadratic mean with score function g.
Obviously there are lots of these parametric models Pt. Our job is to find the worst one,

that is the one that makes it hardest to estimate ψ. The collection of the score functions
for the submodels is called the tangent set of the model P at P . Geometrically, as Van der
Vaart (2000) notes,

√
p as P ranges over P can be viewed as a subset of the unit ball in

L2(P ), and 1
2
g
√
p is its tangent set.
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Recall [!?] from L8 of 574: Given a parametric model ft and supposing that
√
ft has

a derivative at t = 0, a.e. µ, then
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and thus we can interpret g in this parametric setting as −f ′
0/f0, the familiar score

function of the MLE, and I(f0) denotes the usual Fisher information that that describes
how much information about the parameter t is contained in a single observation on X
in the parametric case. So it shouldn’t be too surprising that this trail of breadcrumbs
is leading us to a new, more grandiose notion of information for the much larger class
of semiparametric models.

The score, g also plays an important role in characterizing the limiting normality of
procedures. This is essentially a nonparametric version of the familiar quadratic expansion
of the log likelihood.

Lemma 1. If the path t 7→ Pt in P satisfies the prior DQM condition, then Pg = 0,
Pg2 <∞ and

log
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Pg2 + oP (1)

A word on notation: The notation Pg for
∫
gdP is becoming increasingly common,

largely as a result of its advocacy by David Pollard, who attributes it to deFinetti. In
effect it replaces the usual EPg by Pg, which not only saves ink, but seems altogether
more cogent since we can view expectation as a linear operator.

Since we are only interested in ψ(P ) we will restrict attention to submodels, t 7→ Pt such

that ψ(Pt) is differentiable, that is we require a linear map ψ̇P : L2(P ) 7→ R such that for
every g in the tangent set and submodel t 7→ Pt with score g,

ψ(Pt)− ψ(P )

t
→ ψ̇Pg.

By the Riesz representation theorem we can find a ψ̃P such that

ψ̇Pg = 〈ψ̃P , g〉 ≡
∫
ψ̃PgdP

We can now evaluate the potential performance of procedures for estimating ψ(P ). The
Fisher information about t in the parametric submodel t 7→ Pt, with score function,

g(x) =
∂ log pt(x)

∂t
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t=0



TANGENT SPACES, INFORMATION AND SEMIPARAMETRICS 3

is Pg2, so the optimal asymptotic variance of a procedure t 7→ ψ(Pt), when evaluated at
t = 0 is given by the Cramer-Rao inequality as,

(dψ(Pt)/dt)
2

Pg2
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t=0

=
〈ψ̃P , g〉2P
〈g, g〉2P

.

Finding the supremum over the tangent set yields,

sup
g∈G

〈ψ̃P , g〉2P
〈g, g〉2P

= Pψ̃2
P .

Why? That the supremum attains this value can be seen from the Cauchy-Schwarz in-
equality, (Pψ̃Pg)2 ≤ Pψ̃2

PPg
2 and some technical requirements to ensure that g is in the

closure of the linear space of the tangent set, here denoted by G. These technical issues
also arise in determining whether the tangent set can be considered a space, or perhaps
just a cone.

Thus, Pψ̃2
P the expectation of ψ̃2

P under the least favorable P plays the same role as the
usual information bound in the parametric setting. Van der Vaart (2000) provides some
further justification for this, but I prefer to move on to consider how one might apply all
of this to find the least favorable submodel, and thereby achieve semiparametric efficiency.
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