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Abstract. A partially baked simulation experiment searching for a more informative
design.

1. Introduction

To explore performance of the TMLE estimator of Diaz’s “quantile treatment effect on
the treated” (QTET) consider a simple simulation experiment. A binary treatment, T ,
is administered, there is a single, scalar, normally distributed covariate, X, and for each
treated subject we observe a continuous response, Y1, while for control subjects we see
response, Y0, where

Y1 = β0(U1) + β1(U1)X + γ0(U1)T + γ1(U1)T ·X

and

Y0 = β0(U0) + β1(U0)X

and (U0, U1) are marginally uniform random variables drawn from a one parameter (Frank)
copula with dependence parameter, θ. Varying θ we can transit from independence, θ = 0,
to comonotonicity, θ →∞. The conditional QTE is clearly

QTE(τ |X) = γ0(τ) + γ1(τ)X

and integrating out X over the treated subjects we have,

QTET(τ) = γ0(τ) + γ1(τ)X̄T

where X̄T = 1
|T |

∑
i∈T Xi, and T = {i : Ti = 1}.

In order to have any hope of estimating these quantities we must be willing to vouch for
the fact that T ⊥⊥ (Y0, Y1)|X. In our experiment we consider two logistic specifications:

T = I(α0 + α1 exp(X) ≥ V ),

and

T = I(α0 + α1X ≥ V ),

with V logistically distributed. The conditional independence condition is satisfied in both
cases, since T is assigned solely on the basis of the observable covariate, so no “compliance”
issures are allowed to raise their ugly heads. However, the former case as implemented in
msim1.R implies that the propensity score model used for the TMLE is misspecified.
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When the pair (U0, U1) is not comonotonic the (dare I say?) classical1 QR formulation
of the treatment effect model

QY (τ |T,X) = β0(τ) + β1(τ)X + γ0(τ)T + γ1(τ)T ·X
is no longer valid, i.e., is no longer a proper quantile function, and we would like to
understand better the consequences of this misspecification. Presumably, this could be
investigated in a very partial way by varying the copula dependence parameter.

2. The Proof of the Pudding

Before launching a full comparison of our alternative estimators we first illustrate a
graphical comparison of only the first two candidates. In Figure 1 we illustrate the true
marginal QTET for our simulation DGP, along with two estimates: one based on the
classical (aka ordinary) QR fitting of the model with treatment main and interaction effects,
and the other based on fitting separate models for the treated and control subjects and
then evaluating their difference at the mean covariate setting. Each seems to perform well,
but as Hamlet says, ”Seems,” madam? Nay, it is; I know not ”seems.” Maybe, we should
reserve judgement until there is more evidence.

# A Simple Binary Treatment model

require(copula)

## Loading required package: copula

require(quantreg)

DGP <- function(n, copula = frankCopula(1, dim = 2), IA = TRUE) {

uv <- rCopula(n, copula)

x <- exp(rnorm(n))

X <- cbind(1,x)

T <- (rlogis(n) < (X %*% c(0.5, -1)))

y0 <- qnorm(uv[,1]) + x * (1 + qnorm(uv[,1])/3)

if(IA)

y1 <- qnorm(uv[,2]) + x * (1 + qnorm(uv[,2])/3) +

T * (1 + log(x)/2) * qchisq(uv[,2],5)

else

y1 <- qnorm(uv[,2]) + x * (1 + qnorm(uv[,2])/3) +

T * qchisq(uv[,2],5)

y <- T * y1 + (1 - T) * y0

data.frame(y = y, y0 = y0, y1 = y1, Treat = T, x = x)

}

tau <- 1:9/10

D <- DGP(1000)

f <- rq(y ~ log(x) * Treat, tau = 1:9/10, data = D)

f0 <- rq(y0 ~ log(x), tau = tau, data = D, subset = (Treat == 0))

1Here I employ “classical” in the familiar sense of “almost always wrong.”
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Figure 1. Marginal QTET’s for Simulation Model 1

f1 <- rq(y1 ~ log(x), tau = tau, data = D, subset = (Treat == 1))

qte1 <- coef(f)[3,] + coef(f)[4] * mean(log(D$x[D$Treat == 1]))

plot(tau, qte1, type = "b", xlab = expression(tau),

ylab = expression(QTET(tau)))

qte2 <- t(coef(f1) - coef(f0)) %*% c(1, mean(log(D$x[D$Treat == 1])))

lines(tau, qte2, col = 2)

points(tau, qte2, col = 2)

lines(tau, qchisq(tau,5) * (1 + mean(log(D$x[D$Treat == 1])/2)), col = 3)

legend("topleft", c("OQR", "DQR","Truth"), col = 1:3, lty = 1)

Rather than keeping track of all the deciles as in Figure 1, we focus our next two
experiments on the marginal median QTET. We consider four estimators in addition to the
two described in Figure 1: the TMLE a “Naive” estimator, Firpo’s onestep, and a simple
onstep all described by Dı́az (2015) and implemented by the QTET function presented
in Koenker (2016). In Table 1 report mean bias and root mean squared error for our
six estimators for the misspecified case that the treatment is assigned according to the
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Table 1. Performance Comparison of Marginal QTETs for Simulation
Model 1

QR1 QR2 TMLE Naive Firpo OneStep
Bias 0.483 0.0433 −0.547 −0.324 −0.366 −0.686
RMSE 0.597 0.2787 0.618 0.420 0.470 0.754

Table 2. Performance Comparison of Marginal QTETs for Simulation
Model 2

QR1 QR2 TMLE Naive Firpo OneStep
Bias 0.572 0.310 −0.468 −0.170 −0.468 −0.657
RMSE 0.644 0.408 0.536 0.296 0.538 0.725

lognormal model, while the last four estimators all assume that the propensity score model
should be linear log(X). In Table 2 this misspecification is corrected; treatment is assigned
as assumed in the propensity score. This should improve performance of all the last four
methods, but doesn’t seem to do so as much as might be anticipated.

Appendix A. Simulation Protocol

The simulations underlying the results in Tables 1 and 2 were carried out in accordance
with the protocol described in Koenker (2014) using the shell script Rbatch. Results for
all 1000 replications of the experiment are saved, and tables and figures can then be easily
prepared by loading these results. The code for these experiments and for making the
tables is reproduced below.

# A Simple Treatment model

require(copula)

require(quantreg)

source("QTET.R")

DGP <- function(n, copula = frankCopula(1, dim = 2), IA = TRUE) {

uv <- rCopula(n, copula)

x <- exp(rnorm(n))

X <- cbind(1,x)

T <- (rlogis(n) < (X %*% c(0.5, -1)))

y0 <- qnorm(uv[,1]) + x * (1 + qnorm(uv[,1])/3)

if(IA)

y1 <- qnorm(uv[,2]) + x * (1 + qnorm(uv[,2])/3) +

T * (1 + log(x)/2) * qchisq(uv[,2],5)

else

y1 <- qnorm(uv[,2]) + x * (1 + qnorm(uv[,2])/3) +

T * qchisq(uv[,2],5)

y <- T * y1 + (1 - T) * y0
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data.frame(y = y, y0 = y0, y1 = y1, Treat = T, x = x)

}

tau <- 1:9/10

R <- 1000

B <- matrix(0, 7, R)

for(i in 1:R){

D <- DGP(1000)

f <- rq(y ~ log(x) * Treat, tau = 1:9/10, data = D)

f0 <- rq(y0 ~ log(x), tau = tau, data = D, subset = (Treat == 0))

f1 <- rq(y1 ~ log(x), tau = tau, data = D, subset = (Treat == 1))

qte1 <- coef(f)[3,] + coef(f)[4] * mean(log(D$x[D$Treat == 1]))

qte2 <- t(coef(f1) - coef(f0)) %*% c(1, mean(log(D$x[D$Treat == 1])))

truth <- qchisq(tau[5],5) * (1 + mean(log(D$x[D$Treat == 1])/2))

Z <- data.frame(y = D$y, t = D$Treat, x = log(D$x))

A <- QTET(Z)

B[,i] <- c(truth, qte1[5], qte2[5], A$tmle, A$naive, A$firpo, A$onestep)

}

# Another Simple Treatment model

require(copula)

require(quantreg)

source("QTET.R")

DGP <- function(n, copula = frankCopula(1, dim = 2), IA = TRUE) {

uv <- rCopula(n, copula)

x <- exp(rnorm(n))

X <- cbind(1,log(x))

T <- (rlogis(n) < (X %*% c(0.5, -1)))

y0 <- qnorm(uv[,1]) + x * (1 + qnorm(uv[,1])/3)

if(IA)

y1 <- qnorm(uv[,2]) + x * (1 + qnorm(uv[,2])/3) +

T * (1 + log(x)/2) * qchisq(uv[,2],5)

else

y1 <- qnorm(uv[,2]) + x * (1 + qnorm(uv[,2])/3) +

T * qchisq(uv[,2],5)

y <- T * y1 + (1 - T) * y0

data.frame(y = y, y0 = y0, y1 = y1, Treat = T, x = x)

}

tau <- 1:9/10

R <- 1000

B <- matrix(0, 7, R)

for(i in 1:R){

D <- DGP(1000)
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f <- rq(y ~ log(x) * Treat, tau = 1:9/10, data = D)

f0 <- rq(y0 ~ log(x), tau = tau, data = D, subset = (Treat == 0))

f1 <- rq(y1 ~ log(x), tau = tau, data = D, subset = (Treat == 1))

qte1 <- coef(f)[3,] + coef(f)[4] * mean(log(D$x[D$Treat == 1]))

qte2 <- t(coef(f1) - coef(f0)) %*% c(1, mean(log(D$x[D$Treat == 1])))

truth <- qchisq(tau[5],5) * (1 + mean(log(D$x[D$Treat == 1])/2))

Z <- data.frame(y = D$y, t = D$Treat, x = log(D$x))

A <- QTET(Z)

B[,i] <- c(truth, qte1[5], qte2[5], A$tmle, A$naive, A$firpo, A$onestep)

}

load("msim1.Rda")

G <- B[-1,] - B[1,]

H <- rbind(apply(G,1,mean), sqrt(apply(G^2, 1, mean)))

dimnames(H) <- list(c("Bias", "RMSE"),

c("QR1", "QR2", "TMLE", "Naive", "Firpo", "OneStep"))

cap1 = "Performance Comparison of Marginal QTETs for Simulation Model 1"

latex(H, file = "", rowlabel = "", digits = 3, caption = cap1)

load("msim2.Rda")

G <- B[-1,] - B[1,]

H <- rbind(apply(G,1,mean), sqrt(apply(G^2, 1, mean)))

dimnames(H) <- list(c("Bias", "RMSE"),

c("QR1", "QR2", "TMLE", "Naive", "Firpo", "OneStep"))

cap2 = "Performance Comparison of Marginal QTETs for Simulation Model 2"

latex(H, file = "", rowlabel = "", digits = 3, caption = cap2)
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